1
|
Khetan N, Mertz J. Plane wave compounding with adaptive joint coherence factor weighting. ULTRASONICS 2025; 149:107573. [PMID: 39893756 DOI: 10.1016/j.ultras.2025.107573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/12/2025] [Accepted: 01/12/2025] [Indexed: 02/04/2025]
Abstract
Coherent Plane Wave Compounding (CPWC) is widely used for ultrasound imaging. This technique involves transmitting plane waves into a sample at different transmit angles and recording the resultant backscattered echo at different receive positions. The time-delayed signals from the different combinations of transmit angles and receive positions are then coherently summed to produce a beamformed image. Various techniques have been developed to characterize the quality of CPWC beamforming based on the measured coherence across the transmit or receive apertures. Here, we propose a more granular approach where the signals from every transmit/receive combination are separately evaluated using a quality metric based on their joint spatio-angular coherence. The signals are then individually weighted according to their measured Joint Coherence Factor (JCF) prior to being coherently summed. To facilitate the comparison of JCF beamforming compared to alternative techniques, we further propose a method of image display standardization based on contrast matching. We show results from tissue-mimicking phantoms and human soft-tissue imaging. Fine-grained JCF weighting is found to improve CPWC image quality compared to alternative approaches.
Collapse
Affiliation(s)
- Nikunj Khetan
- Boston University Mechanical Engineering, 110 Cummington Mall, Boston, 02215, MA, USA.
| | - Jerome Mertz
- Boston University Biomedical Engineering, 44 Cummington Mall, Boston, 02215, MA, USA.
| |
Collapse
|
2
|
Cho H, Park S, Kang J, Yoo Y. Deep coherence learning: An unsupervised deep beamformer for high quality single plane wave imaging in medical ultrasound. ULTRASONICS 2024; 143:107408. [PMID: 39094387 DOI: 10.1016/j.ultras.2024.107408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Plane wave imaging (PWI) in medical ultrasound is becoming an important reconstruction method with high frame rates and new clinical applications. Recently, single PWI based on deep learning (DL) has been studied to overcome lowered frame rates of traditional PWI with multiple PW transmissions. However, due to the lack of appropriate ground truth images, DL-based PWI still remains challenging for performance improvements. To address this issue, in this paper, we propose a new unsupervised learning approach, i.e., deep coherence learning (DCL)-based DL beamformer (DL-DCL), for high-quality single PWI. In DL-DCL, the DL network is trained to predict highly correlated signals with a unique loss function from a set of PW data, and the trained DL model encourages high-quality PWI from low-quality single PW data. In addition, the DL-DCL framework based on complex baseband signals enables a universal beamformer. To assess the performance of DL-DCL, simulation, phantom and in vivo studies were conducted with public datasets, and it was compared with traditional beamformers (i.e., DAS with 75-PWs and DMAS with 1-PW) and other DL-based methods (i.e., supervised learning approach with 1-PW and generative adversarial network (GAN) with 1-PW). From the experiments, the proposed DL-DCL showed comparable results with DMAS with 1-PW and DAS with 75-PWs in spatial resolution, and it outperformed all comparison methods in contrast resolution. These results demonstrated that the proposed unsupervised learning approach can address the inherent limitations of traditional PWIs based on DL, and it also showed great potential in clinical settings with minimal artifacts.
Collapse
Affiliation(s)
- Hyunwoo Cho
- Department of Electronic Engineering, Sogang University, Seoul 04107, South Korea
| | - Seongjun Park
- Department of Electronic Engineering, Sogang University, Seoul 04107, South Korea
| | - Jinbum Kang
- Department of Biomedical Software Engineering, The Catholic University of Korea, Bucheon 14662, South Korea.
| | - Yangmo Yoo
- Department of Electronic Engineering, Sogang University, Seoul 04107, South Korea; Department of Biomedical Engineering, Sogang University, Seoul 04107, South Korea
| |
Collapse
|
3
|
Syaryadhi M, Nakazawa E, Tagawa N, Yang M. Evaluating a 3D Ultrasound Imaging Resolution of Single Transmitter/Receiver with Coding Mask by Extracting Phase Information. SENSORS (BASEL, SWITZERLAND) 2024; 24:1496. [PMID: 38475032 DOI: 10.3390/s24051496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
We are currently investigating the ultrasound imaging of a sensor that consists of a randomized encoding mask attached to a single lead zirconate titanate (PZT) oscillator for a puncture microscope application. The proposed model was conducted using a finite element method (FEM) simulator. To increase the number of measurements required by a single element system that affects its resolution, the transducer was rotated at different angles. The image was constructed by solving a linear equation of the image model resulting in a poor quality. In a previous work, the phase information was extracted from the echo signal to improve the image quality. This study proposes a strategy by integrating the weighted frequency subbands compound and a super-resolution technique to enhance the resolution in range and lateral direction. The image performance with different methods was also evaluated using the experimental data. The results indicate that better image resolution and speckle suppression were obtained by applying the proposed method.
