1
|
Jing B, Strassle Rojas S, Lindsey BD. Effect of skull porosity on ultrasound transmission and wave mode conversion at large incidence angles. Med Phys 2023; 50:3092-3102. [PMID: 36810723 DOI: 10.1002/mp.16318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Transcranial ultrasound imaging and therapy depend on the efficient transmission of acoustic energy through the skull. Multiple previous studies have concluded that a large incidence angle should be avoided during transcranial-focused ultrasound therapy to ensure transmission through the skull. Alternatively, some other studies have shown that longitudinal-to-shear wave mode conversion might improve transmission through the skull when the incidence angle is increased above the critical angle (i.e., 25° to 30°). PURPOSE The effect of skull porosity on the transmission of ultrasound through the skull at varying incidence angles was investigated for the first time to elucidate why transmission through the skull at large angles of incidence is decreased in some cases but improved in other cases. METHODS Transcranial ultrasound transmission at varying incidence angles (0°-50°) was investigated in phantoms and ex vivo skull samples with varying bone porosity (0% to 28.54% ± 3.36%) using both numerical and experimental methods. First, the elastic acoustic wave transmission through the skull was simulated using micro-computed tomography data of ex vivo skull samples. The trans-skull pressure was compared between skull segments having three levels of porosity, that is, low porosity (2.65% ± 0.03%), medium porosity (13.41% ± 0.12%), and high porosity (26.9%). Next, transmission through two 3D-printed resin skull phantoms (compact vs. porous phantoms) was experimentally measured to test the effect of porous microstructure alone on ultrasound transmission through flat plates. Finally, the effect of skull porosity on ultrasound transmission was investigated experimentally by comparing transmission through two ex vivo human skull segments having similar thicknesses but different porosities (13.78% ± 2.05% vs. 28.54% ± 3.36%). RESULTS Numerical simulations indicated that an increase in transmission pressure occurs at large incidence angles for skull segments having low porosities but not for those with high porosity. In experimental studies, a similar phenomenon was observed. Specifically, for the low porosity skull sample (13.78% ± 2.05%), the normalized pressure was 0.25 when the incidence angle increased to 35°. However, for the high porosity sample (28.54% ± 3.36%), the pressure was no more than 0.1 at large incidence angles. CONCLUSIONS These results indicate that the skull porosity has an evident effect on the transmission of ultrasound at large incidence angles. The wave mode conversion at large, oblique incidence angles could enhance the transmission of ultrasound through parts of the skull having lower porosity in the trabecular layer. However, for transcranial ultrasound therapy in the presence of highly porous trabecular bone, transmission at a normal incidence angle is preferable relative to oblique incidence angles due to the higher transmission efficiency.
Collapse
Affiliation(s)
- Bowen Jing
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Stephan Strassle Rojas
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Brooks D Lindsey
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA.,School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Sahoo A, He H, Darrow D, Chen CC, Ebbini ES. Image-Guided Measurement of Radiation Force Induced by Focused Ultrasound Beams. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:138-146. [PMID: 36350863 PMCID: PMC10079628 DOI: 10.1109/tuffc.2022.3221049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The radiation force balance (RFB) is a widely used method for measuring acoustic power output of ultrasonic transducers. The reflecting cone target is attractive due to its simplicity and long-term stability, at a reasonable cost. However, accurate measurements using this method depend on the alignment between the ultrasound beam and cone axes, especially for highly focused beams utilized in therapeutic applications. With the advent of dual-mode ultrasound arrays (DMUAs) for imaging and therapy, image-guided measurements of acoustic output using the RFB method can be used to improve measurement accuracy. In this article, we describe an image-guided RFB measurement of focused DMUA beams using a widely used commercial instrument. DMUA imaging is used to optimize the alignment between the acoustic beam and reflecting cone axes. In addition to image-guided alignment, DMUA echo data is used to track the displacement of the cone, which provides an auxiliary measurement of acoustic power. Experimental results using a DMUA prototype with [Formula: see text] shows that 1-2 mm of misalignment can result in 5%-14% error in the measured acoustic power. In addition to the use of B-mode image guidance for improving measurement accuracy, we present preliminary results demonstrating the benefit of displacement tracking using real-time DMUA imaging during the application of (sub)therapeutic focused beams. Displacement tracking provides a direct measurement of the radiation force with high sensitivity and follows the expected dependence on changes in amplitude and duty cycle (DC) of the focused ultrasound (FUS) beam. This could lead to simpler, more reliable methods for measuring acoustic power based on the radiation force principle. Combined with appropriate computational modeling, the direct measurement of acoustic radiation force could lead to reliable dosimetry in situ in emerging applications such as transcranial FUS (tFUS) therapies.
