1
|
Manjarrez E, DeLuna-Castruita A, Lizarraga-Cortes V, Flores A. Ex-Gaussian vector metric and similarity index applied to reaction time analysis. Perception 2025:3010066251328164. [PMID: 40259599 DOI: 10.1177/03010066251328164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
In psychology and cognitive neuroscience, reaction time (RT) series and their ex-Gaussian distributions are commonly used as scalar quantities to explore the time course of attentional processes. However, we propose that such attentional processes can also be analyzed using an "ex-Gaussian vector", defined by successive triads of ex-Gaussian sigma, tau, and mu parameters from RT series. This geometrical object may help characterize interindividual differences between congruent and incongruent stimuli in the attentional Stroop task within a group of participants. To test these hypotheses, we calculated the similarity index of these geometrical objects in young adults without detectable neurological disorders. Our findings show that during two weeks of continuous Stroop task application, each participant displayed distinct ex-Gaussian RT vectors in a Cartesian 3D plot. Furthermore, our study found that the similarity index between ex-Gaussian RT vectors was significantly higher for incongruent stimuli than for congruent stimuli.
Collapse
Affiliation(s)
| | | | | | - Amira Flores
- Benemérita Universidad Autónoma de Puebla, México
| |
Collapse
|
2
|
Han Y, Bowen DJ, Barreto BL, Zwaan RR, Strachinaru M, van der Geest RJ, Hirsch A, van den Bosch AE, Bosch JG, Voorneveld J. Validation of Left Ventricular High Frame Rate Echo-Particle Image Velocimetry against 4D Flow MRI in Patients. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:94-101. [PMID: 39414405 DOI: 10.1016/j.ultrasmedbio.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/18/2024]
Abstract
OBJECTIVE Accurately measuring intracardiac flow patterns could provide insights into cardiac disease pathophysiology, potentially enhancing diagnostic and prognostic capabilities. This study aims to validate Echo-Particle Image Velocimetry (echoPIV) for in vivo left ventricular intracardiac flow imaging against 4D flow MRI. METHODS We acquired high frame rate contrast-enhanced ultrasound images from three standard apical views of 26 patients who required cardiac MRI. 4D flow MRI was obtained for each patient. Only echo image planes with sufficient quality and alignment with MRI were included for validation. Regional velocity, kinetic energy (KE) and viscous energy loss (EL˙) were compared between modalities using normalized mean absolute error (NMAE), cosine similarity and Bland-Altman analysis. RESULTS Among 24 included apical view acquisitions, we observed good correspondence between echoPIV and MRI regarding spatial flow patterns and vortex traces. The velocity profile at base-level (mitral valve) cross-section had cosine similarity of 0.92 ± 0.06 and NMAE of (14 ± 5)%. Peak spatial mean velocity differed by (3 ± 6) cm/s in systole and (6 ± 10) cm/s in diastole. The KE and rate of EL˙ also revealed a high level of cosine similarity (0.89 ± 0.09 and 0.91 ± 0.06) with NMAE of (23 ± 7)% and (52 ± 16)%. CONCLUSION Given good B-mode image quality, echoPIV provides a reliable estimation of left ventricular flow, exhibiting spatial-temporal velocity distributions comparable to 4D flow MRI. Both modalities present respective strengths and limitations: echoPIV captured inter-beat variability and had higher temporal resolution, while MRI was more robust to patient BMI and anatomy.
Collapse
Affiliation(s)
- Yichuang Han
- Department of Cardiology, Cardiovascular Institute, Thorax Center, Erasmus MC, Rotterdam, The Netherlands.