Collapse
Affiliation(s)
- Mohammad Syaryadhi
- Graduate School of Systems Design, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino 191-0065, Tokyo, Japan
| | - Eiko Nakazawa
- Graduate School of Systems Design, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino 191-0065, Tokyo, Japan
| | - Norio Tagawa
- Graduate School of Systems Design, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino 191-0065, Tokyo, Japan
| | - Ming Yang
- Graduate School of Systems Design, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino 191-0065, Tokyo, Japan
| |
Collapse
|
4
|
Shen CC, Huang CL. Improvement in Multi-Angle Plane Wave Image Quality Using Minimum Variance Beamforming with Adaptive Signal Coherence. SENSORS (BASEL, SWITZERLAND) 2024; 24:262. [PMID: 38203125 PMCID: PMC10781243 DOI: 10.3390/s24010262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
For ultrasound multi-angle plane wave (PW) imaging, the coherent PW compounding (CPWC) method provides limited image quality because of its conventional delay-and-sum beamforming. The delay-multiply-and-sum (DMAS) method is a coherence-based algorithm that improves image quality by introducing signal coherence among either receiving channels or PW transmit angles into the image output. The degree of signal coherence in DMAS is conventionally a global value for the entire image and thus the image resolution and contrast in the target region improves at the cost of speckle quality in the background region. In this study, the adaptive DMAS (ADMAS) is proposed such that the degree of signal coherence relies on the local characteristics of the image region to maintain the background speckle quality and the corresponding contrast-to-noise ratio (CNR). Subsequently, the ADMAS algorithm is further combined with minimum variance (MV) beamforming to increase the image resolution. The optimal MV estimation is determined to be in the direction of the PW transmit angle (Tx) for multi-angle PW imaging. Our results show that, using the PICMUS dataset, TxMV-ADMAS beamforming significantly improves the image quality compared with CPWC. When the p value is globally fixed to 2 as in conventional DMAS, though the main-lobe width and the image contrast in the experiments improve from 0.57 mm and 27.0 dB in CPWC, respectively, to 0.24 mm and 38.0 dB, the corresponding CNR decreases from 12.8 to 11.3 due to the degraded speckle quality. With the proposed ADMAS algorithm, however, the adaptive p value in DMAS beamforming helps to restore the CNR value to the same level of CPWC while the improvement in image resolution and contrast remains evident.
Collapse
Affiliation(s)
- Che-Chou Shen
- Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | | |
Collapse
|
5
|
Beuret S, Thiran JP. Windowed Radon Transform and Tensor Rank-1 Decomposition for Adaptive Beamforming in Ultrafast Ultrasound. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:135-148. [PMID: 37450358 DOI: 10.1109/tmi.2023.3295657] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Ultrafast ultrasound has recently emerged as an alternative to traditional focused ultrasound. By virtue of the low number of insonifications it requires, ultrafast ultrasound enables the imaging of the human body at potentially very high frame rates. However, unaccounted for speed-of-sound variations in the insonified medium often result in phase aberrations in the reconstructed images. The diagnosis capability of ultrafast ultrasound is thus ultimately impeded. Therefore, there is a strong need for adaptive beamforming methods that are resilient to speed-of-sound aberrations. Several of such techniques have been proposed recently but they often lack parallelizability or the ability to directly correct both transmit and receive phase aberrations. In this article, we introduce an adaptive beamforming method designed to address these shortcomings. To do so, we compute the windowed Radon transform of several complex radio-frequency images reconstructed using delay-and-sum. Then, we apply to the obtained local sinograms weighted tensor rank-1 decompositions and their results are eventually used to reconstruct a corrected image. We demonstrate using simulated and in-vitro data that our method is able to successfully recover aberration-free images and that it outperforms both coherent compounding and the recently introduced SVD beamformer. Finally, we validate the proposed beamforming technique on in-vivo data, resulting in a significant improvement of image quality compared to the two reference methods.
Collapse
|
6
|
Zhang X, Wang Q. Improving lateral resolution and contrast by combining coherent plane-wave compounding with adaptive weighting for medical ultrasound imaging. ULTRASONICS 2023; 132:106972. [PMID: 36881952 DOI: 10.1016/j.ultras.2023.106972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 05/29/2023]
Abstract
Due to the severe lateral lobe artifact by coherent plane-wave compounding (CPWC) and the low signal-to-noise ratio of radiofrequency (RF) data collected from the plane wave, the adaptive beamforming methods based on focused wave imaging (FWI) are improper to be directly applied to CPWC. To obtain a high-quality image with high resolution and contrast, this study combined the threshold phase coherence factor (THR-PCF) with the reconstructed covariance matrix minimum variance (RCM-MV) and then proposed a novel CPWC-based adaptive beamforming algorithm, THR-PCF + RCM-MV. The simulation, phantom, and in-vivo experiments were performed to investigate the performance of the proposed methods in comparison with the CPWC and the classical adaptive methods including the minimum variance (MV), generalized coherence factor (GCF) and their combination GCF + MV. The simulation results demonstrated that the THR-PCF + RCM-MV beamformer improved contrast ratio (CR) by 28.14%, contrast noise ratio (CNR) by 22.01%, speckle signal-to-noise ratio (s_SNR) by 23.58%, generalized contrast-to-noise ratio (GCNR) by 0.3%, and the full width at half maximum (FWHM) by 43.38% on average, compared with the GCF + MV method. The phantom experimental results showed a better performance of the THR-PCF + RCM-MV beamformer with an average improvement by 21.95% in CR, 2.62% in s_SNR, and 48.64% in FWHM compared with the GCF + MV. Meanwhile, the results showed that the image quality of the near and far fields was enhanced by the THR-PCF + RCM-MV. The in-vivo imaging results showed that our new method had potential for clinical application. In conclusion, the lateral resolution and contrast of medical ultrasound imaging could be improved greatly with our proposed method.