Collapse
|
3
|
Hoang TN, Lin HC, Tsai CH, Jan CK, Liu HL. Passive Cavitation Enhancement Mapping via an Ultrasound Dual-Mode phased array to monitor blood-brain barrier opening. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00735-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
4
|
Bendjador H, Foiret J, Wodnicki R, Stephens DN, Krut Z, Park EY, Gazit Z, Gazit D, Pelled G, Ferrara KW. A theranostic 3D ultrasound imaging system for high resolution image-guided therapy. Theranostics 2022; 12:4949-4964. [PMID: 35836805 PMCID: PMC9274734 DOI: 10.7150/thno.71221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/14/2022] [Indexed: 01/12/2023] Open
Abstract
Microbubble contrast agents are a diagnostic tool with broad clinical impact and an increasing number of indications. Many therapeutic applications have also been identified. Yet, technologies for ultrasound guidance of microbubble-mediated therapy are limited. In particular, arrays that are capable of implementing and imaging microbubble-based therapy in three dimensions in real-time are lacking. We propose a system to perform and monitor microbubble-based therapy, capable of volumetric imaging over a large field-of-view. To propel the promise of the theranostic treatment strategies forward, we have designed and tested a unique array and system for 3D ultrasound guidance of microbubble-based therapeutic protocols based on the frequency, temporal and spatial requirements. Methods: Four 256-channel plane wave scanners (Verasonics, Inc, WA, USA) were combined to control a 1024-element planar array with 1.3 and 2.5 MHz therapeutic and imaging transmissions, respectively. A transducer aperture of ~40×15 mm was selected and Field II was applied to evaluate the point spread function. In vitro experiments were performed on commercial and custom phantoms to assess the spatial resolution, image contrast and microbubble-enhanced imaging capabilities. Results: We found that a 2D array configuration with 64 elements separated by λ-pitch in azimuth and 16 elements separated by 1.5λ-pitch in elevation ensured the required flexibility. This design, of 41.6 mm × 16 mm, thus provided both an extended field-of-view, up to 11 cm x 6 cm at 10 cm depth and steering of ±18° in azimuth and ±12° in elevation. At a depth of 16 cm, we achieved a volume imaging rate of 60 Hz, with a contrast ratio and resolution, respectively, of 19 dB, 0.8 mm at 3 cm and 20 dB and 2.1 mm at 12.5 cm. Conclusion: A single 2D array for both imaging and therapeutics, integrated with a 1024 channel scanner can guide microbubble-based therapy in volumetric regions of interest.
