1
|
Krpic T, Bilodeau M, O'Reilly MA, Masson P, Quaegebeur N. Extended Field of View Imaging Through Correlation With an Experimental Database. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2025; 72:646-655. [PMID: 40131756 DOI: 10.1109/tuffc.2025.3553784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
In this article, a correlation-based (CB) ultrasound imaging technique is implemented to extend the field of view (FOV) in the inspected medium and to enhance image homogeneity. This implementation involves the acquisition, the compression, and the adaptation of a database of experimental reference signals (CB-Exp), consisting of backpropagated reflections on point-like scatterers at different positions, as an improvement over preceding implementations involving a database of numerical reference signals (CB-Num). Starting from a large database acquired in water to a database with a 99% size reduction that can be applied to tissue-like media, CB-Exp has been validated in vitro on a CIRS 040GSE phantom. When compared with the synthetic aperture focusing technique (SAFT) and CB-Num, CB-Exp results show reduced sensitivity to the probe's directivity, allowing an FOV extension from 25° with SAFT to 75° with CB-Exp. In vivo testing on a piglet's heart with CB-Exp imaging showed a 3.5-dB contrast improvement on the pericardium wall. Overall benefits of this method include a reduction in the background gCNR standard deviation (std) of 0.2 and a reduction in the std of 10 dB in the point-like targets levels, which translates to more homogeneous sensitivity in the axial and lateral directions of the image.
Collapse
|
2
|
Zhang J, Huang C, Lok UW, Dong Z, Liu H, Gong P, Song P, Chen S. Enhancing Row-Column Array (RCA)-Based 3D Ultrasound Vascular Imaging With Spatial-Temporal Similarity Weighting. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:297-309. [PMID: 39106128 DOI: 10.1109/tmi.2024.3439615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Ultrasound vascular imaging (UVI) is a valuable tool for monitoring the physiological states and evaluating the pathological diseases. Advancing from conventional two-dimensional (2D) to three-dimensional (3D) UVI would enhance the vasculature visualization, thereby improving its reliability. Row-column array (RCA) has emerged as a promising approach for cost-effective ultrafast 3D imaging with a low channel count. However, ultrafast RCA imaging is often hampered by high-level sidelobe artifacts and low signal-to-noise ratio (SNR), which makes RCA-based UVI challenging. In this study, we propose a spatial-temporal similarity weighting (St-SW) method to overcome these challenges by exploiting the incoherence of sidelobe artifacts and noise between datasets acquired using orthogonal transmissions. Simulation, in vitro blood flow phantom, and in vivo experiments were conducted to compare the proposed method with existing orthogonal plane wave imaging (OPW), row-column-specific frame-multiply-and-sum beamforming (RC-FMAS), and XDoppler techniques. Qualitative and quantitative results demonstrate the superior performance of the proposed method. In simulations, the proposed method reduced the sidelobe level by 31.3 dB, 20.8 dB, and 14.0 dB, compared to OPW, XDoppler, and RC-FMAS, respectively. In the blood flow phantom experiment, the proposed method significantly improved the contrast-to-noise ratio (CNR) of the tube by 26.8 dB, 25.5 dB, and 19.7 dB, compared to OPW, XDoppler, and RC-FMAS methods, respectively. In the human submandibular gland experiment, it not only reconstructed a more complete vasculature but also improved the CNR by more than 15 dB, compared to OPW, XDoppler, and RC-FMAS methods. In summary, the proposed method effectively suppresses the side-lobe artifacts and noise in images collected using an RCA under low SNR conditions, leading to improved visualization of 3D vasculatures.