| | - Daniel J Bowen
- Department of Cardiology, Cardiovascular Institute, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - Bernardo Loff Barreto
- Department of Cardiology, Cardiovascular Institute, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - Robert R Zwaan
- Department of Cardiology, Cardiovascular Institute, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - Mihai Strachinaru
- Department of Cardiology, Cardiovascular Institute, Thorax Center, Erasmus MC, Rotterdam, The Netherlands; Department of Cardiology, Brussels University Hospital-Erasme Hospital, Brussels, Belgium
| | - Rob J van der Geest
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexander Hirsch
- Department of Cardiology, Cardiovascular Institute, Thorax Center, Erasmus MC, Rotterdam, The Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Annemien E van den Bosch
- Department of Cardiology, Cardiovascular Institute, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - Johan G Bosch
- Department of Cardiology, Cardiovascular Institute, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - Jason Voorneveld
- Department of Cardiology, Cardiovascular Institute, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Wang Y, He Y, Chen W, Tan J, Tang J. Ultrasound Speckle Decorrelation Analysis-Based Velocimetry for 3D-Velocity-Components Measurement Using a 1D Transducer Array. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401173. [PMID: 39031549 PMCID: PMC11348193 DOI: 10.1002/advs.202401173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/07/2024] [Indexed: 07/22/2024]
Abstract
Ultrasound velocimetry has been widely used for blood flow imaging. However, the flow measurements are constrained to resolve the in-plane 2D flow components when using a 1D transducer array. In this work, an ultrasound speckle decorrelation analysis-based velocimetry (3C-vUS) is proposed for 3D velocity components measurement using a 1D transducer array. The 3C-vUS theory is first derived and validated with numerical simulations and phantom experiments. The in vivo testing results show that 3C-vUS can accurately measure the blood flow 3D-velocity-components of the human carotid artery at arbitrary probe-to-vessel angles throughout the cardiac cycle. With such capability, the 3C-vUS will alleviate the requirement of operators and promote disease screening for blood flow-related disorders.
Collapse
Affiliation(s)
- Yongchao Wang
- Department of Biomedical EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsSouthern University of Science and TechnologyShenZhenGuangdong518055China
| | - Yetao He
- Department of Biomedical EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsSouthern University of Science and TechnologyShenZhenGuangdong518055China
| | - Wenkai Chen
- Department of Biomedical EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsSouthern University of Science and TechnologyShenZhenGuangdong518055China
| | - Jiyong Tan
- Department of Biomedical EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsSouthern University of Science and TechnologyShenZhenGuangdong518055China
| | - Jianbo Tang
- Department of Biomedical EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsSouthern University of Science and TechnologyShenZhenGuangdong518055China
| |
Collapse
|
4
|
Hoving AM, Mikhal J, Kuipers H, de Borst GJ, Slump CH. Development of an in vitro setup for flow studies in a stented carotid artery bifurcation. Med Biol Eng Comput 2024; 62:1165-1176. [PMID: 38155315 DOI: 10.1007/s11517-023-02977-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023]
Abstract
To investigate flow conditions in a double-layered carotid artery stent, a bench-top in vitro flow setup including a bifurcation phantom was designed and fabricated. The geometry of the tissue-mimicking phantom was based on healthy individuals. Two identical phantoms were created using 3D-printing techniques and molding with PVA-gel. In one of them, a clinically available CGuard double-layer stent was inserted. Measurements were performed using both continuous and pulsatile flow conditions. Blood flow studies were performed using echoPIV: a novel ultrasound-based technique combined with particle image velocimetry. A maximum deviation of 3% was visible between desired and measured flow patterns. The echoPIV measurements showed promising results on visualization and quantification of blood flow in and downstream the stent. Further research could demonstrate the effects of a double-layered stent on blood flow patterns in a carotid bifurcation in detail.
Collapse
Affiliation(s)
- Astrid M Hoving
- Robotics and Mechatronics Group, TechMed Centre, University of Twente, 7500 AE, Enschede, The Netherlands.