Collapse
Affiliation(s)
| | | | | | | | - Zoe Krut
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | - Zulma Gazit
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dan Gazit
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gadi Pelled
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | |
Collapse
|
5
|
Wasielewska JM, White AR. "Focused Ultrasound-mediated Drug Delivery in Humans - a Path Towards Translation in Neurodegenerative Diseases". Pharm Res 2022; 39:427-439. [PMID: 35257286 PMCID: PMC8986691 DOI: 10.1007/s11095-022-03185-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/31/2022] [Indexed: 11/04/2022]
Abstract
The blood-brain barrier (BBB) has a major protective function in preventing the entry of harmful molecules into the brain, but is simultaneously limiting the delivery of drugs, restricting their potential clinical application in neurodegenerative diseases. Recent preclinical evidence demonstrates that following application of focused ultrasound with microbubbles (FUS+MB), the BBB becomes reversibly accessible to compounds that normally are brain-impermeable, suggesting FUS+MB as a promising new platform for delivery of therapeutic agents into the central nervous system. As a step towards translation, small cohort clinical studies were performed demonstrating safe BBB opening in Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis (ALS) patients following FUS+MB, however improved drug delivery has not yet been achieved in human. Simultaneously, rapid progress in the human induced pluripotent stem cell (hiPSC) modeling technology allowed for development of novel Alzheimer's disease patient-derived BBB in vitro model that reacts to FUS+MB with BBB opening and can be used to answer fundamental questions of human BBB responses to FUS+MB in health and disease. This review summarizes key features of the BBB that contribute to limited drug delivery, recapitulates recent advances in the FUS+MB mediated human BBB opening in vivo and in vitro in the context of neurodegenerative disorders, and highlights potential strategies for fast-track translation of the FUS+MB to improve bioavailability of drugs to the human brain. With safe and effective application, this innovative FUS+MB technology may open new avenues for therapeutic interventions in neurodegenerative diseases leading to improved clinical outcomes for patients.
Collapse
Affiliation(s)
- Joanna M Wasielewska
- Cell & Molecular Biology Department, Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| | - Anthony R White
- Cell & Molecular Biology Department, Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Schoen S, Kilinc MS, Lee H, Guo Y, Degertekin FL, Woodworth GF, Arvanitis C. Towards controlled drug delivery in brain tumors with microbubble-enhanced focused ultrasound. Adv Drug Deliv Rev 2022; 180:114043. [PMID: 34801617 PMCID: PMC8724442 DOI: 10.1016/j.addr.2021.114043] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/27/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023]
Abstract
Brain tumors are particularly challenging malignancies, due to their location in a structurally and functionally distinct part of the human body - the central nervous system (CNS). The CNS is separated and protected by a unique system of brain and blood vessel cells which together prevent most bloodborne therapeutics from entering the brain tumor microenvironment (TME). Recently, great strides have been made through microbubble (MB) ultrasound contrast agents in conjunction with ultrasound energy to locally increase the permeability of brain vessels and modulate the brain TME. As we elaborate in this review, this physical method can effectively deliver a wide range of anticancer agents, including chemotherapeutics, antibodies, and nanoparticle drug conjugates across a range of preclinical brain tumors, including high grade glioma (glioblastoma), diffuse intrinsic pontine gliomas, and brain metastasis. Moreover, recent evidence suggests that this technology can promote the effective delivery of novel immunotherapeutic agents, including immune check-point inhibitors and chimeric antigen receptor T cells, among others. With early clinical studies demonstrating safety, and several Phase I/II trials testing the preclinical findings underway, this technology is making firm steps towards shaping the future treatments of primary and metastatic brain cancer. By elaborating on its key components, including ultrasound systems and MB technology, along with methods for closed-loop spatial and temporal control of MB activity, we highlight how this technology can be tuned to enable new, personalized treatment strategies for primary brain malignancies and brain metastases.