Collapse
Affiliation(s)
- Xiuwen Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qing Wang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
7
|
Sotoodeh Ziksari M, Asl BM. Fast Beamforming Method for Plane Wave Compounding Based on Beamspace Adaptive Beamformer and Delay-Multiply-and-Sum. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1164-1172. [PMID: 36841647 DOI: 10.1016/j.ultrasmedbio.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/30/2022] [Accepted: 01/01/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE Although the use of coherent plane wave compounding is a promising technique for enabling the attainment of very high frame rate imaging, it achieves relatively low image quality because of data-independent reconstruction. Adaptive beamformers rather than delay-and-sum (DAS) conventional techniques have been proposed to improve the imaging quality. The minimum variance (MV) and delay-multiply-and-sum (DMAS) beamformers have been validated as effective in improving image quality. The MV improves mainly the resolution of the image, while being computationally expensive and having little impact on contrast. The DMAS increases the contrast while over-suppressing the speckle region in the case of 2-D summation for multi-transmission applications. METHODS In a new approach, a beamformer based on MV and DMAS is proposed to enhance both spatial resolution and contrast in plane wave imaging. Prior to estimating the weight vector of MV, the backscattered echoes are decorrelated without any spatial smoothing. This enhances the robustness of MV without compromising the improvement in resolution. With a shift from element space to beamspace, MV weights are calculated using the spatial statistics of a set of orthogonal beams, which allows the high-complexity algorithm to be run faster. After that, the MV weights are applied to the DMAS output vector beamformed over different transmissions. DISCUSSION AND CONCLUSION The proposed method can result in better contrast resolution, thereby avoiding over-suppression. The complexity of the applied DMAS version is also similar to that of DAS. Imaging results reveal that the proposed method offers improvements over the traditional compounding method in terms of spatial and contrast resolution. It also can achieve a higher image quality compared with some existing adaptive methods applied in the literature.
Collapse
Affiliation(s)
- Mahsa Sotoodeh Ziksari
- Department of Biomedical Engineering, Tarbiat Modares University, Tehran, Iran; Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
8
|
Paridar R, Asl BM. Ultrafast Plane Wave Imaging Using Tensor Completion-Based Minimum Variance Algorithm. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1627-1637. [PMID: 37087375 DOI: 10.1016/j.ultrasmedbio.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 05/03/2023]
Abstract
OBJECTIVE Coherent plane wave compounding (CPWC) imaging is an efficient technique in high-frame-rate ultrasound imaging. To improve the image quality obtained from the CPWC, the adaptive minimum variance (MV) algorithm can be used. However, the high computational complexity of this algorithm negatively affects the frame rate. In other words, achieving a high frame rate and high-quality features simultaneously remains a challenge in medical ultrasound imaging. The aim of the work described here was to develop an algorithm to tackle this challenge and improve the frame rate while preserving the good quality of the resulting image. METHODS A tensor completion (TC)-based MV algorithm is proposed to simultaneously improve the frame rate and image quality in CPWC. In the proposed method, the MV algorithm is applied to a limited number of pixels in the beamforming grid. Then, the appropriate values are assigned to the remaining unprocessed pixels by using the TC algorithm. The proposed algorithm speeds up the beamforming process, and consequently, improves the frame rate. RESULTS The computational complexity of the proposed TC-based MV algorithm is reduced compared with that of the conventional MV algorithm while the good quality of this algorithm is preserved. The results indicate that, in particular, by processing 40% of the beamforming grid using the MV beamformer followed by the TC algorithm, a reconstructed image comparable to that in the case in which the MV algorithm is performed on the full beamforming grid is obtained; the difference between the contrast-to-noise ratio evaluation metric between these two cases is about 0.16 dB for the experimental-resolution phantom. Also, the resulting images obtained from the MV algorithm and the TC-based MV method have the same resolution, indicating that the TC-based MV algorithm can successfully achieve the quality of the MV algorithm with a lower computational complexity. CONCLUSION The TC-based MV algorithm is proposed in CPWC with the goal of improving frame rate and image quality. Qualitative and quantitative results reveal that by use of the proposed algorithm, the quality of the reconstructed image will be comparable to that of the conventional MV algorithm, and the frame rate will be improved.
