1
|
Ghavami M, Sobhani MR, Zemp R. Transparent Dual-Frequency CMUT Arrays for Photoacoustic Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1621-1630. [PMID: 37938953 DOI: 10.1109/tuffc.2023.3331356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The opaque ultrasound transducers used in conventional photoacoustic imaging systems necessitate oblique light delivery, which gives rise to some disadvantages such as inefficient target illumination and bulky system size. This work proposes a transparent capacitive micromachined ultrasound transducer (CMUT) linear array with dual-band operation for through-illumination photoacoustic imaging. Fabricated using an adhesive wafer bonding method, the array consists of optically transparent conductors [indium tin oxide (ITO)] as both top and bottom electrodes, a transparent polymer [bisbenzocyclobutene (BCB)] as the sidewall and adhesive material, and largely transparent silicon nitride as the membrane. The fabricated device had a maximum optical transparency of 76.8% in the visible range. Furthermore, to simultaneously maintain higher spatial resolution and deeper imaging depth, this dual-frequency array consists of low- and high-frequency channels with 4.2- and 9.3-MHz center frequencies, respectively, which are configured in an interlaced architecture to minimize the grating lobes in the receive point spread function (PSF). With a wider bandwidth compared to the single-frequency case, the fabricated transparent dual-frequency CMUT array was used in through-illumination photoacoustic imaging of wire targets demonstrating an improved spatial resolution and imaging depth.
Collapse
|
2
|
Khan S, Vasudevan S. Biomedical instrumentation of photoacoustic imaging and quantitative sensing for clinical applications. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:091502. [PMID: 37747328 DOI: 10.1063/5.0151882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/02/2023] [Indexed: 09/26/2023]
Abstract
Photoacoustic (PA) imaging has been well researched over the last couple of decades and has found many applications in biomedical engineering. This has evinced interest among many scientists in developing this as a compact instrument for biomedical diagnosis. This review discusses various instrumentation developments for PA experimental setups and their applications in the biomedical diagnostic field. It also covers the PA spectral response or PA sensing technique, which uses the spectral information of the PA signal and performs sensing to deliver a fast, cost-effective, and compact screening tool instead of imaging. Primarily, this review provides an overview of PA imaging concepts and the development of hardware instrumentation systems in both the excitation and acquisition stages of this technique. Later, the paper discusses PA sensing, the quantitative spectral parameter extraction from the PA spectrum, and the correlation study of the spectral parameters with the physical parameters of the tissue. This PA sensing technique was used to diagnose various diseases, such as thyroid nodules, breast cancer, renal disorders, and zoonotic diseases, based on the mechanical and biological characteristics of the tissues. The paper culminates with a discussion section that provides future developments that are necessary to take this technique into clinical applications as a quantitative PA imaging technique.
Collapse
Affiliation(s)
- S Khan
- Department of Electrical Engineering, Indian Institute of Technology, Indore 453552, India
| | - S Vasudevan
- Department of Electrical Engineering, Indian Institute of Technology, Indore 453552, India
| |
Collapse
|
3
|
Herickhoff CD, van Schaijk R. cMUT technology developments. Z Med Phys 2023; 33:256-266. [PMID: 37316428 PMCID: PMC10517396 DOI: 10.1016/j.zemedi.2023.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 06/16/2023]
Abstract
Capacitive micromachined ultrasonic transducer (cMUT) technology has steadily advanced since its advent in the mid-1990's. Though cMUTs have not supplanted piezoelectric transducers for medical ultrasound imaging to date, researchers and engineers are continuing to improve cMUTs and leverage unique cMUT characteristics toward new applications. While not intended to be an exhaustive review of every aspect of cMUT state-of-the-art, this article provides a brief overview of cMUT benefits, challenges, and opportunities, as well as recent progress in cMUT research and translation.