Collapse
|
3
|
Caudoux M, Demeulenaere O, Poree J, Sauvage J, Mateo P, Ghaleh B, Flesch M, Ferin G, Tanter M, Deffieux T, Papadacci C, Pernot M. Curved Toroidal Row Column Addressed Transducer for 3D Ultrafast Ultrasound Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3279-3291. [PMID: 38640053 DOI: 10.1109/tmi.2024.3391689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
3D Imaging of the human heart at high frame rate is of major interest for various clinical applications. Electronic complexity and cost has prevented the dissemination of 3D ultrafast imaging into the clinic. Row column addressed (RCA) transducers provide volumetric imaging at ultrafast frame rate by using a low electronic channel count, but current models are ill-suited for transthoracic cardiac imaging due to field-of-view limitations. In this study, we proposed a mechanically curved RCA with an aperture adapted for transthoracic cardiac imaging ( 24×16 mm2). The RCA has a toroidal curved surface of 96 elements along columns (curvature radius rC = 4.47 cm) and 64 elements along rows (curvature radius rR = 3 cm). We implemented delay and sum beamforming with an analytical calculation of the propagation of a toroidal wave which was validated using simulations (Field II). The imaging performance was evaluated on a calibrated phantom. Experimental 3D imaging was achieved up to 12 cm deep with a total angular aperture of 30° for both lateral dimensions. The Contrast-to-Noise ratio increased by 12 dB from 2 to 128 virtual sources. Then, 3D Ultrasound Localization Microscopy (ULM) was characterized in a sub-wavelength tube diameter. Finally, 3D ULM was demonstrated on a perfused ex-vivo swine heart to image the coronary microcirculation.
Collapse
|
4
|
Wu X, Lee WN. Row Transmission for High Volume-Rate Ultrasound Imaging With a Matrix Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:659-672. [PMID: 38696301 DOI: 10.1109/tuffc.2024.3396269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
The widely used Vermon 1024-element matrix array for 3-D ultrasound imaging has three blank rows in the elevational direction, which breaks the elevation periodicity, thus degrading volumetric image quality. To bypass the blank rows in elevation while maintaining the steering capability in azimuth, we proposed a row-transmission (RT) scheme to improve 3-D spatial resolution. Specifically, we divided the full array into four apertures, each with multiple rows along the elevation. Each multirow aperture (MRA) was further divided into subapertures to transmit diverging waves (DWs) sequentially. Coherent DW compounding (CDWC) was realized in azimuth, while the elevation was multielement synthetic aperture (M-SA) imaging by regarding each row as an array of dashed line elements. An in-house spatiotemporal coding strategy, cascaded synthetic aperture (CaSA), was incorporated into the RT scheme as RT-CaSA to increase the signal-to-noise ratio (SNR). We compared the proposed RT with conventional bank-by-bank transmission-reception (Bank) and sparse-random-aperture compounding (SRAC) in a wire phantom and the in vivo human abdominal aorta (AA) to assess the performance of anatomical imaging and aortic wall motion estimation. Phantom results demonstrated superior lateral resolution achieved by our RT scheme (+19.52% and +16.88% versus Bank, +15.32% and +19.72% versus SRAC, in the azimuth-depth and elevation-depth planes, respectively). Our RT-CaSA showed excellent contrast ratios (CRs) (+8.19 and +8.08 dB versus Bank, +6.81 and +5.85 dB versus SRAC, +0.99 and +0.90 dB versus RT) and the highest in vivo aortic wall motion estimation accuracy. The RT scheme was demonstrated to have potential for various matrix array-based 3-D imaging research.
Collapse
|
5
|
Dos Santos DS, Ossenkoppele B, Hopf YM, Soozande M, Noothout E, Vos HJ, Bosch JG, Pertijs MAP, Verweij MD, de Jong N. An Ultrasound Matrix Transducer for High-Frame-Rate 3-D Intra-cardiac Echocardiography. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:285-294. [PMID: 38036310 DOI: 10.1016/j.ultrasmedbio.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023]
Abstract
OBJECTIVE Described here is the development of an ultrasound matrix transducer prototype for high-frame-rate 3-D intra-cardiac echocardiography. METHODS The matrix array consists of 16 × 18 lead zirconate titanate elements with a pitch of 160 µm × 160 µm built on top of an application-specific integrated circuit that generates transmission signals and digitizes the received signals. To reduce the number of cables in the catheter to a feasible number, we implement subarray beamforming and digitization in receive and use a combination of time-division multiplexing and pulse amplitude modulation data transmission, achieving an 18-fold reduction. The proposed imaging scheme employs seven fan-shaped diverging transmit beams operating at a pulse repetition frequency of 7.7 kHz to obtain a high frame rate. The performance of the prototype is characterized, and its functionality is fully verified. RESULTS The transducer exhibits a transmit efficiency of 28 Pa/V at 5 cm per element and a bandwidth of 60% in transmission. In receive, a dynamic range of 80 dB is measured with a minimum detectable pressure of 10 Pa per element. The element yield of the prototype is 98%, indicating the efficacy of the manufacturing process. The transducer is capable of imaging at a frame rate of up to 1000 volumes/s and is intended to cover a volume of 70° × 70° × 10 cm. CONCLUSION These advanced imaging capabilities have the potential to support complex interventional procedures and enable full-volumetric flow, tissue, and electromechanical wave tracking in the heart.