| | - Julia Mikhal
- Health Technology and Services Research Group, TechMed Centre, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Henny Kuipers
- Robotics and Mechatronics Group, TechMed Centre, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Gert J de Borst
- Department of Vascular Surgery, University Medical Centre Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Cornelis H Slump
- Robotics and Mechatronics Group, TechMed Centre, University of Twente, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
5
|
Voorneveld J, Bosch JG. The Effect of Spatial Velocity Gradients on Block-Matching Accuracy for Ultrasound Velocimetry. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:67-76. [PMID: 37821243 DOI: 10.1016/j.ultrasmedbio.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/17/2023] [Accepted: 09/02/2023] [Indexed: 10/13/2023]
Abstract
OBJECTIVE Block matching serves as the foundation for ultrasound velocimetry techniques such as blood speckle tracking and echo-particle image velocimetry. Any spatial velocity gradients (SVGs) inside a block-matching pair will result in tracking error, due to both the finite block size and the ultrasound point-spread-function. We assess, using an in silico sinusoidal flow phantom, the effect of SVG magnitude and beam-to-flow angle on block-matching bias and precision. Secondarily we assess the effect that SVGs have on velocimetry bias when using angled plane-wave compounding. METHODS The magnitude and angle of SVGs were varied by adjusting the wavelength and direction of a sinusoidal flow profile. Scatterers displaced by this flow profile were used for simulating ultrasound radio frequency data at discrete time points. After beamforming, the 2-D flow field was estimated using block matching. Two imaging sequences were tested, a single plane-wave and a three-angled plane-wave. RESULTS Smaller sinusoidal flow wavelengths resulted in increased bias and reduced precision, revealing an inverse relationship between sinusoidal flow wavelength and tracking error, with median errors ranging from 69%-90% for the smallest flow wavelengths (highest SVGs) down to 3%-5% for the largest (lowest SVGs). The SVG angle was also important, in which lateral SVGs (with axially oriented flows) resulted in significant speckle decorrelation and high tracking errors in regions with high SVGs. Conversely, axial SVGs (laterally oriented flow) experienced higher bias in the peak velocity regions of the flow profile. Coherent compounding resulted in higher velocity errors than using a single transmission for lateral SVGs but not for axial SVGs. CONCLUSION The highest SVGs that could be measured with ≤10% error was when the sinusoidal flow wavelength was less than 20 times the ultrasound pulse wavelength. The clinical significance is that the high SVGs present in high kinetic energy flows, such as severe carotid stenosis and aortic regurgitation, will limit the ability to accurately quantify the velocities in these flow structures.
Collapse
Affiliation(s)
- Jason Voorneveld
- Department of Biomedical Engineering, Thorax Center, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Johan G Bosch
- Department of Biomedical Engineering, Thorax Center, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Engelhard S, van Helvert M, Voorneveld J, Bosch JG, Lajoinie G, Jebbink EG, Reijnen MMPJ, Versluis M. Blood Flow Quantification with High-Frame-Rate, Contrast-Enhanced Ultrasound Velocimetry in Stented Aortoiliac Arteries: In Vivo Feasibility. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1518-1527. [PMID: 35577661 DOI: 10.1016/j.ultrasmedbio.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Local flow patterns influence stent patency, while blood flow quantification in stents is challenging. The aim of this study was to investigate the feasibility of 2-D blood flow quantification using high-frame-rate, contrast-enhanced ultrasound (HFR-CEUS) and particle image velocimetry (PIV), or echoPIV, in patients with aortoiliac stents. HFR-CEUS measurements were performed at 129 locations in 62 patients. Two-dimensional blood flow velocity fields were obtained using echoPIV. Visual inspection was performed by five observers to evaluate feasibility. The contrast-to-background ratio and average vector correlation were calculated and compared between stented and native vessel segments. Flow quantification with echoPIV was feasible in 128 of 129 locations (99%), with optimal quantification in 40 of 129 locations (31%). Partial quantification was achieved in 88 of 129 locations (68%), where one or multiple limiting issues occurred (not related to the stent) including loss of correlation during systole (57/129), short vessel segments (20/129), loss of contrast during diastole (20/129) and shadow regions (20/129). The contrast-to-background ratio and vector correlation were lower downstream in the imaged blood vessel, independent of the location of the stent. In conclusion, echoPIV was feasible in stents placed in the aortoiliac region, and the stents did not adversely affect flow tracking.
Collapse
Affiliation(s)
- Stefan Engelhard
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands; Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands; Physics of Fluids Group, TechMed Centre, University of Twente, Enschede, The Netherlands.