Collapse
Affiliation(s)
- Carl D Herickhoff
- Department of Biomedical Engineering, University of Memphis, TN, USA.
| | | |
Collapse
|
4
|
Fang Z, Gao F, Jin H, Liu S, Wang W, Zhang R, Zheng Z, Xiao X, Tang K, Lou L, Tang KT, Chen J, Zheng Y. A Review of Emerging Electromagnetic-Acoustic Sensing Techniques for Healthcare Monitoring. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:1075-1094. [PMID: 36459601 DOI: 10.1109/tbcas.2022.3226290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Conventional electromagnetic (EM) sensing techniques such as radar and LiDAR are widely used for remote sensing, vehicle applications, weather monitoring, and clinical monitoring. Acoustic techniques such as sonar and ultrasound sensors are also used for consumer applications, such as ranging and in vivo medical/healthcare applications. It has been of long-term interest to doctors and clinical practitioners to realize continuous healthcare monitoring in hospitals and/or homes. Physiological and biopotential signals in real-time serve as important health indicators to predict and prevent serious illness. Emerging electromagnetic-acoustic (EMA) sensing techniques synergistically combine the merits of EM sensing with acoustic imaging to achieve comprehensive detection of physiological and biopotential signals. Further, EMA enables complementary fusion sensing for challenging healthcare settings, such as real-world long-term monitoring of treatment effects at home or in remote environments. This article reviews various examples of EMA sensing instruments, including implementation, performance, and application from the perspectives of circuits to systems. The novel and significant applications to healthcare are discussed. Three types of EMA sensors are presented: (1) Chip-based radar sensors for health status monitoring, (2) Thermo-acoustic sensing instruments for biomedical applications, and (3) Photoacoustic (PA) sensing and imaging systems, including dedicated reconstruction algorithms were reviewed from time-domain, frequency-domain, time-reversal, and model-based solutions. The future of EMA techniques for continuous healthcare with enhanced accuracy supported by artificial intelligence (AI) is also presented.
Collapse
|
5
|
Zheng Q, Wang H, Yang H, Jiang H, Chen Z, Lu Y, Feng PXL, Xie H. Thin ceramic PZT dual- and multi-frequency pMUT arrays for photoacoustic imaging. MICROSYSTEMS & NANOENGINEERING 2022; 8:122. [PMID: 36407887 PMCID: PMC9668999 DOI: 10.1038/s41378-022-00449-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 08/07/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
Miniaturized ultrasonic transducer arrays with multiple frequencies are key components in endoscopic photoacoustic imaging (PAI) systems to achieve high spatial resolution and large imaging depth for biomedical applications. In this article, we report on the development of ceramic thin-film PZT-based dual- and multi-frequency piezoelectric micromachined ultrasonic transducer (pMUT) arrays and the demonstration of their PAI applications. With chips sized 3.5 mm in length or 10 mm in diameter, square and ring-shaped pMUT arrays incorporating as many as 2520 pMUT elements and multiple frequencies ranging from 1 MHz to 8 MHz were developed for endoscopic PAI applications. Thin ceramic PZT with a thickness of 9 μm was obtained by wafer bonding and chemical mechanical polishing (CMP) techniques and employed as the piezoelectric layer of the pMUT arrays, whose piezoelectric constant d 31 was measured to be as high as 140 pm/V. Benefiting from this high piezoelectric constant, the fabricated pMUT arrays exhibited high electromechanical coupling coefficients and large vibration displacements. In addition to electrical, mechanical, and acoustic characterization, PAI experiments with pencil leads embedded into an agar phantom were conducted with the fabricated dual- and multi-frequency pMUT arrays. Photoacoustic signals were successfully detected by pMUT elements with different frequencies and used to reconstruct single and fused photoacoustic images, which clearly demonstrated the advantages of using dual- and multi-frequency pMUT arrays to provide comprehensive photoacoustic images with high spatial resolution and large signal-to-noise ratio simultaneously.
