1
|
Mine Y, Takada E, Sugimoto K, Moriyasu F. Principle of contrast-enhanced ultrasonography. J Med Ultrason (2001) 2024; 51:567-580. [PMID: 38780871 PMCID: PMC11499413 DOI: 10.1007/s10396-024-01443-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/14/2024] [Indexed: 05/25/2024]
Abstract
Sonazoid, an ultrasound contrast agent, has been covered by insurance in Japan since January 2007 for the diagnosis of hepatic mass lesions and is widely used for diagnosing not only primary liver cancer but also liver metastases such as those from breast cancer and colorectal cancer. Contrast-enhanced ultrasound for breast mass lesions has been covered by insurance since August 2012 after phase II and phase III clinical trials showed that the diagnostic performance was significantly superior to that of B-mode and contrast-enhanced magnetic resonance imaging. This paper describes the principles of imaging techniques in contrast-enhanced ultrasonography including the filter, pulse inversion, amplitude modulation, and amplitude-modulated pulse inversion methods. The pulse inversion method, which visualizes the second-harmonic component using the nonlinear scattering characteristics of the contrast agent, is widely used regardless of the contrast agent and target organ because of its high resolution. Sonazoid has a stiffer shell and requires a higher acoustic amplitude than Sonovue to generate nonlinear vibrations. The higher transmitted sound pressure generates more tissue harmonic components. Since pulse inversion allows visualization of the tissue harmonic components, amplitude modulation and amplitude-modulated pulse inversion, which include few tissue harmonic components, are primarily used. Amplitude modulation methods detect nonlinear signals from the contrast agent in the fundamental band. The mechanism of the amplitude modulation is considered to be changes in the echo signal's phase depending on the sound pressure. Since the tissue-derived component is minor in amplitude modulation methods, good contrast sensitivity can be obtained.
Collapse
Affiliation(s)
- Yoshitaka Mine
- Department of Radiological Sciences, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi, 324-8501, Japan.
| | - Etsuo Takada
- Center of Medical Ultrasonics, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Katsutoshi Sugimoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Fuminori Moriyasu
- Center for Cancer Ablation Therapy, Sanno Hospital, International University of Health and Welfare, Tokyo, Japan
| |
Collapse
|
2
|
Ma J, Liu T, Xu L. Stack-Layer Dual-Frequency Ultrasound Array With Ground Shielding for Super-Harmonic Imaging. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 2024; 73:1-8. [DOI: 10.1109/tim.2023.3332397] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Affiliation(s)
- Jianguo Ma
- School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing, China
| | - Tieming Liu
- School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing, China
| | - Lijun Xu
- School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing, China
| |
Collapse
|
3
|
Wahyulaksana G, Wei L, Voorneveld J, Hekkert MTL, Strachinaru M, Duncker DJ, De Jong N, van der Steen AFW, Vos HJ. Higher Order Singular Value Decomposition Filter for Contrast Echocardiography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1371-1383. [PMID: 37721879 DOI: 10.1109/tuffc.2023.3316130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Assessing the coronary circulation with contrast-enhanced echocardiography has high clinical relevance. However, it is not being routinely performed in clinical practice because the current clinical tools generally cannot provide adequate image quality. The contrast agent's visibility in the myocardium is generally poor, impaired by motion and nonlinear propagation artifacts. The established multipulse contrast schemes (MPCSs) and the more experimental singular value decomposition (SVD) filter also fall short to solve these issues. Here, we propose a scheme to process amplitude modulation/amplitude-modulated pulse inversion (AM/AMPI) echoes with higher order SVD (HOSVD) instead of conventionally summing the complementary pulses. The echoes from the complementary pulses form a separate dimension in the HOSVD algorithm. Then, removing the ranks in that dimension with dominant coherent signals coming from tissue scattering would provide the contrast detection. We performed both in vitro and in vivo experiments to assess the performance of our proposed method in comparison with the current standard methods. A flow phantom study shows that HOSVD on AM pulsing exceeds the contrast-to-background ratio (CBR) of conventional AM and an SVD filter by 10 and 14 dB, respectively. In vivo porcine heart results also demonstrate that, compared to AM, HOSVD improves CBR in open-chest acquisition (up to 19 dB) and contrast ratio (CR) in closed-chest acquisition (3 dB).