Collapse
Affiliation(s)
- Roya Paridar
- Department of Biomedical Engineering, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
9
|
Paridar R, Asl BM. Plane wave ultrasound imaging using compressive sensing and minimum variance beamforming. ULTRASONICS 2023; 127:106838. [PMID: 36126437 DOI: 10.1016/j.ultras.2022.106838] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Coherent plane-wave compounding (CPWC) is a widely used technique in medical ultrasound imaging due to its high frame rate property. It is well-known that increasing the plane waves leads to improving the image quality. However, the image quality still needs to be further improved in CPWC. In this regard, a variety of methods have been proposed. In this paper, a new compressive sensing (CS) based approach is introduced with the combination of the adaptive minimum variance (MV) algorithm to further improve the image quality in terms of resolution and contrast. In the proposed method, which is called the CS-based MV technique, the CS method is used in the receive direction to produce the beamformed data for each plane wave. Then, the MV algorithm is performed in the plane wave transmit angle direction to coherently compound the images and improve the resolution. Moreover, to deal with the high computational complexity and also, the needing for high memory space during the CS method implementation, an approximation is considered which results in considerably reduced computational burden and memory space. The results obtained from the simulated point targets show that the proposed method leads to resolution improvement for about 71%, 5.5%, and 37% respectively, compared to DAS, DAS+MV, and CS+DAS beamformers. Also, the quantitative results obtained from the experimental contrast phantom in plane wave imaging challenge in medical ultrasound (PICMUS) data show a 3.02 dB, 2.57 dB, and 2.24 dB improvement of the contrast ratio metric using the proposed method compared to DAS, DAS+MV, and double-MV methods, respectively, indicating the good performance of the proposed method in image quality improvement.
Collapse
Affiliation(s)
- Roya Paridar
- Department of Biomedical Engineering, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
10
|
Requirements and Hardware Limitations of High-Frame-Rate 3-D Ultrasound Imaging Systems. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The spread of high frame rate and 3-D imaging techniques has raised pressing requirements for ultrasound systems. In particular, the processing power and data transfer rate requirements may be so demanding to hinder the real-time (RT) implementation of such techniques. This paper first analyzes the general requirements involved in RT ultrasound systems. Then, it identifies the main bottlenecks in the receiving section of a specific RT scanner, the ULA-OP 256, which is one of the most powerful available open scanners and may therefore be assumed as a reference. This case study has evidenced that the “star” topology, used to digitally interconnect the system’s boards, may easily saturate the data transfer bandwidth, thus impacting the achievable frame/volume rates in RT. The architecture of the digital scanner was exploited to tackle the bottlenecks by enabling a new “ring“ communication topology. Experimental 2-D and 3-D high-frame-rate imaging tests were conducted to evaluate the frame rates achievable with both interconnection modalities. It is shown that the ring topology enables up to 4400 frames/s and 510 volumes/s, with mean increments of +230% (up to +620%) compared to the star topology.
Collapse
|
11
|
High-resolution and high-contrast ultrafast ultrasound imaging using coherent plane wave adaptive compounding. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Lan Z, Zheng C, Peng H, Qiao H. Adaptive scaled coherence factor for ultrasound pixel-based beamforming. ULTRASONICS 2022; 119:106608. [PMID: 34793999 DOI: 10.1016/j.ultras.2021.106608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Synthetic aperture (SA) ultrasound imaging can obtain images with high-resolution owing to its ability to dynamically focus in both directions. The signal-to-noise ratio (SNR) of SA imaging is poor because the pulse energy using one array element is quite low. Thus, the SA method with bidirectional pixel-based focusing (SA-BiPBF) was previously proposed as a solution to this challenge. However, using the nonadaptive delay-and-sum (DAS) beamforming still limits its imaging performance. This study proposes an adaptive scaled coherence factor (AscCF) for SA-BiPBF to further boost the image quality. The AscCF exploits generalized coherence factor (GCF) to measure the signal coherence to adaptively adapt the parameters in SNR estimation rather than fixed ones. Comparisons were made with several other weighting techniques by performing simulations and experiments for performance evaluation. Results confirm that AscCF applied to SA-BiPBF offers a good image contrast while reservation of the speckle pattern. AscCF achieves maximal improvements of contrast ratio (CR) by 48.5% and 47.76 % compared with scaled coherence factor (scCF), respectively in simulation and experiment. Simultaneously, the maximum of improvements in speckle signal-to-noise ratio (sSNR) of AscCF are 11.28 % and 20.01 % upon scCF in simulation and experiment, respectively. From the in vivo result, it also appears a potential for AscCF to act in clinical situations to better detect lesion and retain speckle pattern.
Collapse
Affiliation(s)
- Zhengfeng Lan
- Department of Biomedical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chichao Zheng
- Department of Biomedical Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Hu Peng
- Department of Biomedical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Heyuan Qiao
- Department of Biomedical Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
13
|
Yan X, Wang Y. A submatrix spatial coherence approach to minimum variance beamforming combined with sign coherence factor for coherent plane wave compounding. Technol Health Care 2022; 30:11-25. [PMID: 35124580 PMCID: PMC9028673 DOI: 10.3233/thc-228002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND: The coherent plane wave compounding (CPWC) is a promising technique to enhance the imaging quality while maintaining the high frame rate in the plane wave ultrasound imaging. Recently, the spatial-coherence-based method has been specially designed to process echo matrix required by the minimum variance (MV) method. OBJECTIVE: In this paper, a novel beamforming method that integrates the submatrix-spatial-coherence-based MV with the sign coherence factor (SCF) is proposed to further improve the imaging quality. METHOD: The submatrix smoothing technique is modified to smooth and de-correlate signals of the receiving array dimension. Then, the SCF is used to modify the input vector of the beamformer, which can reduce side lobe noises with almost no increase in the amount of calculation. Simulation, phantom, in vivo, and sound velocity error experiments have been performed to verify the superiority of the proposed beamformer. RESULTS: The imaging results show that the proposed approach performs better in the imaging resolution and contrast compared to the traditional CPWC method. CONCLUSION: The robustness of the proposed method is enhanced, and the over-suppression phenomenon can be alleviated, which is a phenomenon that occurs in the original spatial-coherence and SCF methods.