Collapse
Affiliation(s)
- Djalma Simões Dos Santos
- Laboratory of Medical Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands.
| | - Boudewine Ossenkoppele
- Laboratory of Medical Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Yannick M Hopf
- Electronic Instrumentation Laboratory, Delft University of Technology, Delft, The Netherlands
| | - Mehdi Soozande
- Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Emile Noothout
- Laboratory of Medical Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Hendrik J Vos
- Laboratory of Medical Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands; Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Johan G Bosch
- Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Michiel A P Pertijs
- Electronic Instrumentation Laboratory, Delft University of Technology, Delft, The Netherlands
| | - Martin D Verweij
- Laboratory of Medical Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands; Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Nico de Jong
- Laboratory of Medical Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands; Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Audoin M, Salari A, Tomov BG, Pedersen KF, Jensen JA, Thomsen EV. Diverging Polymer Acoustic Lens Design for High-Resolution Row-Column Array Ultrasound Transducers. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:202-213. [PMID: 37878425 DOI: 10.1109/tuffc.2023.3327567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Spherical diverging acoustic lenses mounted on flat 2-D row-column-addressed (RCA) ultrasound transducers have shown the potential to extend the field of view (FOV) from a rectilinear to a curvilinear volume region and, thereby, enable 3-D imaging of large organs. Such lenses are usually designed for small aperture low-frequency transducers, which have limited resolution. Moreover, they are made of off-the-shelf pieces of materials, which leaves no room for optimization. We hypothesize that acoustic lenses can be designed to fit high-resolution transducers, and they can be fabricated in a fast, cost-effective, and flexible manner using a combination of 3-D printing and casting or computer numerical control (CNC) machining techniques. These lenses should increase the FOV of the array while preserving the image quality. In this work, such lenses are made in concave, convex, and compound spherical shapes and from thermoplastics and thermosetting polymers. Polymethylpentene (TPX), polystyrene (PS), polypropylene (PP), polymethyl methacrylate (PMMA), polydimethylsiloxane (PDMS), and room-temperature-vulcanizing (RTV) silicone diverging lenses have been fabricated and mounted on a 128 + 128 6-MHz RCA transducer. The performances of the lenses have been assessed and compared in terms of FOV, signal-to-noise ratio (SNR), bandwidth, and potential artifacts. The largest FOV (24.0.) is obtained with a 42.64-mm radius PMMA-RTV compound lens, which maintains a decent fractional bandwidth (53%) and SNR at 6 MHz (.9.1-dB amplitude drop compared with the unlensed transducer). The simple PMMA TPX, PS, PP, PDMS, and RTV lenses provide an FOV of 12.2°, 6.3°, 8.1°, 11.7°, 0.6°, and 10.4°; a fractional bandwidth of 97%, 46%, 103%, 46%, 97%, 53%, and 49%; and an amplitude drop of -5.2, -4.4, -2.8, -15.4, -6.0, and -1.8 dB, respectively. This work demonstrates that thermoplastics are suitable materials for fabricating low-attenuation convex diverging lenses for large-aperture, high-frequency 2-D transducers. This is highly desired to achieve high-resolution volumetric imaging of large organs.