Collapse
|
4
|
Pakdaman Zangabad R, Li H, Kouijzer JJP, Langeveld SAG, Beekers I, Verweij M, De Jong N, Kooiman K. Ultrasonic Characterization of Ibidi μ-Slide I Luer Channel Slides for Studies With Ultrasound Contrast Agents. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:422-429. [PMID: 37027575 DOI: 10.1109/tuffc.2023.3250202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Understanding and controlling the ultrasound contrast agent (UCA)'s response to an applied ultrasound pressure field are crucial when investigating ultrasound imaging sequences and therapeutic applications. The magnitude and frequency of the applied ultrasonic pressure waves affect the oscillatory response of the UCA. Therefore, it is important to have an ultrasound compatible and optically transparent chamber in which the acoustic response of the UCA can be studied. The aim of our study was to determine the in situ ultrasound pressure amplitude in the ibidi μ -slide I Luer channel, an optically transparent chamber suitable for cell culture, including culture under flow, for all microchannel heights (200, 400, 600, and [Formula: see text]). First, the in situ pressure field in the 800- [Formula: see text] high channel was experimentally characterized using Brandaris 128 ultrahigh-speed camera recordings of microbubbles (MBs) and a subsequent iterative processing method, upon insonification at 2 MHz, 45° incident angle, and 50-kPa peak negative pressure (PNP). Control studies in another cell culture chamber, the CLINIcell, were compared with the obtained results. The pressure amplitude was -3.7 dB with respect to the pressure field without the ibidi μ -slide. Second, using finite-element analysis, we determined the in situ pressure amplitude in the ibidi with the 800- [Formula: see text] channel (33.1 kPa), which was comparable to the experimental value (34 kPa). The simulations were extended to the other ibidi channel heights (200, 400, and [Formula: see text]) with either 35° or 45° incident angle, and at 1 and 2 MHz. The predicted in situ ultrasound pressure fields were between -8.7 and -1.1 dB of the incident pressure field depending on the listed configurations of ibidi slides with different channel heights, applied ultrasound frequencies, and incident angles. In conclusion, the determined ultrasound in situ pressures demonstrate the acoustic compatibility of the ibidi μ -slide I Luer for different channel heights, thereby showing its potential for studying the acoustic behavior of UCAs for imaging and therapy.
Collapse
|
5
|
Lai TY, Averkiou MA. Contrast-Enhanced Ultrasound with Optimized Aperture Patterns and Bubble Segmentation Based on Echo Phase. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:186-202. [PMID: 36441029 PMCID: PMC9713587 DOI: 10.1016/j.ultrasmedbio.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Amplitude modulation (AM) suppresses tissue signals and detects microbubble signals in contrast-enhanced ultrasound (CEUS) and is often implemented with checkerboard apertures. However, possible crosstalk between transmitting and non-transmitting array elements may compromise tissue suppression in AM. Using AM aperture patterns other than the conventional checkerboard approach (one on, one off) may reduce the degree of crosstalk and increase the contrast-to-tissue-ratio (CTR) compared with conventional AM. Furthermore, previous studies have reported that the phase difference between the echoes in AM pulsing sequences may be used to segment tissue and microbubbles and improve tissue signal suppression and the CTR of CEUS images. However, the CTR of the image produced by alternative AM aperture patterns and the effect of segmentation approach on these alternative apertures have not been investigated. We evaluated a number of AM aperture patterns to find an optimal AM aperture pattern that provides the highest CTR. We found that the aperture that uses alternating groups of two elements, AM2, had the highest CTR for the probe evaluated. In addition, a segmentation technique based on echo phase differences (between the full and half-pulses, ΔΦAM, between the complementary half-pulses, ΔΦhalf, and the maximum of the two ΔΦmax) was also considered in the AM aperture optimization process. The segmentation approach increases the CTR by about 25 dB for all apertures. Finally, AM2 segmented with ΔΦmax had a 7-dB higher CTR in a flow phantom and a 6-dB higher contrast in a perfused pig liver than conventional AM segmented with ΔΦAM, and it is the optimal transmit aperture design.
