1
|
Ghai S, Ni TT, Pavlovich CP, Futterer JJ, Schade GR, Sanchez-Salas R, Cornud F, Eggener S, Feller JF, George AK, Villers A, de la Rosette J. New kids on the block: MRI guided transrectal focused US, TULSA, focal laser ablation, histotripsy - a comprehensive review. Prostate Cancer Prostatic Dis 2025:10.1038/s41391-025-00956-x. [PMID: 40140552 DOI: 10.1038/s41391-025-00956-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025]
Abstract
INTRODUCTION Prostate cancer (PCa) management poses challenges due to treatment-related morbidities associated with conventional therapies. Focal therapy (FT) is emerging as a promising alternative for intermediate-risk PCa, aiming to selectively target localized cancerous lesions while preserving healthy tissue. This review explores emerging FT modalities for PCa treatment, focusing on transrectal MRI-guided focused ultrasound surgery (MRgFUS), transurethral ultrasound ablation (TULSA), focal laser ablation (FLA), and histotripsy. METHODS A comprehensive literature search was conducted to identify studies and clinical trials related to FT. Relevant articles were selected and data were synthesized to provide insights into the efficacy and feasibility of MRgFUS, TULSA, FLA, and histotripsy for FT. RESULTS MRgFUS utilizes transrectal high-intensity focused ultrasound under MRI guidance to selectively ablate cancerous tissue, demonstrating positive outcomes in oncologic control and preservation of urinary and sexual function. TULSA employs transurethral delivery of high-intensity ultrasound energy under MRI guidance, showing promising results for whole gland treatment. FLA benefits from precise ablation, indicating effectiveness in tumor destruction while preserving quality-of-life. Histotripsy, a mechanical ablation method, exhibits promise by inducing tissue fractionation through bubble activity, offering advantages such as tissue selectivity and real-time treatment monitoring. CONCLUSION Emerging FT modalities present promising alternatives for the management of localized PCa, offering personalized treatment. Further research and clinical trials are warranted to establish the long-term efficacy of these techniques in PCa management.
Collapse
Affiliation(s)
- Sangeet Ghai
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.
| | - Tiffany T Ni
- Joint Department of Medical Imaging, Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Christian P Pavlovich
- James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jurgen J Futterer
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - George R Schade
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | - Rafael Sanchez-Salas
- Department of Surgery, Division of Urology, McGill University, Montreal, QC, Canada
| | - Francois Cornud
- Department of Radiology, Clinique de l'Alma, 75007, Paris, France
| | - Scott Eggener
- Department of Surgery, Section of Urology, University of Chicago, Chicago, IL, USA
| | | | - Arvin K George
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | | | - Jean de la Rosette
- Department of Urology, Istanbul Medipol University, Istanbul, Turkey
- Bashkir State Medical University, Ufa, Russia
| |
Collapse
|
2
|
Lafond M, Payne A, Lafon C. Therapeutic ultrasound transducer technology and monitoring techniques: a review with clinical examples. Int J Hyperthermia 2024; 41:2389288. [PMID: 39134055 PMCID: PMC11375802 DOI: 10.1080/02656736.2024.2389288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
The exponential growth of therapeutic ultrasound applications demonstrates the power of the technology to leverage the combinations of transducer technology and treatment monitoring techniques to effectively control the preferred bioeffect to elicit the desired clinical effect.Objective: This review provides an overview of the most commonly used bioeffects in therapeutic ultrasound and describes existing transducer technologies and monitoring techniques to ensure treatment safety and efficacy.Methods and materials: Literature reviews were conducted to identify key choices that essential in terms of transducer design, treatment parameters and procedure monitoring for therapeutic ultrasound applications. Effective combinations of these options are illustrated through descriptions of several clinical indications, including uterine fibroids, prostate disease, liver cancer, and brain cancer, that have been successful in leveraging therapeutic ultrasound to provide effective patient treatments.Results: Despite technological constraints, there are multiple ways to achieve a desired bioeffect with therapeutic ultrasound in a target tissue. Visualizations of the interplay of monitoring modality, bioeffect, and applied acoustic parameters are presented that demonstrate the interconnectedness of the field of therapeutic ultrasound. While the clinical indications explored in this review are at different points in the clinical evaluation path, based on the ever expanding research being conducted in preclinical realms, it is clear that additional clinical applications of therapeutic ultrasound that utilize a myriad of bioeffects will continue to grow and improve in the coming years.Conclusions: Therapeutic ultrasound will continue to improve in the next decades as the combination of transducer technology and treatment monitoring techniques will continue to evolve and be translated in clinical settings, leading to more personalized and efficient therapeutic ultrasound mediated therapies.