Collapse
|
7
|
Favre H, Pernot M, Tanter M, Papadacci C. Transcranial 3D ultrasound localization microscopy using a large element matrix array with a multi-lens diffracting layer: an in vitrostudy. Phys Med Biol 2023; 68. [PMID: 36808924 DOI: 10.1088/1361-6560/acbde3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/21/2023] [Indexed: 02/23/2023]
Abstract
Objective. Early diagnosis and acute knowledge of cerebral disease require to map the microflows of the whole brain. Recently, ultrasound localization microscopy (ULM) was applied to map and quantify blood microflows in 2D in the brain of adult patients down to the micron scale. Whole brain 3D clinical ULM remains challenging due to the transcranial energy loss which reduces significantly the imaging sensitivity.Approach. Large aperture probes with a large surface can increase both the field of view and sensitivity. However, a large active surface implies thousands of acoustic elements, which limits clinical translation. In a previous simulation study, we developed a new probe concept combining a limited number of elements and a large aperture. It is based on large elements, to increase sensitivity, and a multi-lens diffracting layer to improve the focusing quality. In this study, a 16 elements prototype, driven at 1 MHz frequency, was made andin vitroexperiments were performed to validate the imaging capabilities of this new probe concept.Main results. First, pressure fields emitted from a large single transducer element without and with diverging lens were compared. Low directivity was measured for the large element with the diverging lens while maintaining high transmit pressure. The focusing quality of 4 × 3cm matrix arrays of 16 elements without/with lenses were compared.In vitroexperiments in a water tank and through a human skull were achieved to localize and track microbubbles in tubes.Significance.ULM was achieved demonstrating the strong potential of multi-lens diffracting layer to enable microcirculation assessment over a large field of view through the bones.
Collapse
Affiliation(s)
- Hugues Favre
- Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris-PSL, Cnrs UMR8063, 75012 Paris, France
| | - Mathieu Pernot
- Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris-PSL, Cnrs UMR8063, 75012 Paris, France
| | - Mickael Tanter
- Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris-PSL, Cnrs UMR8063, 75012 Paris, France
| | - Clément Papadacci
- Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris-PSL, Cnrs UMR8063, 75012 Paris, France
| |
Collapse
|
8
|
Jensen JA, Schou M, Jorgensen LT, Tomov BG, Stuart MB, Traberg MS, Taghavi I, Oygaard SH, Ommen ML, Steenberg K, Thomsen EV, Panduro NS, Nielsen MB, Sorensen CM. Anatomic and Functional Imaging Using Row-Column Arrays. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2722-2738. [PMID: 35839193 DOI: 10.1109/tuffc.2022.3191391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Row-column (RC) arrays have the potential to yield full 3-D ultrasound imaging with a greatly reduced number of elements compared to fully populated arrays. They, however, have several challenges due to their special geometry. This review article summarizes the current literature for RC imaging and demonstrates that full anatomic and functional imaging can attain a high quality using synthetic aperture (SA) sequences and modified delay-and-sum beamforming. Resolution can approach the diffraction limit with an isotropic resolution of half a wavelength with low sidelobe levels, and the field of view can be expanded by using convex or lensed RC probes. GPU beamforming allows for three orthogonal planes to be beamformed at 30 Hz, providing near real-time imaging ideal for positioning the probe and improving the operator's workflow. Functional imaging is also attainable using transverse oscillation and dedicated SA sequence for tensor velocity imaging for revealing the full 3-D velocity vector as a function of spatial position and time for both blood velocity and tissue motion estimation. Using RC arrays with commercial contrast agents can reveal super-resolution imaging (SRI) with isotropic resolution below [Formula: see text]. RC arrays can, thus, yield full 3-D imaging at high resolution, contrast, and volumetric rates for both anatomic and functional imaging with the same number of receive channels as current commercial 1-D arrays.
Collapse
|
9
|
Øygard SH, Audoin M, Austeng A, Thomsen EV, Stuart MB, Jensen JA. Accurate prediction of transmission through a lensed row-column addressed array. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:3207. [PMID: 35649894 DOI: 10.1121/10.0010528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Using a diverging lens on a row-column array (RCA) can increase the size of its volumetric image and thus significantly improve its clinical value. Here, a ray tracing method is presented to predict the position of the transmitted wave so that it can be used to make beamformed images. The usable transmitted field-of-view (FOV) is evaluated for a lensed 128 + 128 element RCA by comparing the theoretic prediction of the emitted wavefront position with three-dimensional (3D) finite element simulation of the emitted field. The FOV of the array is found to be 122° ± 2° in the direction orthogonal to the emitting elements and 28.5°-51.2°, depending on depth and element position, for the direction lying along the element. Moreover, the proposed ray tracing method is compared with a simpler thin lens model, and it is shown that the improved accuracy of the proposed method can increase the usable transmitted FOV up to 25.1°.