Collapse
Affiliation(s)
- Ting-Yu Lai
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
6
|
A multi-pulse ultrasound technique for imaging of thick-shelled microbubbles demonstrated in vitro and in vivo. PLoS One 2022; 17:e0276292. [PMID: 36327225 PMCID: PMC9632906 DOI: 10.1371/journal.pone.0276292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Contrast enhanced ultrasound is a powerful diagnostic tool and ultrasound contrast media are based on microbubbles (MBs). The use of MBs in drug delivery applications and molecular imaging is a relatively new field of research which has gained significant interest during the last decade. MBs available for clinical use are fragile with short circulation half-lives due to the use of a thin encapsulating shell for stabilization of the gas core. Thick-shelled MBs can have improved circulation half-lives, incorporate larger amounts of drugs for enhanced drug delivery or facilitate targeting for use in molecular ultrasound imaging. However, methods for robust imaging of thick-shelled MBs are currently not available. We propose a simple multi-pulse imaging technique which is able to visualize thick-shelled polymeric MBs with a superior contrast-to-tissue ratio (CTR) compared to commercially available harmonic techniques. The method is implemented on a high-end ultrasound scanner and in-vitro imaging in a tissue mimicking flow phantom results in a CTR of up to 23 dB. A proof-of-concept study of molecular ultrasound imaging in a soft tissue inflammation model in rabbit is then presented where the new imaging technique showed an enhanced accumulation of targeted MBs in the inflamed tissue region compared to non-targeted MBs and a mean CTR of 13.3 dB for stationary MBs. The presence of fluorescently labelled MBs was verified by confocal microscopy imaging of tissue sections post-mortem.
Collapse
|
7
|
Yociss M, Brown K, Bruce M, Hoyt K. Amplitude modulation and baseband delay-multiply-and-sum beamforming for improved vessel visualization with volumetric contrast-enhanced ultrasound. 2022 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS) 2022:1-4. [DOI: 10.1109/ius54386.2022.9957183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Megan Yociss
- University of Texas at Dallas,Department of Bioengineering,Richardson,TX,USA
| | - Katherine Brown
- University of Texas at Dallas,Department of Bioengineering,Richardson,TX,USA
| | - Matthew Bruce
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington,Seattle,Washington,USA
| | - Kenneth Hoyt
- University of Texas at Dallas,Department of Bioengineering,Richardson,TX,USA
| |
Collapse
|
8
|
Keller SB, Lai TY, De Koninck L, Averkiou MA. Investigation of the Phase of Nonlinear Echoes From Microbubbles During Amplitude Modulation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1032-1040. [PMID: 35073259 DOI: 10.1109/tuffc.2022.3143810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Contrast-enhanced ultrasound (CEUS) imaging relies on distinguishing between microbubble and tissue echoes. Amplitude modulation (AM), a nonlinear pulsing scheme, has been developed to take advantage of the amplitude-dependent nonlinearity of microbubble echoes. However, with AM, tissue nonlinear propagation can also degrade the image contrast. Segmentation of CEUS images based on amplitude-dependent phase difference in the echoes, defined in this article as [Formula: see text], has been proposed as an additional method of enhancing contrast-to-tissue ratio as tissue is not expected to create the same degree of [Formula: see text]; however, this has not been robustly investigated. In this work, we evaluate the source of [Formula: see text] through simulations of unshelled versus shelled microbubble oscillation and simulations of nonlinear propagation in tissue. We then validate the simulated [Formula: see text] results with experimental [Formula: see text] measurements during in vitro scattering and imaging in a flow phantom. We show that shelled and unshelled microbubbles resulted in a [Formula: see text] with similar overall magnitude with some differences in trends, and that tissue echoes have a small yet detectable degree of [Formula: see text] due to nonlinear propagation. The results from this work can help inform optimal parameter selection for phase segmentation and implementation on a clinical scanner.