Collapse
Affiliation(s)
- Qincheng Zheng
- School of Integrated Circuits and Electronics, Beijing Institute of Technology (BIT), 100081 Beijing, China
| | - Haoran Wang
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611 USA
| | - Hao Yang
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620 USA
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620 USA
| | - Zhenfang Chen
- MEMS Engineering and Materials Inc., Sunnyvale, CA 94086 USA
| | - Yao Lu
- School of Integrated Circuits and Electronics, Beijing Institute of Technology (BIT), 100081 Beijing, China
| | - Philip X.-L. Feng
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611 USA
| | - Huikai Xie
- School of Integrated Circuits and Electronics, Beijing Institute of Technology (BIT), 100081 Beijing, China
- BIT Chongqing Institute of Microelectronics and Microsystems, 400030 Chongqing, China
| |
Collapse
|
6
|
Wang H, Yang H, Chen Z, Zheng Q, Jiang H, Feng PXL, Xie H. Development of Dual-Frequency PMUT Arrays Based on Thin Ceramic PZT for Endoscopic Photoacoustic Imaging. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS : A JOINT IEEE AND ASME PUBLICATION ON MICROSTRUCTURES, MICROACTUATORS, MICROSENSORS, AND MICROSYSTEMS 2021; 30:770-782. [PMID: 35528228 PMCID: PMC9075345 DOI: 10.1109/jmems.2021.3096733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This paper presents a dual-frequency piezoelectric micromachined ultrasonic transducer (pMUT) array based on thin ceramic PZT for endoscopic photoacoustic imaging (PAI) applications. With a chip size of 7 × 7 mm2, the pMUT array consists of 256 elements, half of which have a lower resonant frequency of 1.2 MHz and the other half have a higher resonant frequency of 3.4 MHz. Ceramic PZT, with outstanding piezoelectric coefficients, has been successfully thinned down to a thickness of only 4 μ by using wafer bonding and chemical mechanical polishing (CMP) techniques and employed as the piezoelectric layer of the pMUT elements. The diaphragm diameters of the lower-frequency and higher-frequency elements are 220 μm and 120 μm, respectively. The design methodology, multiphysics modeling, fabrication process, and characterization of the pMUTs are presented in detail. The fabricated pMUT array has been fully characterized via electrical, mechanical, and acoustic measurements. The measured maximum responsivities of the lower- and higher- frequency elements reach 110 nm/V and 30 nm/V at their respective resonances. The measured cross-couplings of the lower-frequency elements and higher-frequency elements are about 9% and 5%, respectively. Furthermore, PAI experiments with pencil leads embedded into an agar phantom have been conducted, which clearly shows the advantages of using dual-frequency pMUT arrays to provide comprehensive photoacoustic images with high spatial resolution and large signal-to-noise ratio simultaneously.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Hao Yang
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Zhenfang Chen
- MEMS Engineering and Materials Inc., Sunnyvale, CA 94086, USA
| | - Qincheng Zheng
- School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Philip X-L Feng
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Huikai Xie
- School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
7
|
Hybrid Cell Structure for Wideband CMUT: Design Method and Characteristic Analysis. MICROMACHINES 2021; 12:mi12101180. [PMID: 34683231 PMCID: PMC8540624 DOI: 10.3390/mi12101180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022]
Abstract
Capacitive micromachined ultrasonic transducer (CMUT) is an ultrasonic transducer based on the microelectromechanical system (MEMS). Wideband CMUT has good application prospects in ultrasonic imaging, ultrasonic identification, flow measurement, and nondestructive testing due to its excellent characteristics. This paper studies the method of increasing the bandwidth of the CMUT, proposes the structure of the wideband CMUT with a hybrid cell structure, and analyzes the design principles and characteristics of the wideband CMUT structure. By changing the cell spacing and the number of cells of different sizes composing the CMUT, we analyze the simulation of the effect of the spacing and number on the CMUT bandwidth, thereby optimizing the bandwidth characteristics of the CMUT. Next, the selection principle of the main structural parameters of the wideband CMUT is analyzed. According to the proposed principle, the CMUT in the air and water are designed and simulated. The results prove that both the air and water CMUT meet the design requirements. The design rules obtained in this paper can provide theoretical guidance for the selection of the main structural parameters of the wideband CMUT.
Collapse
|
8
|
Palma-Chavez J, Pfefer TJ, Agrawal A, Jokerst JV, Vogt WC. Review of consensus test methods in medical imaging and current practices in photoacoustic image quality assessment. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210176VSSR. [PMID: 34510850 PMCID: PMC8434148 DOI: 10.1117/1.jbo.26.9.090901] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/17/2021] [Indexed: 05/06/2023]
Abstract
SIGNIFICANCE Photoacoustic imaging (PAI) is a powerful emerging technology with broad clinical applications, but consensus test methods are needed to standardize performance evaluation and accelerate translation. AIM To review consensus image quality test methods for mature imaging modalities [ultrasound, magnetic resonance imaging (MRI), x-ray CT, and x-ray mammography], identify best practices in phantom design and testing procedures, and compare against current practices in PAI phantom testing. APPROACH We reviewed scientific papers, international standards, clinical accreditation guidelines, and professional society recommendations describing medical image quality test methods. Observations are organized by image quality characteristics (IQCs), including spatial resolution, geometric accuracy, imaging depth, uniformity, sensitivity, low-contrast detectability, and artifacts. RESULTS Consensus documents typically prescribed phantom geometry and material property requirements, as well as specific data acquisition and analysis protocols to optimize test consistency and reproducibility. While these documents considered a wide array of IQCs, reported PAI phantom testing focused heavily on in-plane resolution, depth of visualization, and sensitivity. Understudied IQCs that merit further consideration include out-of-plane resolution, geometric accuracy, uniformity, low-contrast detectability, and co-registration accuracy. CONCLUSIONS Available medical image quality standards provide a blueprint for establishing consensus best practices for photoacoustic image quality assessment and thus hastening PAI technology advancement, translation, and clinical adoption.