Collapse
Affiliation(s)
- Sigrid H Øygard
- Department of Health Technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Mélanie Audoin
- Department of Health Technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Andreas Austeng
- Department of Informatics, University of Oslo, Gaustadalléen 23B, 0373 Oslo, Norway
| | - Erik V Thomsen
- Department of Health Technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Matthias B Stuart
- Department of Health Technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Jørgen A Jensen
- Department of Health Technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
10
|
Favre H, Pernot M, Tanter M, Papadacci C. Boosting transducer matrix sensitivity for 3D large field ultrasound localization microscopy using a multi-lens diffracting layer: a simulation study. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac5f72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/21/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Mapping blood microflows of the whole brain is crucial for early diagnosis of cerebral diseases. Ultrasound localization microscopy (ULM) was recently applied to map and quantify blood microflows in 2D in the brain of adult patients down to the micron scale. Whole brain 3D clinical ULM remains challenging due to the transcranial energy loss which significantly reduces the imaging sensitivity. Large aperture probes with a large surface can increase both resolution and sensitivity. However, a large active surface implies thousands of acoustic elements, with limited clinical translation. In this study, we investigate via simulations a new high-sensitive 3D imaging approach based on large diverging elements, combined with an adapted beamforming with corrected delay laws, to increase sensitivity. First, pressure fields from single elements with different sizes and shapes were simulated. High directivity was measured for curved element while maintaining high transmit pressure. Matrix arrays of 256 elements with a dimension of 10 × 10 cm with small (λ/2), large (4λ), and curved elements (4λ) were compared through point spread functions analysis. A large synthetic microvessel phantom filled with 100 microbubbles per frame was imaged using the matrix arrays in a transcranial configuration. 93% of the bubbles were detected with the proposed approach demonstrating that the multi-lens diffracting layer has a strong potential to enable 3D ULM over a large field of view through the bones.
Collapse
|
11
|
Li Y, Kolios MC, Xu Y. 3-D Large-Pitch Synthetic Transmit Aperture Imaging With a Reduced Number of Measurement Channels: A Feasibility Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1628-1640. [PMID: 33290216 DOI: 10.1109/tuffc.2020.3043326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A 3-D synthetic transmit aperture ultrasound imaging system with a fully addressed array usually leads to high hardware complexity and cost since each element in the array is individually controlled. To reduce the hardware complexity, we had presented the large-pitch synthetic transmit aperture (LPSTA) ultrasound imaging for 2-D imaging using a 1-D phased array to reduce the number of measurement channels M (the product of number of transmissions, [Formula: see text], and the number of receiving channels in each transmission, [Formula: see text]). In this article, we extend this method to a 2-D matrix array for 3-D imaging. We present both numerical simulations and experimental measurements. We combined L × L adjacent elements into transmission subapertures (SAP) and K × K adjacent elements into receive SAPs in synthetic transmit aperture (STA) imaging. In the image reconstruction, we conducted the first attempt to apply and integrate Gaussian-approximated spatial response function (G-SRF) with delay and sum (DAS) to improve the image contrast, especially for the near-field targets. The imaging performance obtained from G-SRF was also evaluated numerically and compared with the previously presented frequency-domain SRF (Freq-domain SRF). The 3-D large-pitch synthetic transmit aperture (3-D-LPSTA) with G-SRF can provide a computationally efficient solution compared with the standard 3-D-STA method. With approximately 1900-fold reduction in the number of measurement channels, 3-D-LPSTA can provide image contrast comparable with the standard 3-D-STA with a full array and significantly better than using a periodically sparse array with similar complexity. In addition to reducing the system complexity, the 3-D-LPSTA achieves 700-fold reduction in computational complexity and 523-fold reduction in data storage. Finally, we evaluated and implemented the G-SRF using phantom data, which were consistent with the simulation results showing that the G-SRF can improve the image contrast. The results demonstrate that the proposed 3-D-LPSTA shows the great potential for designing an inexpensive ultrasound system to ensure the real-time 3-D clinical ultrasound imaging using large arrays. The limits of the proposed method were also discussed.