Collapse
|
9
|
Brown KG, Hoyt K. Evaluation of Nonlinear Contrast Pulse Sequencing for Use in Super-Resolution Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:3347-3361. [PMID: 34181537 PMCID: PMC8588781 DOI: 10.1109/tuffc.2021.3092172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The use of super-resolution ultrasound (SR-US) imaging greatly improves visualization of microvascular structures, but clinical adoption is limited by long imaging times. This method depends on detecting and localizing isolated microbubbles (MBs), forcing the use of a dilute contrast agent concentration. Contrast-enhanced ultrasound (CEUS) image acquisition times as long as minutes arise as the localization of thousands of MBs are acquired to form a complete SR-US image. In this article, we explore the use of nonlinear CEUS strategies using nonlinear fundamental contrast pulse sequencing (CPS) to increase the contrast-to-tissue ratio (CTR) and compare MB detection effectiveness to linear B-mode CEUS imaging. The CPS compositions of amplitude modulation (AM), pulse inversion (PI), and a combination of the two (AMPI) were studied. A simulation study combined the Rayleigh-Plesset-Marmottant (RPM) model of MB characteristics and a nonlinear tissue model using the k-Wave toolbox for MATLAB (MathWorks Inc., Natick, MA, USA). Validation was conducted using an in vitro flow phantom and in vivo in the rat hind-limb. Imaging was performed with a programmable US scanner (Vantage 256, Verasonics Inc., Kirkland, WA, USA) and customized to transmit a set of basis US pulses from which both B-mode US (frame rate (FR) of 800 Hz) and multiple nonlinear CPS compositions (FR of 200 Hz) could be assessed from identical in vitro and in vivo datasets using a near simultaneous method. The simulations suggest that MB characteristics, such as diameter and motion, help to predict which US imaging strategy will enhance MB detection. The in vitro and in vivo US imaging studies revealed that different subpopulations of polydisperse MB contrast agents were detected by linear imaging and by each different nonlinear CPS composition. The most effective single imaging strategy at a 200-Hz FR was found to be B-mode US imaging. However, a combination of B-mode US imaging with a nonlinear CPS imaging strategy was more effective in detecting MBs in vivo at all depths and was shown to shorten image acquisition time by an average of 33.3%-76.7% when combining one or more CPS sequences.
Collapse
|
10
|
Pellow C, Cherin E, Abenojar EC, Exner AA, Zheng G, Demore CEM, Goertz DE. High-Frequency Array-Based Nanobubble Nonlinear Imaging in a Phantom and In Vivo. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2059-2074. [PMID: 33513102 PMCID: PMC8296974 DOI: 10.1109/tuffc.2021.3055141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There has been growing interest in nanobubbles (NBs) for vascular and extravascular ultrasound contrast imaging and therapeutic applications. Studies to date have generally utilized low frequencies (<12 MHz), high concentrations (>109 mL-1), and uncalibrated B-mode or contrast-mode on commercial systems without reporting investigations on NB signatures upon which the imaging protocols should be based. We recently demonstrated that low concentrations (106 mL-1) of porphyrin-lipid-encapsulated NBs scatter nonlinearly at low (2.5, 8 MHz) and high (12.5, 25, 30 MHz) frequencies in a pressure threshold-dependent manner that is advantageous for amplitude modulation (AM) imaging. Here, we implement pressure-calibrated AM at high frequency on a commercial preclinical array system to enhance sensitivity to nonlinear scattering of three phospholipid-based NB formulations. With this approach, improvements in contrast to tissue ratio relative to B-mode between 12.4 and 22.8 dB are demonstrated in a tissue-mimicking phantom, and between 6.7 and 14.8 dB in vivo.
Collapse
|
11
|
Lai TY, Averkiou MA. Linear Signal Cancellation of Nonlinear Pulsing Schemes in a Verasonics Research Scanner. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1721-1728. [PMID: 33428569 PMCID: PMC8142865 DOI: 10.1109/tuffc.2021.3050481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Contrast-enhanced ultrasound (CEUS) is a real-time imaging technique that allows the visualization of organ and tumor microcirculation by utilizing the nonlinear response of microbubbles. Nonlinear pulsing schemes are used exclusively in CEUS imaging modes in modern scanners. One important aspect of nonlinear pulsing schemes is the near-complete elimination of the linear signals that originate from tissue. Up until now, no study has investigated the performance of Verasonics scanners in eliminating the linear signals during CEUS and, by extension, the optimal pulsing sequences for performing CEUS. The aim of this article was to investigate linear signal cancellation of the Verasonics scanner performing nonlinear pulsing schemes with two different probes (L7-4 linear array and C5-2 convex array). We have considered two pulsing schemes: pulse inversion (PI) and amplitude modulation (AM). We have also compared our results from the Verasonics scanner with a clinical scanner (Philips iU22). We found that the linear signal cancellation of the transmitted pulse by Verasonics scanner was ~40 dB in AM mode and ~30 dB in PI mode when operated at 0.06 MI. The linear signal cancellation performance of Verasonics scanner was comparable with Philips iU22 scanner in focused AM mode and on average 3 dB better than Philips iU22 scanner in focused PI mode.