Collapse
Affiliation(s)
- Xin Yan
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Yuanyuan Wang
- Department of Electronic Engineering, Fudan University, Shanghai, China
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China
| |
Collapse
|
14
|
Offerdahl K, Huber M, Long W, Bottenus N, Nelson R, Trahey G. Occult Regions of Suppressed Coherence in Liver B-Mode Images. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:47-58. [PMID: 34702640 PMCID: PMC9969659 DOI: 10.1016/j.ultrasmedbio.2021.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/01/2021] [Accepted: 09/06/2021] [Indexed: 05/03/2023]
Abstract
Ultrasound is an essential tool for diagnosing and monitoring diseases, but it can be limited by poor image quality. Lag-one coherence (LOC) is an image quality metric that can be related to signal-to-noise ratio and contrast-to-noise ratio. In this study, we examine matched LOC and B-mode images of the liver to discern patterns of low image quality, as indicated by lower LOC values, occurring beneath the abdominal wall, near out-of-plane vessels and adjacent to hyperechoic targets such the liver capsule. These regions of suppressed coherence are often occult; they present as temporally stable uniform speckle on B-mode images, but the LOC measurements in these regions suggest substantially degraded image quality. Quantitative characterization of the coherence suppression beneath the abdominal wall reveals a consistent pattern both in simulations and in vivo; sharp drops in coherence occurring beneath the abdominal wall asymptotically recover to a stable coherence at depth. Simulation studies suggest that abdominal wall reverberation clutter contributes to the initial drop in coherence but does not influence the asymptotic LOC value. Clinical implications are considered for contrast loss in B-mode imaging and estimation errors for elastography and Doppler imaging.
Collapse
Affiliation(s)
- Katelyn Offerdahl
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.
| | - Matthew Huber
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Will Long
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Nick Bottenus
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | - Rendon Nelson
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Gregg Trahey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
15
|
Goudarzi S, Asif A, Rivaz H. Plane-Wave Ultrasound Beamforming Through Independent Component Analysis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 203:106036. [PMID: 33756188 DOI: 10.1016/j.cmpb.2021.106036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE Beamforming in coherent plane-wave compounding (CPWC) is an essential step in maintaining high resolution, contrast and framerate. Adaptive methods have been designed to achieve this goal by estimating the apodization weights from echo traces acquired by several transducer elements. METHODS Herein, we formulate plane-wave beamforming as a blind source separation problem, where the output of each transducer element is considered as a non-independent observation of the field. As such, beamforming can be formulated as the estimation of an independent component out of the observations. We then adapt the independent component analysis (ICA) algorithm to solve this problem and reconstruct the final image. RESULTS The proposed method is evaluated on a set of simulations, real phantom, and in vivo data available from the plane-wave imaging challenge in medical ultrasound. Moreover, the results are compared with other well-known adaptive methods. CONCLUSIONS Results demonstrate that the proposed method simultaneously improves the resolution and contrast.
Collapse
Affiliation(s)
- Sobhan Goudarzi
- Department of Electrical and Computer Engineering, Concordia University, Montreal, QC, Canada.
| | - Amir Asif
- Department of Electrical and Computer Engineering, Concordia University, Montreal, QC, Canada
| | - Hassan Rivaz
- Department of Electrical and Computer Engineering, Concordia University, Montreal, QC, Canada
| |
Collapse
|
16
|
Ziksari MS, Asl BM. Minimum Variance Combined With Modified Delay Multiply-and-Sum Beamforming for Plane-Wave Compounding. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1641-1652. [PMID: 33301403 DOI: 10.1109/tuffc.2020.3043795] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plane-wave compounding is an active topic of research in ultrasound imaging because it is a promising technique for ultrafast ultrasound imaging. Unfortunately, due to the data-independent nature of the traditional compounding method, it imposes a fundamental limit on image quality. To address this issue, adaptive beamformers have been implemented in the compounding procedure. In this article, a new adaptive beamformer for the 2-D data set obtained from multiple plane-wave transmissions is investigated. In the proposed scheme, the minimum variance (MV) weights are applied to the backscattered echoes. Then, the final image is obtained by employing a modified version of the delay multiply-and-sum (DMAS) beamformer in the coherent compounding. The results demonstrate that the presented MV-DMAS scheme outperforms the conventional coherent compounding in both terms of resolution and contrast. It also offers improvements over the 2-D-DMAS and some MV-based methods presented in the literature, such that it achieves at least 20.9% enhancement in sidelobe reduction compared with the best result of MV-based methods. Also, by the proposed method, the in vivo study shows an improved generalized contrast-to-noise ratio (GCNR) that implies a higher probability of lesion detection.