Collapse
Affiliation(s)
- Jorge Palma-Chavez
- University of California San Diego, Department of NanoEngineering, La Jolla, California, United States
| | - T. Joshua Pfefer
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Anant Agrawal
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| | - Jesse V. Jokerst
- University of California San Diego, Department of NanoEngineering, La Jolla, California, United States
- University of California San Diego, Department of Radiology, La Jolla, California, United States
- University of California San Diego, Materials Science and Engineering Program, La Jolla, California, United States
| | - William C. Vogt
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States
| |
Collapse
|
9
|
Mahmud MM, Wu X, Sanders JL, Biliroglu AO, Adelegan OJ, Newsome IG, Yamaner FY, Dayton PA, Oralkan O. An Improved CMUT Structure Enabling Release and Collapse of the Plate in the Same Tx/Rx Cycle for Dual-Frequency Acoustic Angiography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:2291-2302. [PMID: 32746179 PMCID: PMC7951756 DOI: 10.1109/tuffc.2020.3001221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
This study demonstrates, in detail, the potential of using capacitive micromachined ultrasonic transducers (CMUTs) for acoustic angiography of the microvasculature. It is known that when ultrasound contrast agents (microbubbles) are excited with moderate acoustic pressure around their resonance (2-4 MHz), they produce higher order harmonics (greater than third harmonic) due to their nonlinear behavior. To date, the fundamental challenge has been the availability of a transducer that can generate the transmit signals to excite the microbubbles at low frequencies and, in the same cycle, confocally detect harmonics in the higher frequencies. We present a novel device structure and dual-mode operation of a CMUT that operates with a center frequency of 4.3 MHz and 150% bandwidth in the conventional mode for transmitting and a center frequency of 9.8 MHz and a 125.5% bandwidth in collapse mode for receiving. Output pressure of 1.7 MPapp is achieved on the surface of a single unfocused transducer. The mechanical index at the transducer surface is 0.56. FEM simulations are performed first to show the functionality of the proposed device, and then, the device fabrication is described in detail. Finally, we experimentally demonstrate the ability to detect the microbubble signals with good contrast, and the background reflection is adequately suppressed, indicating the feasibility of the presented approach for acoustic angiography.
Collapse
|
10
|
Wang H, Ma Y, Yang H, Jiang H, Ding Y, Xie H. MEMS Ultrasound Transducers for Endoscopic Photoacoustic Imaging Applications. MICROMACHINES 2020; 11:E928. [PMID: 33053796 PMCID: PMC7601211 DOI: 10.3390/mi11100928] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 12/14/2022]
Abstract
Photoacoustic imaging (PAI) is drawing extensive attention and gaining rapid development as an emerging biomedical imaging technology because of its high spatial resolution, large imaging depth, and rich optical contrast. PAI has great potential applications in endoscopy, but the progress of endoscopic PAI was hindered by the challenges of manufacturing and assembling miniature imaging components. Over the last decade, microelectromechanical systems (MEMS) technology has greatly facilitated the development of photoacoustic endoscopes and extended the realm of applicability of the PAI. As the key component of photoacoustic endoscopes, micromachined ultrasound transducers (MUTs), including piezoelectric MUTs (pMUTs) and capacitive MUTs (cMUTs), have been developed and explored for endoscopic PAI applications. In this article, the recent progress of pMUTs (thickness extension mode and flexural vibration mode) and cMUTs are reviewed and discussed with their applications in endoscopic PAI. Current PAI endoscopes based on pMUTs and cMUTs are also introduced and compared. Finally, the remaining challenges and future directions of MEMS ultrasound transducers for endoscopic PAI applications are given.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA;
| | - Yifei Ma
- School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China; (Y.M.); (Y.D.)
| | - Hao Yang
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA; (H.Y.); (H.J.)