Collapse
|
12
|
Keller SB, Sheeran PS, Averkiou MA. Cavitation Therapy Monitoring of Commercial Microbubbles With a Clinical Scanner. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1144-1154. [PMID: 33112743 DOI: 10.1109/tuffc.2020.3034532] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ability to monitor cavitation activity during ultrasound and microbubble-mediated procedures is of high clinical value. However, there has been little reported literature comparing the cavitation characteristics of different clinical microbubbles, nor have current clinical scanners been used to perform passive cavitation detection in real time. The goal of this work was to investigate and characterize standard microbubble formulations (Optison, Sonovue, Sonazoid, and a custom microbubble made with similar components as Definity) with a custom passive cavitation detector (two confocal single-element focused transducers) and with a Philips EPIQ scanner with a C5-1 curvilinear probe passively listening. We evaluated three different methods for investigating cavitation thresholds, two from previously reported work and one developed in this work. For all three techniques, it was observed that the inertial cavitation thresholds were between 0.1 and 0.3 MPa for all agents when detected with both systems. Notably, we found that most microbubble formulations in bulk solution behaved generally similarly, with some differences. We show that these characteristics and thresholds are maintained when using a diagnostic ultrasound system for detecting cavitation activity. We believe that a systematic evaluation of the frequency response of the cavitation activity of different microbubbles in order to inform real-time therapy monitoring using a clinical ultrasound device could make an immediate clinical impact.
Collapse
|
13
|
Fedak A, Chrzan R, Chukwu O, Urbanik A. Ultrasound methods of imaging atherosclerotic plaque in carotid arteries: examinations using contrast agents. J Ultrason 2020; 20:e191-e200. [PMID: 33365156 PMCID: PMC7705485 DOI: 10.15557/jou.2020.0032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/11/2020] [Indexed: 11/22/2022] Open
Abstract
The primary technique for detecting the presence and monitoring the development of carotid atherosclerotic plaque is ultrasound. The development of ultrasound techniques has made it possible to precisely visualise not only blood flow, but also vessel walls, including atherosclerotic plaque. Contrast-enhanced ultrasound examination enables one to make an objective observation of atherosclerotic plaque neovascularisation, clearly indicating active inflammation, which is an inherent feature of vulnerable (unstable) plaque. Depending on the examination method used, it is possible to precisely visualise different components of the plaque and its behaviour during blood flow through the vessel lumen or through the neovessels of the plaque, and, consequently, determine the possible presence of inflammation, which is a defining feature of plaque stability. The full utilisation of physical phenomena that underlie contrast-enhanced ultrasound will bring further enormous progress of diagnostic and probably also therapeutic methods for carotid atherosclerosis. The selection of the right examination method significantly accelerates diagnosis and adequate classification of plaque, and makes it possible to monitor the progression of atherosclerosis. However, one needs to bear in mind that ultrasound remains a very subjective method. The success of contrast-enhanced ultrasound also depends on the skills and experience of the examiner. Current attempts at increasing the objectivity of contrast-enhanced ultrasound examination using artificial intelligence will make it possible in the future to make a definitive evaluation of atherosclerotic plaque stability. This will allow one to assess the risk of ischaemic stroke adequately.