Collapse
Affiliation(s)
- Maxime Lafond
- LabTAU, INSERM, Centre Léon Bérard, Université, Lyon, France
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of UT, Salt Lake City, UT, USA
| | - Cyril Lafon
- LabTAU, INSERM, Centre Léon Bérard, Université, Lyon, France
| |
Collapse
|
3
|
Lin Y, O’Reilly MA, Hynynen K. A PVDF Receiver for Acoustic Monitoring of Microbubble-Mediated Ultrasound Brain Therapy. SENSORS (BASEL, SWITZERLAND) 2023; 23:1369. [PMID: 36772406 PMCID: PMC9921684 DOI: 10.3390/s23031369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The real-time monitoring of spectral characteristics of microbubble (MB) acoustic emissions permits the prediction of increases in blood-brain barrier (BBB) permeability and of tissue damage in MB-mediated focused ultrasound (FUS) brain therapy. Single-element passive cavitation detectors provide limited spatial information regarding MB activity, greatly affecting the performance of acoustic control. However, an array of receivers can be used to spatially map cavitation events and thus improve treatment control. The spectral content of the acoustic emissions provides additional information that can be correlated with the bio-effects, and wideband receivers can thus provide the most complete spectral information. Here, we develop a miniature polyvinylidene fluoride (PVDF thickness = 110 μm, active area = 1.2 mm2) broadband receiver for the acoustic monitoring of MBs. The receiver has superior sensitivity (2.36-3.87 V/MPa) to those of a commercial fibre-optic hydrophone in the low megahertz frequency range (0.51-5.4 MHz). The receiver also has a wide -6 dB acceptance angle (54 degrees at 1.1 MHz and 13 degrees at 5.4 MHz) and the ability to detect subharmonic and higher harmonic MB emissions in phantoms. The overall acoustic performance of this low-cost receiver indicates its suitability for the eventual use within an array for MB monitoring and mapping in preclinical studies.
Collapse
Affiliation(s)
- Yi Lin
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Meaghan A. O’Reilly
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Kullervo Hynynen
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
4
|
Lafond M, Lambin T, Drainville RA, Dupré A, Pioche M, Melodelima D, Lafon C. Pancreatic Ductal Adenocarcinoma: Current and Emerging Therapeutic Uses of Focused Ultrasound. Cancers (Basel) 2022; 14:2577. [PMID: 35681557 PMCID: PMC9179649 DOI: 10.3390/cancers14112577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) diagnosis accompanies a somber prognosis for the patient, with dismal survival odds: 5% at 5 years. Despite extensive research, PDAC is expected to become the second leading cause of mortality by cancer by 2030. Ultrasound (US) has been used successfully in treating other types of cancer and evidence is flourishing that it could benefit PDAC patients. High-intensity focused US (HIFU) is currently used for pain management in palliative care. In addition, clinical work is being performed to use US to downstage borderline resectable tumors and increase the proportion of patients eligible for surgical ablation. Focused US (FUS) can also induce mechanical effects, which may elicit an anti-tumor response through disruption of the stroma and can be used for targeted drug delivery. More recently, sonodynamic therapy (akin to photodynamic therapy) and immunomodulation have brought new perspectives in treating PDAC. The aim of this review is to summarize the current state of those techniques and share our opinion on their future and challenges.