Collapse
Affiliation(s)
- Scott Schoen
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - M. Sait Kilinc
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hohyun Lee
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yutong Guo
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - F. Levent Degertekin
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Graeme F. Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA,Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, College Park, MD 20742, USA,Fischell Department of Bioengineering A. James Clarke School of Engineering, University of Maryland
| | - Costas Arvanitis
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA,Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| |
Collapse
|
7
|
Batts A, Ji R, Kline-Schoder A, Noel R, Konofagou E. Transcranial Theranostic Ultrasound for Pre-Planning and Blood-Brain Barrier Opening: A Feasibility Study Using an Imaging Phased Array In Vitro and In Vivo. IEEE Trans Biomed Eng 2021; 69:1481-1490. [PMID: 34665716 DOI: 10.1109/tbme.2021.3120919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Focused ultrasound (FUS) for blood-brain barrier (BBB) opening is a safe, reversible and non-invasive strategy for targeted drug delivery to the brain, however extensive pre-planning strategies are necessary for successful FUS-mediated BBB opening through the structurally complex primate skull. OBJECTIVE This work aims to demonstrate a pre-planning pipeline consisting of transcranial simulations and in vitro experimentation used to inform synchronous BBB opening and power cavitation imaging (PCI) with a single theranostic ultrasound (TUS) phased array. METHODS Acoustic wave propagation simulation readouts of pressure attenuation and focal shift through clinical-CT and micro-CT-based primate skull models were compared, while the latter were used to determine the impact of beam steering angle on focal shift and pressure attenuation. In vitro experimentation with a channel phantom enabled characterization of skull-induced receive focal shift (RFS), while in vivo BBB opening and PCI using in silico and in vitro pre-planning information was conducted using a custom Verasonics/MATLAB script. RESULTS Simulations confirmed steering angle dependent transcranial focal shift and pressure attenuation, while in vitro experiments revealed minimal (0.30-1.50 mm) skull-induced RFS. In vivo rodent experiments with overlaid primate skull fragments demonstrated successful TUS-mediated BBB opening and spatially correlated power cavitation images (PCI) with regions of BBB opening on T1-weighted magnetic resonance images (MRI). CONCLUSION Herein, we demonstrate the feasibility for TUS-mediated BBB opening in vivo using in silico and in vitro pre-planning information. SIGNIFICANCE TUS as an ultrasound-guided modality for BBB opening could be a promising alternative to current FUS-mediated BBB opening configurations in the clinic.
Collapse
|
8
|
Jing B, Lindsey BD. Effect of Skull Porous Trabecular Structure on Transcranial Ultrasound Imaging in the Presence of Elastic Wave Mode Conversion at Varying Incidence Angle. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2734-2748. [PMID: 34140169 DOI: 10.1016/j.ultrasmedbio.2021.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
With the advancement of aberration correction techniques, transcranial ultrasound imaging has exhibited great potential in applications such as imaging neurological function and guiding therapeutic ultrasound. However, the feasibility of transcranial imaging varies among individuals because of the differences in skull acoustic properties. To better understand the fundamental mechanisms underlying the variation in imaging performance, the effect of the structure of the porous trabecular bone on transcranial imaging performance (i.e., target localization errors and resolution) was investigated for the first time through the use of elastic wave simulations and experiments. Simulation studies using high-resolution computed tomography data from ex vivo skull samples revealed that imaging at large incidence angles reduced the target localization error for skulls having low porosity; however, as skull porosity increased, large angles of incidence resulted in degradation of resolution and increased target localization errors. Experimental results indicate that imaging at normal incidence introduced a localization error of 1.85 ± 0.10 mm, while imaging at a large incidence angle (40°) resulted in an increased localization error of 6.54 ± 1.33 mm and caused a single point target to no longer appear as a single, coherent target in the resulting image, which is consistent with simulation results. This first investigation of the effects of skull microstructure on transcranial ultrasound imaging indicates that imaging performance is highly dependent on the porosity of the skull, particularly at non-normal angles of incidence.
Collapse
Affiliation(s)
- Bowen Jing
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Brooks D Lindsey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA; School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
9
|
Xi Z, Luo X, Peng Y, Wang X. Development and Validation of Independent Dual-Focusing Transducer for Internal Inspection of Tubes. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2227-2237. [PMID: 33460374 DOI: 10.1109/tuffc.2021.3052338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Controllable and focused ultrasonic beams in 3-D cylindrical space are essential when inspecting tubes or tubular objects. In this article, we develop an independent dual-focusing (IDF) array ultrasonic transducer composed of 64 prefocused elements and validate the feasibility of this design. Using k-Wave toolbox based on the k-space pseudospectral method, we simulate the acoustic pressure fields in the time domain and analyze beam profiles in circumferential-radial plane, axial-radial plane and 3-D space. The simulation results prove that the structure of IDF array transducer with the designed delay laws is capable of forming focused beam. A four-element aperture with 15 mm element radius shows narrow beams on both the circumferential and axial directions. On the basis of the simulation results, we fabricate a prototype transducer, test its electrical and acoustical performance, and implement internal inspection of a tube with an inner diameter of 13 mm. The echoes of four-element aperture show a higher amplitude than others, and this is consistent with the simulation. The eight longitudinal grooves and eight ring grooves of no more than 0.5 mm width are applied in inspection experiments, and the results demonstrate that the detection sensitivity of the IDF transducer can reach 0.2 mm in both the circumferential and axial directions. The results demonstrate that forming regulable and focused beam in 3-D cylindrical space is feasible using the IDF array which can be applied when inspecting tubes.