Collapse
Affiliation(s)
- Andrzej Fedak
- Department of Radiology, Jagiellonian University Medical College, Kraków, Poland
| | - Robert Chrzan
- Department of Radiology, Jagiellonian University Medical College, Kraków, Poland
| | - Ositadima Chukwu
- Student Science Club, Department of Radiology, Jagiellonian University Medical College, Kraków, Poland
| | - Andrzej Urbanik
- Department of Radiology, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
14
|
Helbert A, Gaud E, Segers T, Botteron C, Frinking P, Jeannot V. Monodisperse versus Polydisperse Ultrasound Contrast Agents: In Vivo Sensitivity and safety in Rat and Pig. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:3339-3352. [PMID: 33008649 DOI: 10.1016/j.ultrasmedbio.2020.07.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 05/21/2023]
Abstract
Recent advances in the field of monodisperse microbubble synthesis by flow focusing allow for the production of foam-free, highly concentrated and monodisperse lipid-coated microbubble suspensions. It has been found that in vitro, such monodisperse ultrasound contrast agents (UCAs) improve the sensitivity of contrast-enhanced ultrasound imaging. Here, we present the first in vivo study in the left ventricle of rat and pig with this new monodisperse bubble agent. We systematically characterize the acoustic sensitivity and safety of the agent at an imaging frequency of 2.5 MHz as compared with three commercial polydisperse UCAs (SonoVue/Lumason, Definity/Luminity and Optison) and one research-grade polydisperse agent with the same shell composition as the monodisperse bubbles. The monodisperse microbubbles, which had a diameter of 4.2 μm, crossed the pulmonary vasculature, and their echo signal could be measured at least as long as that of the polydisperse UCAs, indicating that microfluidically formed monodisperse microbubbles are stable in vivo. Furthermore, it was found that the sensitivity of the monodisperse agent, expressed as the mean echo power per injected bubble, was at least 10 times higher than that of the polydisperse UCAs. Finally, the safety profile of the monodisperse microbubble suspension was evaluated by injecting 400 and 2000 times the imaging dose, and neither physiologic nor pathologic changes were found, which is a first indication that monodisperse lipid-coated microbubbles formed by flow focusing are safe for in vivo use. The more uniform acoustic response and corresponding increased imaging sensitivity of the monodisperse agent may boost emerging applications of microbubbles and ultrasound such as molecular imaging and therapy.
Collapse
Affiliation(s)
- Alexandre Helbert
- Bracco Suisse S.A., Route de la Galaise 31, 1228 Plan-les-Ouates, Switzerland
| | - Emmanuel Gaud
- Bracco Suisse S.A., Route de la Galaise 31, 1228 Plan-les-Ouates, Switzerland
| | - Tim Segers
- Physics of Fluids Group, MESA + Institute for Nanotechnology, Technical Medical (TechMed) Center, University of Twente, Enschede, The Netherlands; Former employee of Bracco Suisse S.A
| | | | | | - Victor Jeannot
- Bracco Suisse S.A., Route de la Galaise 31, 1228 Plan-les-Ouates, Switzerland.
| |
Collapse
|
15
|
Averkiou MA, Bruce MF, Powers JE, Sheeran PS, Burns PN. Imaging Methods for Ultrasound Contrast Agents. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:498-517. [PMID: 31813583 DOI: 10.1016/j.ultrasmedbio.2019.11.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 05/23/2023]
Abstract
Microbubble contrast agents were introduced more than 25 years ago with the objective of enhancing blood echoes and enabling diagnostic ultrasound to image the microcirculation. Cardiology and oncology waited anxiously for the fulfillment of that objective with one clinical application each: myocardial perfusion, tumor perfusion and angiogenesis imaging. What was necessary though at first was the scientific understanding of microbubble behavior in vivo and the development of imaging technology to deliver the original objective. And indeed, for more than 25 years bubble science and imaging technology have evolved methodically to deliver contrast-enhanced ultrasound. Realization of the basic bubbles properties, non-linear response and ultrasound-induced destruction, has led to a plethora of methods; algorithms and techniques for contrast-enhanced ultrasound (CEUS) and imaging modes such as harmonic imaging, harmonic power Doppler, pulse inversion, amplitude modulation, maximum intensity projection and many others were invented, developed and validated. Today, CEUS is used everywhere in the world with clinical indications both in cardiology and in radiology, and it continues to mature and evolve and has become a basic clinical tool that transforms diagnostic ultrasound into a functional imaging modality. In this review article, we present and explain in detail bubble imaging methods and associated artifacts, perfusion quantification approaches, and implementation considerations and regulatory aspects.