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA; (H.Y.); (H.J.)
| | - Yingtao Ding
- School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China; (Y.M.); (Y.D.)
| | - Huikai Xie
- School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China; (Y.M.); (Y.D.)
| |
Collapse
|
11
|
Li Y, Samant P, Wang S, Behrooz A, Li D, Xiang L. 3-D X-Ray-Induced Acoustic Computed Tomography With a Spherical Array: A Simulation Study on Bone Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:1613-1619. [PMID: 32286967 PMCID: PMC7394001 DOI: 10.1109/tuffc.2020.2983732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
X-ray-induced acoustic computed tomography (XACT) is a promising imaging modality combining high X-ray absorption contrast with the 3-D propagation advantages provided by high-resolution ultrasound waves. The purpose of this study was to optimize the configuration of a 3-D XACT imaging system for bone imaging. A 280 ultrasonic sensors with peak frequency of 10 MHz was designed to distribute on a spherical surface to optimize the 3-D volumetric imaging capability. We performed both theoretical calculations and simulations of this optimized XACT imaging configuration on a mouse-sized digital phantom containing various X-ray absorption coefficients. Iteration algorithm based on total variation has been used for 3-D XACT image reconstruction. The spatial resolution of imaging was estimated to about [Formula: see text] along both axial and lateral directions. We simulate XACT imaging of bone microstructures using digital phantoms generated from micro-CT images of real biological samples, showing that XACT imaging can provide high-resolution imaging of the mouse paw. Results of this study will greatly enhance the potential of XACT imaging in the evaluation of bone diseases for future clinical use.
Collapse
Affiliation(s)
- Y. Li
- Shandong Key Laboratory of Medical Physics and Image Processing, Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250358, China
| | - P. Samant
- The School of Biomedical Engineering at the University of Oklahoma, Norman, US
| | - S. Wang
- The School of Electrical and Computer Engineering at the University of Oklahoma, Norman, US
| | | | | | | |
Collapse
|
12
|
Experimental Characterization of an Embossed Capacitive Micromachined Ultrasonic Transducer Cell. MICROMACHINES 2020; 11:mi11020217. [PMID: 32093303 PMCID: PMC7074606 DOI: 10.3390/mi11020217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 11/28/2022]
Abstract
Capacitive Micromachined Ultrasonic Transducer (CMUT) is a promising ultrasonic transducer in medical diagnosis and therapeutic applications that demand a high output pressure. The concept of a CMUT with an annular embossed pattern on a membrane working in collapse mode is proposed to further improve the output pressure. To evaluate the performance of an embossed CMUT cell, both the embossed and uniform membrane CMUT cells were fabricated in the same die with a customized six-mask sacrificial release process. An annular nickel pattern with the dimension of 3 μm × 2 μm (width × height) was formed on a full top electrode CMUT to realize an embossed CMUT cell. Experimental characterization was carried out with optical, electrical, and acoustic instruments on the embossed and uniform CMUT cells. The embossed CMUT cell achieved 27.1% improvement of output pressure in comparison to the uniform CMUT cell biased at 170 V voltage. The fractional bandwidths of the embossed and uniform CMUT cells were 52.5% and 41.8%, respectively. It substantiated that the embossed pattern should be placed at the vibrating center of the membrane for achieving a higher output pressure. The experimental characterization indicated that the embossed CMUT cell has better operational performance than the uniform CMUT cell in collapse region.
Collapse
|
13
|
The Influence of Air Pressure on the Dynamics of Flexural Ultrasonic Transducers. SENSORS 2019; 19:s19214710. [PMID: 31671522 PMCID: PMC6864558 DOI: 10.3390/s19214710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/18/2019] [Accepted: 10/29/2019] [Indexed: 11/17/2022]
Abstract
The flexural ultrasonic transducer comprises a piezoelectric ceramic disc bonded to a membrane. The vibrations of the piezoelectric ceramic disc induce flexural modes in the membrane, producing ultrasound waves. The transducer is principally utilized for proximity or flow measurement, designed for operation at atmospheric pressure conditions. However, there is rapidly growing industrial demand for the flexural ultrasonic transducer in applications including water metering or in petrochemical plants where the pressure levels of the gas or liquid environment can approach 100 bar. In this study, characterization methods including electrical impedance analysis and pitch-catch ultrasound measurement are employed to demonstrate the dynamic performance of flexural ultrasonic transducers in air at elevated pressures approaching 100 bar. Measurement principles are discussed, in addition to modifications to the transducer design for ensuring resilience at increasing air pressure levels. The results highlight the importance of controlling the parameters of the measurement environment and show that although the conventional design of flexural ultrasonic transducer can exhibit functionality towards 100 bar, its dynamic performance is unsuitable for accurate ultrasound measurement. It is anticipated that this research will initiate new developments in ultrasound measurement systems for fluid environments at elevated pressures.