| | - Majorie van Helvert
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands; Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands; Physics of Fluids Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Jason Voorneveld
- Department of Biomedical Engineering, Thorax Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Johan G Bosch
- Department of Biomedical Engineering, Thorax Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Guillaume Lajoinie
- Physics of Fluids Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Erik Groot Jebbink
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands; Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | - Michel M P J Reijnen
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands; Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | - Michel Versluis
- Physics of Fluids Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| |
Collapse
|
7
|
Strachinaru M, Voorneveld J, Keijzer LBH, Bowen DJ, Mutluer FO, Cate FT, de Jong N, Vos HJ, Bosch JG, van den Bosch AE. Left ventricular high frame rate echo-particle image velocimetry: clinical application and comparison with conventional imaging. Cardiovasc Ultrasound 2022; 20:11. [PMID: 35473581 PMCID: PMC9040345 DOI: 10.1186/s12947-022-00283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Background Echo-Particle Image Velocimetry (echoPIV) tracks speckle patterns from ultrasound contrast agent(UCA), being less angle-sensitive than colour Doppler. High frame rate (HFR) echoPIV enables tracking of high velocity flow in the left ventricle (LV). We aimed to demonstrate the potential clinical use of HFR echoPIV and investigate the feasibility and accuracy in patients. Methods Nineteen patients admitted for heart failure were included. HFR contrast images were acquired from an apical long axis view (ALAX), using a fully-programmable ultrasound system. A clinical UCA was continuously infused with a dedicated pump. Additionally, echocardiographic images were obtained using a clinical system, including LV contrast-enhanced images and pulsed-wave (PW) Doppler of the LV inflow and outflow in ALAX. 11 patients underwent CMR and 4 cardiac CT as clinically indicated. These CMR and CT images were used as reference. In 10 patients with good echoPIV tracking and reference imaging, the intracavitary flow was compared between echoPIV, conventional and UCA echocardiography. Results EchoPIV tracking quality was good in 12/19 (63%), moderate in 2/19 (10%) and poor in 5/19 (26%) subjects. EchoPIV could determine inflow velocity in 17/19 (89%), and outflow in 14/19 (74%) patients. The correlation of echoPIV and PW Doppler was good for the inflow (R2 = 0.77 to PW peak; R2 = 0.80 PW mean velocity) and moderate for the outflow (R2 = 0.54 to PW peak; R2 = 0.44 to PW mean velocity), with a tendency for echoPIV to underestimate PW velocities. In selected patients, echoPIV was able in a single acquisition to demonstrate flow patterns which required multiple interrogations with classical echocardiography. Those flow patterns could also be linked to anatomical abnormalities as seen in CMR or CT. Conclusion HFR echoPIV tracks multidirectional and complex flow patterns which are unapparent with conventional echocardiography, while having comparable feasibility. EchoPIV tends to underestimate flow velocities as compared to PW Doppler. It has the potential to provide in one acquisition all the functional information obtained by conventional imaging, overcoming the angle dependency of Doppler and low frame rate of classical contrast imaging. Supplementary Information The online version contains supplementary material available at 10.1186/s12947-022-00283-4.
Collapse
Affiliation(s)
- Mihai Strachinaru
- Department of Biomedical Engineering, Erasmus MC, Rotterdam, Netherlands. .,Department of Cardiology, Erasmus MC, Rotterdam, Netherlands.
| | - Jason Voorneveld
- Department of Biomedical Engineering, Erasmus MC, Rotterdam, Netherlands
| | - Lana B H Keijzer
- Department of Medical Physics, Spaarne Gasthuis, Haarlem, Netherlands.,Amsterdam UMC, Department of Radiology and Nuclear Medicine, Amsterdam, Netherlands
| | - Daniel J Bowen
- Department of Cardiology, Erasmus MC, Rotterdam, Netherlands
| | - Ferit O Mutluer
- Department of Cardiology, Erasmus MC, Rotterdam, Netherlands.,Yeditepe University Hospital, Department of Cardiology, Istanbul, Turkey
| | | | - Nico de Jong
- Department of Biomedical Engineering, Erasmus MC, Rotterdam, Netherlands
| | - Hendrik J Vos
- Department of Biomedical Engineering, Erasmus MC, Rotterdam, Netherlands
| | - Johan G Bosch
- Department of Biomedical Engineering, Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
8
|
Zhang A, Pan M, Meng L, Zhang F, Zhou W, Zhang Y, Zheng R, Niu L, Zhang Y. Ultrasonic biomechanics method for vortex and wall motion of left ventricle: a phantom and in vivo study. BMC Cardiovasc Disord 2021; 21:516. [PMID: 34689730 PMCID: PMC8543879 DOI: 10.1186/s12872-021-02317-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
Background The non-invasive quantitative evaluation of left ventricle (LV) function plays a critical role in clinical cardiology. This study proposes a novel ultrasonic biomechanics method by integrating both LV vortex and wall motion to fully assess and understand the LV structure and function. The purpose of this study was to validate the ultrasonic biomechanics method as a quantifiable approach to evaluate LV function. Methods Firstly, B-mode ultrasound images were acquired and processed, which were utilized to implement parameters for quantifying the LV vortex and wall motion respectively. Next, the parameters were compared in polyvinyl alcohol cryogen (PVA) phantoms with different degree of stiffness corresponding to different freezing and thawing cycles in vitro. Finally, the parameters were computed in vivo during one cardiac cycle to assess the LV function in normal and abnormal subjects in vivo. Results In vitro study, the velocity field of PVA phantom differed with stiffness (varied elasticity modulus). The peak of strain for wall motion decreases with the increase of elasticity modulus, and periodically changed values. Statistical analysis for parameters of vortex dynamics (energy dissipation index, DI; kinetic energy fluctuations, KEF; relative strength, RS; and vorticity, W) based on different elasticity (E) of phantom depicted the good viability of this algorithm. In vivo study, the results confirmed that subjects with LV dysfunction had lower vorticity and strain (S) compared to the normal group. Conclusion Ultrasonic biomechanics method can obtain the vortex and wall motion of left ventricle. The method may have potential clinical value in evaluation of LV dysfunction.