Collapse
Affiliation(s)
| | - Matthew F Bruce
- Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | | | - Paul S Sheeran
- Philips Ultrasound, Bothell, Washington, USA; Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Peter N Burns
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Imaging Research, Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Muleki-Seya P, Xu K, Tanter M, Couture O. Ultrafast Radial Modulation Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:598-611. [PMID: 31647430 DOI: 10.1109/tuffc.2019.2949046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Radial modulation imaging improves the detection of microbubbles at high frequency using a dual ultrasonic excitation. However, the synchronization between the imaging pulses is nontrivial because microbubbles need to be interrogated in the compression and the rarefaction phase, and the time-delay difference from dispersion has to be corrected. To address these issues, we propose the use of ultrafast radial modulation imaging (uRMI). In this technique, a beat frequency between the modulation pulse (around 1 MHz) and the ultrafast pulse-repetition frequency was exploited to separate microbubbles from tissue phantom in vitro. This led to a modulated images' set in the spectral domain of the slow time that may then be demodulated through a digital lock-in amplifier to retrieve the contrast image. Ultrafast RMI, applied on a flow phantom with microbubbles, provided a contrast-to-tissue ratio from 7.2 to 14.8 dB at 15 MHz. For flow speed lower than 0.05 mL/min, uRMI (16 dB) provided a better contrast-to-tissue ratio than other techniques: singular value decomposition spatiotemporal filter (11 dB), amplitude modulation (9 dB), or microbubbles disruption (6 dB). This technique may then be suitable to improve the detection of targeted microbubbles, in ultrasound molecular imaging applications, and the detection of extremely slow microbubbles moving in the finest vessels in ultrasound localization microscopy.
Collapse
|
17
|
Loskutova K, Grishenkov D, Ghorbani M. Review on Acoustic Droplet Vaporization in Ultrasound Diagnostics and Therapeutics. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9480193. [PMID: 31392217 PMCID: PMC6662494 DOI: 10.1155/2019/9480193] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/10/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
Acoustic droplet vaporization (ADV) is the physical process in which liquid undergoes phase transition to gas after exposure to a pressure amplitude above a certain threshold. In recent years, new techniques in ultrasound diagnostics and therapeutics have been developed which utilize microformulations with various physical and chemical properties. The purpose of this review is to give the reader a general idea on how ADV can be implemented for the existing biomedical applications of droplet vaporization. In this regard, the recent developments in ultrasound therapy which shed light on the ADV are considered. Modern designs of capsules and nanodroplets (NDs) are shown, and the material choices and their implications for function are discussed. The influence of the physical properties of the induced acoustic field, the surrounding medium, and thermophysical effects on the vaporization are presented. Lastly, current challenges and potential future applications towards the implementation of the therapeutic droplets are discussed.
Collapse
Affiliation(s)
- Ksenia Loskutova
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, SE-141 57 Huddinge, Sweden
| | - Dmitry Grishenkov
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, SE-141 57 Huddinge, Sweden
| | - Morteza Ghorbani
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, SE-141 57 Huddinge, Sweden
- Mechatronics Engineering Program, Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
18
|
Helfield B. A Review of Phospholipid Encapsulated Ultrasound Contrast Agent Microbubble Physics. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:282-300. [PMID: 30413335 DOI: 10.1016/j.ultrasmedbio.2018.09.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/11/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
Ultrasound contrast agent microbubbles have expanded the utility of biomedical ultrasound from anatomic imaging to the assessment of microvascular blood flow characteristics and ultrasound-assisted therapeutic applications. Central to their effectiveness in these applications is their resonant and non-linear oscillation behaviour. This article reviews the salient physics of an oscillating microbubble in an ultrasound field, with particular emphasis on phospholipid-coated agents. Both the theoretical underpinnings of bubble vibration and the experimental evidence of non-linear encapsulated bubble dynamics and scattering are discussed and placed within the context of current and emerging applications.
Collapse
Affiliation(s)
- Brandon Helfield
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|