Collapse
|
17
|
Shen CC. Computationally efficient minimum-variance baseband delay-multiply-and-sum beamforming for adjustable enhancement of ultrasound image resolution. ULTRASONICS 2021; 112:106345. [PMID: 33465594 DOI: 10.1016/j.ultras.2020.106345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/22/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Baseband Delay-Multiply-and-Sum (BB-DMAS) beamforming takes advantage of the baseband spatial coherence of receiving aperture to improve image resolution and contrast. Meanwhile, the side-lobe clutter and noise level can also be effectively suppressed in BB-DMAS beamforming due to their low coherence when being detected by channels in different spatial locations. BB-DMAS scales the magnitude of channel signal by p-th root and restores the output dimensionality by p-th power after channel summation. Higher p value introduces more spatial coherence into DMAS beamforming and provides higher image resolution at the cost of background speckle quality. In this study, a computationally efficient integration of BB-DMAS with minimum-variance (MV) beamforming is developed so that the image resolution can be drastically improved with low p value (e.g. p < 2) while maintaining the speckle quality. For each image pixel, the proposed MV-DMAS only requires single MV estimation to optimize the aperture apodization for DMAS beamforming. Our simulation results show that, with p = 1.5, the -6-dB lateral width of wire reflector noticeably improves from 0.22 mm to 0.13 mm by adopting MV estimation in BB-DMAS beamforming. In MV-DMAS, the suppression of uncorrelated random noises also remains effective. Experimental results not only confirm the superior resolution in MV-DMAS beamforming but also demonstrates comparable image contrast and speckle quality to BB-DMAS counterpart. In conclusion, MV-DMAS beamforming can provide improvement in image resolution while maintaining the other image quality metrics using an efficient combination of moderate spatial coherence and MV estimation of receiving aperture apodization in ultrasonic imaging.
Collapse
Affiliation(s)
- Che-Chou Shen
- Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
| |
Collapse
|
18
|
Yan X, Qi Y, Wang Y, Wang Y. High Resolution, High Contrast Beamformer Using Minimum Variance and Plane Wave Nonlinear Compounding with Low Complexity. SENSORS 2021; 21:s21020394. [PMID: 33429947 PMCID: PMC7826701 DOI: 10.3390/s21020394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/05/2022]
Abstract
The plane wave compounding (PWC) is a promising modality to improve the imaging quality and maintain the high frame rate for ultrafast ultrasound imaging. In this paper, a novel beamforming method is proposed to achieve higher resolution and contrast with low complexity. A minimum variance (MV) weight calculated by the partial generalized sidelobe canceler is adopted to beamform the receiving array signals. The dimension reduction technique is introduced to project the data into lower dimensional space, which also contributes to a large subarray length. Estimation of multi-wave receiving covariance matrix is performed and then utilized to determine only one weight. Afterwards, a fast second-order reformulation of the delay multiply and sum (DMAS) is developed as nonlinear compounding to composite the beamforming output of multiple transmissions. Simulations, phantom, in vivo, and robustness experiments were carried out to evaluate the performance of the proposed method. Compared with the delay and sum (DAS) beamformer, the proposed method achieved 86.3% narrower main lobe width and 112% higher contrast ratio in simulations. The robustness to the channel noise of the proposed method is effectively enhanced at the same time. Furthermore, it maintains a linear computational complexity, which means that it has the potential to be implemented for real-time response.
Collapse
Affiliation(s)
- Xin Yan
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China; (X.Y.); (Y.Q.); (Y.W.)
| | - Yanxing Qi
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China; (X.Y.); (Y.Q.); (Y.W.)
| | - Yinmeng Wang
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China; (X.Y.); (Y.Q.); (Y.W.)
| | - Yuanyuan Wang
- Department of Electronic Engineering, Fudan University, Shanghai 200433, China; (X.Y.); (Y.Q.); (Y.W.)
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai 200032, China
- Correspondence:
| |
Collapse
|
19
|
Advances in ultrasonography: image formation and quality assessment. J Med Ultrason (2001) 2021; 48:377-389. [PMID: 34669073 PMCID: PMC8578163 DOI: 10.1007/s10396-021-01140-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023]
Abstract
Delay-and-sum (DAS) beamforming is widely used for generation of B-mode images from echo signals obtained with an array probe composed of transducer elements. However, the resolution and contrast achieved with DAS beamforming are determined by the physical specifications of the array, e.g., size and pitch of elements. To overcome this limitation, adaptive imaging methods have recently been explored extensively thanks to the dissemination of digital and programmable ultrasound systems. On the other hand, it is also important to evaluate the performance of such adaptive imaging methods quantitatively to validate whether the modification of the image characteristics resulting from the developed method is appropriate. Since many adaptive imaging methods have been developed and they often alter image characteristics, attempts have also been made to update the methods for quantitative assessment of image quality. This article provides a review of recent developments in adaptive imaging and image quality assessment.