Collapse
Affiliation(s)
- Aohua Zhang
- Department of Ultrasound, Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Tianhe District, China
| | - Min Pan
- Department of Ultrasound, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China.,Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Long Meng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fengshu Zhang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Sino-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang, China
| | - Wei Zhou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yaonan Zhang
- Sino-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang, China
| | - Rongqin Zheng
- Department of Ultrasound, Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Tianhe District, China
| | - Lili Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanling Zhang
- Department of Ultrasound, Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, Tianhe District, China.
| |
Collapse
|
9
|
Voorneveld J, Keijzer LBH, Strachinaru M, Bowen DJ, Mutluer FO, van der Steen AFW, Cate FJT, de Jong N, Vos HJ, van den Bosch AE, Bosch JG. Optimization of Microbubble Concentration and Acoustic Pressure for Left Ventricular High-Frame-Rate EchoPIV in Patients. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2432-2443. [PMID: 33720832 DOI: 10.1109/tuffc.2021.3066082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High-frame-rate (HFR) echo-particle image velocimetry (echoPIV) is a promising tool for measuring intracardiac blood flow dynamics. In this study, we investigate the optimal ultrasound contrast agent (UCA: SonoVue) infusion rate and acoustic output to use for HFR echoPIV (PRF = 4900 Hz) in the left ventricle (LV) of patients. Three infusion rates (0.3, 0.6, and 1.2 ml/min) and five acoustic output amplitudes (by varying transmit voltage: 5, 10, 15, 20, and 30 V-corresponding to mechanical indices of 0.01, 0.02, 0.03, 0.04, and 0.06 at 60-mm depth) were tested in 20 patients admitted for symptoms of heart failure. We assess the accuracy of HFR echoPIV against pulsed-wave Doppler acquisitions obtained for mitral inflow and aortic outflow. In terms of image quality, the 1.2-ml/min infusion rate provided the highest contrast-to-background ratio (CBR) (3-dB improvement over 0.3 ml/min). The highest acoustic output tested resulted in the lowest CBR. Increased acoustic output also resulted in increased microbubble disruption. For the echoPIV results, the 1.2-ml/min infusion rate provided the best vector quality and accuracy; mid-range acoustic outputs (corresponding to 15-20-V transmit voltages) provided the best agreement with the pulsed-wave Doppler. Overall, the highest infusion rate (1.2 ml/min) and mid-range acoustic output amplitudes provided the best image quality and echoPIV results.
Collapse
|
10
|
Hoving AM, Voorneveld J, Mikhal J, Bosch JG, Groot Jebbink E, Slump CH. In vitro performance of echoPIV for assessment of laminar flow profiles in a carotid artery stent. J Med Imaging (Bellingham) 2021; 8:017001. [PMID: 33457445 PMCID: PMC7804295 DOI: 10.1117/1.jmi.8.1.017001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/22/2020] [Indexed: 11/14/2022] Open
Abstract
Purpose: Detailed blood flow studies may contribute to improvements in carotid artery stenting. High-frame-rate contrast-enhanced ultrasound followed by particle image velocimetry (PIV), also called echoPIV, is a technique to study blood flow patterns in detail. The performance of echoPIV in presence of a stent has not yet been studied extensively. We compared the performance of echoPIV in stented and nonstented regions in an in vitro flow setup. Approach: A carotid artery stent was deployed in a vessel-mimicking phantom. High-frame-rate contrast-enhanced ultrasound images were acquired with various settings. Signal intensities of the contrast agent, velocity values, and flow profiles were calculated. Results: The results showed decreased signal intensities and correlation coefficients inside the stent, however, PIV analysis in the stent still resulted in plausible flow vectors. Conclusions: Velocity values and laminar flow profiles can be measured in vitro in stented arteries using echoPIV.