Collapse
|
14
|
Chan J, Zheng Z, Bell K, Le M, Reza PH, Yeow JTW. Photoacoustic Imaging with Capacitive Micromachined Ultrasound Transducers: Principles and Developments. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3617. [PMID: 31434241 PMCID: PMC6720758 DOI: 10.3390/s19163617] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/15/2019] [Accepted: 08/18/2019] [Indexed: 12/14/2022]
Abstract
Photoacoustic imaging (PAI) is an emerging imaging technique that bridges the gap between pure optical and acoustic techniques to provide images with optical contrast at the acoustic penetration depth. The two key components that have allowed PAI to attain high-resolution images at deeper penetration depths are the photoacoustic signal generator, which is typically implemented as a pulsed laser and the detector to receive the generated acoustic signals. Many types of acoustic sensors have been explored as a detector for the PAI including Fabry-Perot interferometers (FPIs), micro ring resonators (MRRs), piezoelectric transducers, and capacitive micromachined ultrasound transducers (CMUTs). The fabrication technique of CMUTs has given it an edge over the other detectors. First, CMUTs can be easily fabricated into given shapes and sizes to fit the design specifications. Moreover, they can be made into an array to increase the imaging speed and reduce motion artifacts. With a fabrication technique that is similar to complementary metal-oxide-semiconductor (CMOS), CMUTs can be integrated with electronics to reduce the parasitic capacitance and improve the signal to noise ratio. The numerous benefits of CMUTs have enticed researchers to develop it for various PAI purposes such as photoacoustic computed tomography (PACT) and photoacoustic endoscopy applications. For PACT applications, the main areas of research are in designing two-dimensional array, transparent, and multi-frequency CMUTs. Moving from the table top approach to endoscopes, some of the different configurations that are being investigated are phased and ring arrays. In this paper, an overview of the development of CMUTs for PAI is presented.
Collapse
Affiliation(s)
- Jasmine Chan
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Zhou Zheng
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Kevan Bell
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Martin Le
- Department of Physics, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Parsin Haji Reza
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - John T W Yeow
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
15
|
Wang H, Qu J, Wang X, He C, Xue C. Investigation and Analysis of Ultrasound Imaging Based on Linear CMUT Array. INT J PATTERN RECOGN 2019. [DOI: 10.1142/s0218001419570040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the next generation of ultrasound imaging systems, Capacitive micromachined ultasonic transducer (CMUT) based on microelectromechanical systems (MEMS) is a promising research direction of transducers, which has wide application prospects. In this paper, based on the study of three imaging methods, including classical phased array (CPA) imaging, classical synthetic aperture (CSA) imaging and phased subarray (PSA) imaging, several different imaging schemes are designed for linear CMUT array, after that the performances of these imaging schemes are compared and analyzed. The effects of the three imaging methods are verified and analyzed based on the linear CMUT array. Through analysis, it is found that the image quality of the classical phased array imaging method is the best, the imaging quality of the above three imaging methods can be effectively improved by adopting the amplitude apodization and dynamic focusing method. The research results in this paper will provide theoretical basis and application reference for the design of ultrasonic imaging system based on linear CMUT array in the future.
Collapse
Affiliation(s)
- Hongliang Wang
- National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, Shaanxi 030051, P. R. China
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan, Shaanxi 030051, P. R. China
| | - Jiao Qu
- National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, Shaanxi 030051, P. R. China
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan, Shaanxi 030051, P. R. China
| | - Xiangjun Wang
- MOEMS Education Ministry Key Laboratory, Tianjin University, Tianjin 300072, P. R. China
| | - Changde He
- National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, Shaanxi 030051, P. R. China
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan, Shaanxi 030051, P. R. China
| | - Chenyang Xue
- National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan, Shaanxi 030051, P. R. China
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan, Shaanxi 030051, P. R. China
| |
Collapse
|