Collapse
|
20
|
Bendjador H, Deffieux T, Tanter M. The SVD Beamformer: Physical Principles and Application to Ultrafast Adaptive Ultrasound. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3100-3112. [PMID: 32286965 DOI: 10.1109/tmi.2020.2986830] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A shift of paradigm is currently underway in biomedical ultrasound thanks to plane or diverging waves coherent compounding for faster imaging. One remaining challenge consists in handling phase and amplitude aberrations induced during the ultrasonic propagation through complex layers. Unlike conventional line-per-line imaging, ultrafast ultrasound provides backscattering information from the whole imaged area for each transmission. Here, we take benefit from this feature and propose an efficient approach to perform fast aberration correction. Our method is based on the Singular Value Decomposition (SVD) of an ultrafast compound matrix containing backscattered data for several plane wave transmissions. First, we explain the physical signification of SVD and associated singular vectors within the ultrafast matrix formalism. We theoretically demonstrate that the separation of spatial and angular variables, rendered by SVD on ultrafast data, provides an elegant and straightforward way to optimize the angular coherence of backscattered data. In heterogeneous media, we demonstrate that the first spatial and angular singular vectors retrieve respectively the non-aberrated image of a region of interest, and the phase and amplitude of its aberration law. Numerical, in vitro and in vivo results prove the efficiency of the image correction, but also the accuracy of the aberrator determination. Based on spatial and angular coherence, we introduce a complete methodology for adaptive beamforming of ultrafast data, performed on successive isoplanatism patches undergoing SVD beamforming. The simplicity of this method paves the way to real-time adaptive ultrafast ultrasound imaging and provides a theoretical framework for future quantitative ultrasound applications.
Collapse
|
21
|
Wang Y, Qi Y, Wang Y. A Mixed Transmitting-Receiving Beamformer With a Robust Generalized Coherence Factor: Enhanced Resolution and Contrast. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:1573-1589. [PMID: 32149684 DOI: 10.1109/tuffc.2020.2977942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Adaptive beamforming has been widely studied for ultrasound imaging over the past few decades. The minimum variance (MV) and generalized coherence factor (GCF) approaches have been validated as effective methods. However, the MV method had a limited contribution to contrast improvement, while the GCF method suffered from severe speckle distortion in previous studies. In this article, a novel ultrasound beamforming approach based on MV and GCF beamformers is proposed to enhance the spatial resolution and contrast in synthetic aperture (SA) ultrasound imaging. First, the MV optimization problem is conceptually redefined by minimizing the total power of the transmitting and receiving outputs. Estimation of the covariance matrices in transmit and receive apertures is carried out and then utilized to determine adaptive weighting vectors. Second, a data-compounding method, viewed as a spatial low-pass filter, is introduced to the GCF method to optimize the spatial spectrum of echo signals and obtain better performance. Robust principal component analysis (RPCA) processing is additionally employed to obtain the final output. Simulation, experimental, and in vivo studies are conducted on different data sets. Relative to the traditional delay-and-sum (DAS) beamformer, mean improvements in the full-width at half-maximum and contrast ratio of 89% and 94%, respectively, are achieved. Thus, considerable enhancement of the spatial resolution and contrast is obtained by the proposed method. Moreover, the proposed method performs better in terms of the computational complexity. In summary, the proposed scheme effectively enhances ultrasound imaging quality.
Collapse
|
22
|
Rodriguez-Molares A, Rindal OMH, D'hooge J, Masoy SE, Austeng A, Lediju Bell MA, Torp H. The Generalized Contrast-to-Noise Ratio: A Formal Definition for Lesion Detectability. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:745-759. [PMID: 31796398 PMCID: PMC8354776 DOI: 10.1109/tuffc.2019.2956855] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In the last 30 years, the contrast-to-noise ratio (CNR) has been used to estimate the contrast and lesion detectability in ultrasound images. Recent studies have shown that the CNR cannot be used with modern beamformers, as dynamic range alterations can produce arbitrarily high CNR values with no real effect on the probability of lesion detection. We generalize the definition of CNR based on the overlap area between two probability density functions. This generalized CNR (gCNR) is robust against dynamic range alterations; it can be applied to all kind of images, units, or scales; it provides a quantitative measure for contrast; and it has a simple statistical interpretation, i.e., the success rate that can be expected from an ideal observer at the task of separating pixels. We test gCNR on several state-of-the-art imaging algorithms and, in addition, on a trivial compression of the dynamic range. We observe that CNR varies greatly between the state-of-the-art methods, with improvements larger than 100%. We observe that trivial compression leads to a CNR improvement of over 200%. The proposed index, however, yields the same value for compressed and uncompressed images. The tested methods showed mismatched performance in terms of lesion detectability, with variations in gCNR ranging from -0.08 to +0.29. This new metric fixes a methodological flaw in the way we study contrast and allows us to assess the relevance of new imaging algorithms.
Collapse
|
23
|
Zhou Z, Wang Y, Guo Y, Jiang X, Qi Y. Ultrafast Plane Wave Imaging With Line-Scan-Quality Using an Ultrasound-Transfer Generative Adversarial Network. IEEE J Biomed Health Inform 2020; 24:943-956. [DOI: 10.1109/jbhi.2019.2950334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
A United Sign Coherence Factor Beamformer for Coherent Plane-Wave Compounding with Improved Contrast. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we present a united sign coherence factor beamformer for coherent plane-wave compounding (CPWC). CPWC is capable of reaching an image quality comparable to the conventional B-mode with a much higher frame rate. Conventional coherence factor (CF) based beamformers for CPWC are based on one-dimensional (1D) frameworks, either in the spatial coherence dimension or angular coherence dimension. Both 1D frameworks do not take into account the coherence information of the dimensions of each other. In order to take full advantage of the radio-frequency (RF) data, this paper proposes a united framework containing both spatial and angular information for CPWC. A united sign coherence factor beamformer (uSCF), which combines the conventional sign coherence factor (SCF) and the united framework, is introduced in the paper as well. The proposed beamformer is compared with the conventional 1D SCF beamformers (spatial and angular dimension beamformers) using simulation, phantom and in vivo studies. In the in vivo images, the proposed method improves the contrast ratio (CR) and generalized contrast-to-noise ratio (gCNR) by 197% and 20% over CPWC. Compared with other 1D methods, uSCF also shows an improved contrast and lateral resolution on all datasets.