Collapse
Affiliation(s)
- Astrid M Hoving
- University of Twente, TechMed Centre, Robotics and Mechatronics Group, Enschede, The Netherlands
| | - Jason Voorneveld
- Erasmus MC, Thorax Center, Department of Biomedical Engineering, Rotterdam, The Netherlands
| | - Julia Mikhal
- University of Twente, TechMed Centre, BIOS Lab-on-a-Chip Group, Enschede, The Netherlands
| | - Johan G Bosch
- Erasmus MC, Thorax Center, Department of Biomedical Engineering, Rotterdam, The Netherlands
| | - Erik Groot Jebbink
- University of Twente, TechMed Centre, Multi-Modality Medical Imaging Group, Enschede, The Netherlands
| | - Cornelis H Slump
- University of Twente, TechMed Centre, Robotics and Mechatronics Group, Enschede, The Netherlands
| |
Collapse
|
11
|
Xu F, Kenjereš S. Numerical simulations of flow patterns in the human left ventricle model with a novel dynamic mesh morphing approach based on radial basis function. Comput Biol Med 2021; 130:104184. [PMID: 33444850 DOI: 10.1016/j.compbiomed.2020.104184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
We present a new numerical simulation framework for prediction of flow patterns in the human left ventricle model. In this study, a radial basis function (RBF) mesh morphing method is developed and applied within the finite-volume computational fluid dynamics (CFD) approach. The numerical simulations are designed to closely mimic details of recent tomographic particle image velocimetry (TomoPIV) experiments. The numerically simulated dynamic motions of the left ventricle and tri-leaflet biological mitral valve are emulated through the RBF morphing method. The arbitrary Lagrangian-Eulerian (ALE) based CFD is performed with the RBF-defined deforming wall boundaries. The results obtained show a good agreement with experiments, confirming the reliability and accuracy of the developed simulation framework.
Collapse
Affiliation(s)
- Fei Xu
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology and J. M. Burgerscentrum Research School for Fluid Mechanics, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| | - Saša Kenjereš
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology and J. M. Burgerscentrum Research School for Fluid Mechanics, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands.
| |
Collapse
|
12
|
Xiao Y, Wang C, Sun Y, Zhang X, Cui L, Yu J, Zheng H. Quantitative Estimation of Passive Elastic Properties of Individual Skeletal Muscle in Vivo Using Normalized Elastic Modulus-Length Curve. IEEE Trans Biomed Eng 2020; 67:3371-3379. [DOI: 10.1109/tbme.2020.2985724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Vos HJ, Voorneveld JD, Groot Jebbink E, Leow CH, Nie L, van den Bosch AE, Tang MX, Freear S, Bosch JG. Contrast-Enhanced High-Frame-Rate Ultrasound Imaging of Flow Patterns in Cardiac Chambers and Deep Vessels. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2875-2890. [PMID: 32843233 DOI: 10.1016/j.ultrasmedbio.2020.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Cardiac function and vascular function are closely related to the flow of blood within. The flow velocities in these larger cavities easily reach 1 m/s, and generally complex spatiotemporal flow patterns are involved, especially in a non-physiologic state. Visualization of such flow patterns using ultrasound can be greatly enhanced by administration of contrast agents. Tracking the high-velocity complex flows is challenging with current clinical echographic tools, mostly because of limitations in signal-to-noise ratio; estimation of lateral velocities; and/or frame rate of the contrast-enhanced imaging mode. This review addresses the state of the art in 2-D high-frame-rate contrast-enhanced echography of ventricular and deep-vessel flow, from both technological and clinical perspectives. It concludes that current advanced ultrasound equipment is technologically ready for use in human contrast-enhanced studies, thus potentially leading to identification of the most clinically relevant flow parameters for quantifying cardiac and vascular function.