Collapse
|
10
|
Meng Y, Jones RM, Davidson B, Huang Y, Pople CB, Surendrakumar S, Hamani C, Hynynen K, Lipsman N. Technical Principles and Clinical Workflow of Transcranial MR-Guided Focused Ultrasound. Stereotact Funct Neurosurg 2020; 99:329-342. [PMID: 33302282 DOI: 10.1159/000512111] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/28/2020] [Indexed: 11/19/2022]
Abstract
Transcranial MR-guided focused ultrasound (MRgFUS) is a rapidly developing technology in neuroscience for manipulating brain structure and function without open surgery. The effectiveness of transcranial MRgFUS for thermoablation is well established, and the technique is actively employed worldwide for movement disorders including essential tremor. A growing number of centers are also investigating the potential of microbubble-mediated focused ultrasound-induced opening of the blood-brain barrier (BBB) for targeted drug delivery to the brain. Here, we provide a technical overview of the principles, clinical workflow, and operator considerations of transcranial MRgFUS procedures for both thermoablation and BBB opening.
Collapse
Affiliation(s)
- Ying Meng
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Ryan M Jones
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin Davidson
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Yuexi Huang
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Christopher B Pople
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | | | - Clement Hamani
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Kullervo Hynynen
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Nir Lipsman
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada, .,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada,
| |
Collapse
|
11
|
Jones RM, McMahon D, Hynynen K. Ultrafast three-dimensional microbubble imaging in vivo predicts tissue damage volume distributions during nonthermal brain ablation. Theranostics 2020; 10:7211-7230. [PMID: 32641988 PMCID: PMC7330857 DOI: 10.7150/thno.47281] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
Transcranial magnetic resonance imaging (MRI)-guided focused ultrasound (FUS) thermal ablation is under clinical investigation for non-invasive neurosurgery, though its use is restricted to central brain targets due primarily to skull heating effects. The combination of FUS and contrast agent microbubbles greatly reduces the ultrasound exposure levels needed to ablate brain tissue and may help facilitate the use of transcranial FUS ablation throughout the brain. However, sources of variability exist during microbubble-mediated FUS procedures that necessitate the continued development of systems and methods for online treatment monitoring and control, to ensure that excessive and/or off-target bioeffects are not induced from the exposures. Methods: Megahertz-rate three-dimensional (3D) microbubble imaging in vivo was performed during nonthermal ablation in rabbit brain using a clinical-scale prototype transmit/receive hemispherical phased array system. Results:In-vivo volumetric acoustic imaging over microsecond timescales uncovered spatiotemporal microbubble dynamics hidden by conventional whole-burst temporal averaging. Sonication-aggregate ultrafast 3D source field intensity data were predictive of microbubble-mediated tissue damage volume distributions measured post-treatment using MRI and confirmed via histopathology. Temporal under-sampling of acoustic emissions, which is common practice in the field, was found to impede performance and highlighted the importance of capturing adequate data for treatment monitoring and control purposes. Conclusion: The predictive capability of ultrafast 3D microbubble imaging, reported here for the first time, will enable future microbubble-mediated FUS treatments with unparalleled precision and accuracy, and will accelerate the clinical translation of nonthermal tissue ablation procedures both in the brain and throughout the body.