Collapse
|
25
|
Wang Y, Zheng C, Zhao X, Peng H. Adaptive scaling Wiener postfilter using generalized coherence factor for coherent plane-wave compounding. Comput Biol Med 2020; 116:103564. [DOI: 10.1016/j.compbiomed.2019.103564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/04/2019] [Accepted: 11/21/2019] [Indexed: 11/25/2022]
|
26
|
Two-Dimensional Spatial Coherence for Ultrasonic DMAS Beamforming in Multi-Angle Plane-Wave Imaging. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9193973] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ultrasonic multi-angle plane-wave (PW) coherent compounding relies on delay-and-sum (DAS) beamforming of two-dimensional (2D) echo matrix in both the dimensions PW transmit angle and receiving channel to construct each image pixel. Due to the characteristics of DAS beamforming, PW coherent compounding may suffer from high image clutter when the number of transmit angles is kept low for ultrafast image acquisition. Delay-multiply-and-sum (DMAS) beamforming exploits the spatial coherence of the receiving aperture to suppress clutter interference. Previous attempts to introduce DMAS beamforming into multi-angle PW imaging has been reported but only in either dimension of the 2D echo matrix. In this study, a novel DMAS operation is proposed to extract the 2D spatial coherence of echo matrix for further improvement of image quality. The proposed 2D-DMAS method relies on a flexibly tunable p value to manipulate the signal coherence in the beamforming output. For p = 2.0 as an example, simulation results indicate that 2D-DMAS outperforms other one-dimensional DMAS methods by at least 9.3 dB in terms of ghost-artifact suppression. Experimental results also show that 2D-DMAS provides the highest improvement in lateral resolution by 32% and in image contrast by 15.6 dB relative to conventional 2D-DAS beamforming. Nonetheless, since 2D-DMAS emphasizes signal coherence more than its one-dimensional DMAS counterparts, it suffers from the most elevated speckle variation and the granular pattern in the tissue background.
Collapse
|
27
|
Rindal OMH, Austeng A, Fatemi A, Rodriguez-Molares A. The Effect of Dynamic Range Alterations in the Estimation of Contrast. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:1198-1208. [PMID: 30990429 DOI: 10.1109/tuffc.2019.2911267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Many adaptive beamformers claim to produce images with increased contrast, a feature that could enable a better detection of lesions and anatomical structures. Contrast is often quantified using the contrast ratio (CR) and the contrast-to-noise ratio (CNR). The estimation of CR and CNR can be affected by dynamic range alterations (DRAs), such as those produced by a trivial gray-level transformation. Thus, we can form the hypothesis that contrast improvements from adaptive beamformers can, partly, be due to DRA. In this paper, we confirm this hypothesis. We show evidence on the influence of DRA on the estimation of CR and CNR and on the fact that several methods in the state of the art do alter the DR. To study this phenomenon, we propose a DR test (DRT) to estimate the degree of DRA and we apply it to seven beamforming methods. We show that CR improvements correlate with DRT with [Formula: see text] in simulated data and [Formula: see text] in experiments. We also show that DRA may lead to increased CNR values, under some circumstances. These results suggest that claims on lesion detectability, based on CR and CNR values, should be revised.
Collapse
|
28
|
Zhu J, Tagawa N. Improvement of Performance Degradation in Synthetic Aperture Extension of Enhanced Axial Resolution Ultrasound Imaging Based on Frequency Sweep. SENSORS (BASEL, SWITZERLAND) 2019; 19:s19102414. [PMID: 31137819 PMCID: PMC6566415 DOI: 10.3390/s19102414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
We are studying a method based on the carrier frequency sweep for axial high resolution ultrasonic imaging to provide the range resolution that corresponds to the carrier wavelength. The first proposal for this type of method was based on the focused pulse transmission. Then, to improve the frame rate, the method was extended to a synthetic aperture-type method that transmits divergent pulses. While the method is effective in terms of the frame rate, degradation of the enhanced axial resolution performance is a concern. Therefore, using finite element method simulations and simple experiments, the performance of the synthetic aperture method with high axial resolution is evaluated via comparison with the original method using focused pulses. The evaluation confirmed that the performance degradation of the synthetic aperture method is caused by weakness in the transmitted wave intensity and deterioration of the phase coherence in the reception beamforming. Based on this result, we propose a method that is less affected by the latter cause and show its effectiveness.
Collapse
Affiliation(s)
- Jing Zhu
- Graduate School of System Design, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino, Tokyo 191-0065, Japan.
| | - Norio Tagawa
- Graduate School of System Design, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino, Tokyo 191-0065, Japan.
| |
Collapse
|