Collapse
Affiliation(s)
- Hendrik J Vos
- Biomedical Engineering, Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands; Medical Imaging, Department of Imaging Physics, Applied Sciences, Delft University of Technology, Delft, The Netherlands.
| | - Jason D Voorneveld
- Biomedical Engineering, Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Erik Groot Jebbink
- M3i: Multi-modality Medical Imaging Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands; Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | - Chee Hau Leow
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Luzhen Nie
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, United Kingdom
| | | | - Meng-Xing Tang
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Steven Freear
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, United Kingdom
| | - Johan G Bosch
- Biomedical Engineering, Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Hoving AM, de Vries EE, Mikhal J, de Borst GJ, Slump CH. A Systematic Review for the Design of In Vitro Flow Studies of the Carotid Artery Bifurcation. Cardiovasc Eng Technol 2020; 11:111-127. [PMID: 31823191 PMCID: PMC7082306 DOI: 10.1007/s13239-019-00448-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/02/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE In vitro blood flow studies in carotid artery bifurcation models may contribute to understanding the influence of hemodynamics on carotid artery disease. However, the design of in vitro blood flow studies involves many steps and selection of imaging techniques, model materials, model design, and flow visualization parameters. Therefore, an overview of the possibilities and guidance for the design process is beneficial for researchers with less experience in flow studies. METHODS A systematic search to in vitro flow studies in carotid artery bifurcation models aiming at quantification and detailed flow visualization of blood flow dynamics results in inclusion of 42 articles. RESULTS Four categories of imaging techniques are distinguished: MRI, optical particle image velocimetry (PIV), ultrasound and miscellaneous techniques. Parameters for flow visualization are categorized into velocity, flow, shear-related, turbulent/disordered flow and other parameters. Model materials and design characteristics vary between study type. CONCLUSIONS A simplified three-step design process is proposed for better fitting and adequate match with the pertinent research question at hand and as guidance for less experienced flow study researchers. The three consecutive selection steps are: flow parameters, image modality, and model materials and designs. Model materials depend on the chosen imaging technique, whereas choice of flow parameters is independent from imaging technique and is therefore only determined by the goal of the study.
Collapse
Affiliation(s)
- A M Hoving
- University of Twente, 7500 AE, Enschede, The Netherlands.
| | - E E de Vries
- University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - J Mikhal
- University of Twente, 7500 AE, Enschede, The Netherlands
| | - G J de Borst
- University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - C H Slump
- University of Twente, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
15
|
Voorneveld J, Keijzer LBH, Strachinaru M, Bowen DJ, Goei JSL, Ten Cate F, van der Steen AFW, de Jong N, Vos HJ, van den Bosch AE, Bosch JG. High-Frame-Rate Echo-Particle Image Velocimetry Can Measure the High-Velocity Diastolic Flow Patterns. Circ Cardiovasc Imaging 2020; 12:e008856. [PMID: 30939921 DOI: 10.1161/circimaging.119.008856] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jason Voorneveld
- Department of Biomedical Engineering (J.V., L.B.H.K., A.F.W.v.d.S., N.d.J., H.J.V., J.G.B.), Thorax Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Lana B H Keijzer
- Department of Biomedical Engineering (J.V., L.B.H.K., A.F.W.v.d.S., N.d.J., H.J.V., J.G.B.), Thorax Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mihai Strachinaru
- Department of Cardiology (M.S., D.J.B., J.S.L.G., F.T.C., A.E.v.d.B.), Thorax Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Daniel J Bowen
- Department of Cardiology (M.S., D.J.B., J.S.L.G., F.T.C., A.E.v.d.B.), Thorax Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jeffrey S L Goei
- Department of Cardiology (M.S., D.J.B., J.S.L.G., F.T.C., A.E.v.d.B.), Thorax Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Folkert Ten Cate
- Department of Cardiology (M.S., D.J.B., J.S.L.G., F.T.C., A.E.v.d.B.), Thorax Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Antonius F W van der Steen
- Department of Biomedical Engineering (J.V., L.B.H.K., A.F.W.v.d.S., N.d.J., H.J.V., J.G.B.), Thorax Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - N de Jong
- Department of Biomedical Engineering (J.V., L.B.H.K., A.F.W.v.d.S., N.d.J., H.J.V., J.G.B.), Thorax Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Hendrik J Vos
- Department of Biomedical Engineering (J.V., L.B.H.K., A.F.W.v.d.S., N.d.J., H.J.V., J.G.B.), Thorax Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Annemien E van den Bosch