Collapse
|
12
|
Jensen JA, Ommen ML, Oygard SH, Schou M, Sams T, Stuart MB, Beers C, Thomsen EV, Larsen NB, Tomov BG. Three-Dimensional Super-Resolution Imaging Using a Row-Column Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:538-546. [PMID: 31634831 DOI: 10.1109/tuffc.2019.2948563] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A 3-D super-resolution (SR) pipeline based on data from a row-column (RC) array is presented. The 3-MHz RC array contains 62 rows and 62 columns with a half wavelength pitch. A synthetic aperture (SA) pulse inversion sequence with 32 positive and 32 negative row emissions is used for acquiring volumetric data using the SARUS research ultrasound scanner. Data received on the 62 columns are beamformed on a GPU for a maximum volume rate of 156 Hz when the pulse repetition frequency is 10 kHz. Simulated and 3-D printed point and flow microphantoms are used for investigating the approach. The flow microphantom contains a 100- [Formula: see text] radius tube injected with the contrast agent SonoVue. The 3-D processing pipeline uses the volumetric envelope data to find the bubble's positions from their interpolated maximum signal and yields a high resolution in all three coordinates. For the point microphantom, the standard deviation on the position is (20.7, 19.8, 9.1) [Formula: see text]. The precision estimated for the flow phantom is below [Formula: see text] in all three coordinates, making it possible to locate structures on the order of a capillary in all three dimensions. The RC imaging sequence's point spread function has a size of 0.58 × 1.05 × 0.31 mm3 ( 1.17λ×2.12λ×0.63λ ), so the possible volume resolution is 28900 times smaller than for SA RC B-mode imaging.
Collapse
|
13
|
Engholm M, Beers C, Bouzari H, Jensen JA, Thomsen EV. Increasing the field-of-view of row-column-addressed ultrasound transducers: implementation of a diverging compound lens. ULTRASONICS 2018; 88:97-105. [PMID: 29604493 DOI: 10.1016/j.ultras.2018.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/25/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
The purpose of this work is to investigate compound lenses for row-column-addressed (RCA) ultrasound transducers for increasing the field-of-view (FOV) to a curvilinear volume region, while retaining a flat sole to avoid trapping air between the transducer sole and the patient, which would otherwise lead to unwanted reflections. The primary motivation behind this research is to develop a RCA ultrasound transducer for abdominal or cardiac imaging, where a curvilinear volume region is a necessity. RCA transducers provide 3-D ultrasound imaging with fewer channels than fully-addressed 2-D arrays (2N instead of N2), but they have inherently limited FOV. By increasing the RCA FOV, these transducers can be used for the same applications as fully-addressed transducers while retaining the same price range as conventional 2-D imaging due to the lower channel count. Analytical and finite element method (FEM) models were employed to evaluate design options. Composite materials were developed by loading polymers with inorganic powders to satisfy the corresponding speed of sound and specific acoustical impedance requirements. A Bi2O3 powder with a density of 8.9g/cm3 was used to decrease the speed of sound of a room temperature vulcanizing (RTV) silicone, RTV615, from 1.03mm/μs to 0.792mm/μs. Using micro-balloons in RTV615 and a urethane, Hapflex 541, their speeds of sound were increased from 1.03mm/μs to 1.50mm/μs and from 1.52mm/μs to 1.93mm/μs, respectively. A diverging add-on lens was fabricated of a Bi2O3 loaded RTV615 and an unloaded Hapflex 541. The lens was tested using a RCA probe, and a FOV of 32.2° was measured from water tank tests, while the FEM model yielded 33.4°. A wire phantom with 0.15mm diameter wires was imaged at 3MHz down to a depth of 14cm using a synthetic aperture imaging sequence with single element transmissions. The beamformed image showed that wires outside the array footprint were visible, demonstrating the increased FOV.
Collapse
Affiliation(s)
- Mathias Engholm
- Department of Micro- and Nanotechnology, DTU Nanotech, Technical University of Denmark, Building 345C, DK-2800 Kgs. Lyngby, Denmark.
| | - Christopher Beers
- Sound Technology Inc., Analogic Ultrasound Group, State College, PA 16803, USA
| | - Hamed Bouzari
- Center for Fast Ultrasound Imaging, Department of Electrical Engineering, Technical University of Denmark, Building 349, DK-2800 Kgs. Lyngby, Denmark
| | - Jørgen Arendt Jensen
- Center for Fast Ultrasound Imaging, Department of Electrical Engineering, Technical University of Denmark, Building 349, DK-2800 Kgs. Lyngby, Denmark
| | - Erik Vilain Thomsen
- Department of Micro- and Nanotechnology, DTU Nanotech, Technical University of Denmark, Building 345C, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|