Collapse
Affiliation(s)
- Maxime Lafond
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Thomas Lambin
- Endoscopy Division, Édouard Herriot Hospital, 69003 Lyon, France; (T.L.); (M.P.)
| | - Robert Andrew Drainville
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Aurélien Dupré
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Mathieu Pioche
- Endoscopy Division, Édouard Herriot Hospital, 69003 Lyon, France; (T.L.); (M.P.)
| | - David Melodelima
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| | - Cyril Lafon
- LabTAU, The Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Léon Bérard, Université Lyon 1, University Lyon, 69003 Lyon, France; (R.A.D.); (A.D.); (D.M.); (C.L.)
| |
Collapse
|
5
|
Jiang Z, Sujarittam K, Yildiz BI, Dickinson RJ, Choi JJ. Passive Cavitation Detection With a Needle Hydrophone Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:233-240. [PMID: 34648439 DOI: 10.1109/tuffc.2021.3120263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Therapeutic ultrasound and microbubble technologies seek to drive systemically administered microbubbles into oscillations that safely manipulate tissue or release drugs. Such procedures often detect the unique acoustic emissions from microbubbles with the intention of using this feedback to control the microbubble activity. However, most sensor systems reported introduce distortions to the acoustic signal. Acoustic shockwaves, a key emission from microbubbles, are largely absent in reported recording, possibly due to the sensors being too large or too narrowband, or having strong phase distortions. Here, we built a sensor array that countered such limitations with small, broadband sensors and a low-phase distorting material. We built eight needle hydrophones with polyvinylidene fluoride (PVDF, diameter: 2 mm) then fit them into a 3-D-printed scaffold in a two-layered, staggered arrangement. Using this array, we monitored microbubbles exposed to therapeutically relevant ultrasound pulses (center frequency: 0.5 MHz, peak-rarefactional pressure: 130-597 kPa, pulselength: four cycles). Our tests revealed that the hydrophones were broadband with the best having a sensitivity of -224.8 dB ± 3.2 dB re 1 V/ μ Pa from 1 to 15 MHz. The array was able to capture shockwaves generated by microbubbles. The signal-to-noise ratio (SNR) of the array was approximately two times higher than individual hydrophones. Also, the array could localize microbubbles (-3 dB lateral resolution: 2.37 mm) and determine the cavitation threshold (between 161 and 254 kPa). Thus, the array accurately monitored and localized microbubble activities, and may be an important technological step toward better feedback control methods and safer and more effective treatments.
Collapse
|
6
|
Hu Z, Xu L, Chien CY, Yang Y, Gong Y, Ye D, Pacia CP, Chen H. 3-D Transcranial Microbubble Cavitation Localization by Four Sensors. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:3336-3346. [PMID: 34166187 PMCID: PMC8808337 DOI: 10.1109/tuffc.2021.3091950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cavitation is the fundamental physical mechanism of various focused ultrasound (FUS)-mediated therapies in the brain. Accurately knowing the three-dimensional (3-D) location of cavitation in real-time can improve the targeting accuracy and avoid off-target tissue damage. Existing techniques for 3-D passive transcranial cavitation detection require the use of expensive and complicated hemispherical phased arrays with 128 or 256 elements. The objective of this study was to investigate the feasibility of using four sensors for transcranial 3-D localization of cavitation. Differential microbubble cavitation detection combined with the time difference of arrival algorithm was developed for the localization using the four sensors. Numerical simulation using k-Wave toolbox was performed to validate the proposed method for transcranial cavitation source localization. The sensors with a center frequency of 2.25 MHz and a 6 dB bandwidth of 1.39 MHz were used to locate cavitation generated by FUS (500 kHz) sonication of microbubbles that were injected into a tube positioned inside an ex vivo human skullcap. Cavitation emissions from the microbubbles were detected transcranially using the four sensors. Both simulation and experimental studies found that the proposed method achieved accurate 3-D cavitation localization. When the cavitation source was located within 30 mm from the geometric center of the sensor network, the accuracy of the localization method with the skull was measured to be 1.9±1.0 mm, which was not significantly different from that without the skull (1.7 ± 0.5 mm). The accuracy decreased as the cavitation source was away from the geometric center of the sensor network. It also decreased as the pulse length increased. Its accuracy was not significantly affected by the sensor position relative to the skull. In summary, four sensors combined with the proposed localization algorithm offer a simple approach for 3-D transcranial cavitation localization.