- Department of Cardiology (M.S., D.J.B., J.S.L.G., F.T.C., A.E.v.d.B.), Thorax Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Johan G Bosch
- Department of Biomedical Engineering (J.V., L.B.H.K., A.F.W.v.d.S., N.d.J., H.J.V., J.G.B.), Thorax Center, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
16
|
Voorneveld J, Saaid H, Schinkel C, Radeljic N, Lippe B, Gijsen FJH, van der Steen AFW, de Jong N, Claessens T, Vos HJ, Kenjeres S, Bosch JG. 4-D Echo-Particle Image Velocimetry in a Left Ventricular Phantom. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:805-817. [PMID: 31924419 DOI: 10.1016/j.ultrasmedbio.2019.11.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/29/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Left ventricular (LV) blood flow is an inherently complex time-varying 3-D phenomenon, where 2-D quantification often ignores the effect of out-of-plane motion. In this study, we describe high frame rate 4-D echocardiographic particle image velocimetry (echo-PIV) using a prototype matrix transesophageal transducer and a dynamic LV phantom for testing the accuracy of echo-PIV in the presence of complex flow patterns. Optical time-resolved tomographic PIV (tomo-PIV) was used as a reference standard for comparison. Echo-PIV and tomo-PIV agreed on the general profile of the LV flow patterns, but echo-PIV smoothed out the smaller flow structures. Echo-PIV also underestimated the flow rates at greater imaging depths, where the PIV kernel size and transducer point spread function were large relative to the velocity gradients. We demonstrate that 4-D echo-PIV could be performed in just four heart cycles, which would require only a short breath-hold, providing promising results. However, methods for resolving high velocity gradients in regions of poor spatial resolution are required before clinical translation.
Collapse
Affiliation(s)
- Jason Voorneveld
- Department of Biomedical Engineering, Thorax Center, Erasmus MC University Medical Center, Rotterdam, the Netherlands.
| | - Hicham Saaid
- Institute Biomedical Technology, Ghent University, Ghent, Belgium
| | - Christiaan Schinkel
- Transport Phenomena Section, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology; the Netherlands
| | | | | | - Frank J H Gijsen
- Department of Biomedical Engineering, Thorax Center, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Antonius F W van der Steen
- Department of Biomedical Engineering, Thorax Center, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Nico de Jong
- Department of Biomedical Engineering, Thorax Center, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Tom Claessens
- Department of Materials, Textiles and Chemical Engineering, Ghent University, Ghent, Belgium
| | - Hendrik J Vos
- Department of Biomedical Engineering, Thorax Center, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Sasa Kenjeres
- Transport Phenomena Section, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology; the Netherlands
| | - Johan G Bosch
- Department of Biomedical Engineering, Thorax Center, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
17
|
Nie L, Cowell DMJ, Carpenter TM, Mclaughlan JR, Cubukcu AA, Freear S. High-Frame-Rate Contrast-Enhanced Echocardiography Using Diverging Waves: 2-D Motion Estimation and Compensation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:359-371. [PMID: 30575531 DOI: 10.1109/tuffc.2018.2887224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Combining diverging ultrasound waves and microbubbles could improve contrast-enhanced echocardiography (CEE), by providing enhanced temporal resolution for cardiac function assessment over a large imaging field of view. However, current image formation techniques using coherent summation of echoes from multiple steered diverging waves (DWs) are susceptible to tissue and microbubble motion artifacts, resulting in poor image quality. In this study, we used correlation-based 2-D motion estimation to perform motion compensation for CEE using DWs. The accuracy of this motion estimation method was evaluated with Field II simulations. The root-mean-square velocity errors were 5.9% ± 0.2% and 19.5% ± 0.4% in the axial and lateral directions, when normalized to the maximum value of 62.8 cm/s which is comparable to the highest speed of blood flow in the left ventricle (LV). The effects of this method on image contrast ratio (CR) and contrast-to-noise ratio (CNR) were tested in vitro using a tissue mimicking rotating disk with a diameter of 10 cm. Compared against the control without motion compensation, a mean increase of 12 dB in CR and 7 dB in CNR were demonstrated when using this motion compensation method. The motion correction algorithm was tested in vivo on a CEE data set acquired with the Ultrasound Array Research Platform II performing coherent DW imaging. Improvement of the B-mode and contrast-mode image quality with cardiac motion and blood flow-induced microbubble motion was achieved. The results of motion estimation were further processed to interpret blood flow in the LV. This allowed for a triplex cardiac imaging technique, consisting of B mode, contrast mode, and 2-D vector flow imaging with a high frame rate of 250 Hz.
Collapse
|