Collapse
|
7
|
Gennaro N, Schiaffino S, Mauri G, Monfardini L. The What, the Why, and the How of Liver Ablations: A Practical Guide for the Medical Oncologist. Oncology 2021; 99:722-731. [PMID: 34515198 DOI: 10.1159/000518358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 06/25/2021] [Indexed: 11/19/2022]
Abstract
Interventional oncology plays a major role within modern oncological patient management. Image-guided thermal ablation has been recognized as a successful local therapeutic option in patients with primary and secondary malignant liver diseases, as also recalled by the recent European Society of Medical Oncology (ESMO) guidelines on colorectal metastases. As image-guided treatments may be as effective as surgery in selected patients with liver lesions, the clinical oncologist should be familiar with the indications, risks, and technical aspects of liver ablation in order to provide their patients with the best outcomes. This article provides a broad overview of the most commonly used ablation techniques and highlights the most relevant technical aspects such as the ideal setting in the operating theatre; which image-guided methods are available, including the growing application of fusion imaging; or contrast-enhanced ultrasound for guiding/monitoring the procedure. A further aim is to expand the knowledge among medical oncologists about liver ablation procedures and to provide insights into the future perspectives of percutaneous minimally invasive procedures in the liver.
Collapse
Affiliation(s)
- Nicolò Gennaro
- Istituto di Imaging della Svizzera Italiana (IIMSI), Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Simone Schiaffino
- Radiology Unit IRCCS Policlinico San Donato, Piazza Edmondo Malan 2, San Donato Milanese, Italy
| | - Giovanni Mauri
- Divisione di Radiologia Interventistica, Istituto Europeo di Oncologia, IRCCS, Milan, Italy.,Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
8
|
Dubinsky TJ, Khokhlova TD, Khokhlova V, Schade GR. Histotripsy: The Next Generation of High-Intensity Focused Ultrasound for Focal Prostate Cancer Therapy. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 39:1057-1067. [PMID: 31830312 DOI: 10.1002/jum.15191] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/12/2019] [Accepted: 11/17/2019] [Indexed: 05/28/2023]
Abstract
This article reviews the most current methods and technological aspects of high-intensity focused ultrasound (HIFU), which is termed histotripsy. The rationale for focal therapy for prostate carcinoma rather than prostatectomy, which is being used extensively throughout Europe and Asia, is presented, and an argument for why HIFU is the modality of choice for primary therapy and recurrent disease is offered. The article presents a review of the technical advances including higher ultrasound beam energy than current thermal HIFU which allows for more accurate tissue targeting, less collateral tissue damage, and faster treatment times. Finally, the article presents a discussion about the advantage of ultrasound guidance for histotripsy in preference to magnetic resonance imaging guidance primarily based on cost, ease of application, and portability.
Collapse
Affiliation(s)
- Theodore J Dubinsky
- Department of Radiology, University of Washington, Seattle, Washington, USA
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Tanya D Khokhlova
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Gastroenterology, University of Washington, Seattle, Washington, USA
| | - Vera Khokhlova
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
- Department of Acoustics, Physics Faculty, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - George R Schade
- Department of Urology, University of Washington, Seattle, Washington, USA
| |
Collapse
|