Collapse
Affiliation(s)
- Ryan M. Jones
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Dallan McMahon
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Kooiman K, Roovers S, Langeveld SAG, Kleven RT, Dewitte H, O'Reilly MA, Escoffre JM, Bouakaz A, Verweij MD, Hynynen K, Lentacker I, Stride E, Holland CK. Ultrasound-Responsive Cavitation Nuclei for Therapy and Drug Delivery. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1296-1325. [PMID: 32165014 PMCID: PMC7189181 DOI: 10.1016/j.ultrasmedbio.2020.01.002] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 05/03/2023]
Abstract
Therapeutic ultrasound strategies that harness the mechanical activity of cavitation nuclei for beneficial tissue bio-effects are actively under development. The mechanical oscillations of circulating microbubbles, the most widely investigated cavitation nuclei, which may also encapsulate or shield a therapeutic agent in the bloodstream, trigger and promote localized uptake. Oscillating microbubbles can create stresses either on nearby tissue or in surrounding fluid to enhance drug penetration and efficacy in the brain, spinal cord, vasculature, immune system, biofilm or tumors. This review summarizes recent investigations that have elucidated interactions of ultrasound and cavitation nuclei with cells, the treatment of tumors, immunotherapy, the blood-brain and blood-spinal cord barriers, sonothrombolysis, cardiovascular drug delivery and sonobactericide. In particular, an overview of salient ultrasound features, drug delivery vehicles, therapeutic transport routes and pre-clinical and clinical studies is provided. Successful implementation of ultrasound and cavitation nuclei-mediated drug delivery has the potential to change the way drugs are administered systemically, resulting in more effective therapeutics and less-invasive treatments.
Collapse
Affiliation(s)
- Klazina Kooiman
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Silke Roovers
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Simone A G Langeveld
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert T Kleven
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Heleen Dewitte
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Laboratory for Molecular and Cellular Therapy, Medical School of the Vrije Universiteit Brussel, Jette, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Meaghan A O'Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Martin D Verweij
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Christy K Holland
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA; Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
13
|
Yang X, Yin G, Tian Y, Guo J. Generating an Adjustable Focused Field With an Annular Shape Using a Cylindrical Acoustic Transducer Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:356-364. [PMID: 31562075 DOI: 10.1109/tuffc.2019.2943345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present the focusing structure of a cylindrical acoustic transducer array consisting of many annular piezoelectric wafer elements operating in the radial vibration mode. Using Huygens' principle, we calculated the delay parameters associated with the excitation signal of each element. Given the respective delay rules, the array transducer produces an adjustable acoustic focused field in the form of a 3-D circular ring. From a theoretical analysis, we designed and fabricated an array transducer with 64 elements and measured its actual field distribution. Simulation and actual experimental results show that the proposed circular cylindrical array transducer controls the annular acoustic focused field well. The sound field intensity of the annular focus region is related to the number of excited array elements, and the radial and axial positions of the annular focus region obey the delay rules of the excitation signal. These acoustic field control methods may be applied in ultrasound detection when scanning a circular sound field.
Collapse
|
14
|
Jones RM, Hynynen K. Advances in acoustic monitoring and control of focused ultrasound-mediated increases in blood-brain barrier permeability. Br J Radiol 2019; 92:20180601. [PMID: 30507302 DOI: 10.1259/bjr.20180601] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transcranial focused ultrasound (FUS) combined with intravenously circulating microbubbles can transiently and selectively increase blood-brain barrier permeability to enable targeted drug delivery to the central nervous system, and is a technique that has the potential to revolutionize the way neurological diseases are managed in medical practice. Clinical testing of this approach is currently underway in patients with brain tumors, early Alzheimer's disease, and amyotrophic lateral sclerosis. A major challenge that needs to be addressed in order for widespread clinical adoption of FUS-mediated blood-brain barrier permeabilization to occur is the development of systems and methods for real-time treatment monitoring and control, to ensure that safe and effective acoustic exposure levels are maintained throughout the procedures. This review gives a basic overview of the oscillation dynamics, acoustic emissions, and biological effects associated with ultrasound-stimulated microbubbles in vivo, and provides a summary of recent advances in acoustic-based strategies for detecting, controlling, and mapping microbubble activity in the brain. Further development of next-generation clinical FUS brain devices tailored towards microbubble-mediated applications is warranted and required for translation of this potentially disruptive technology into routine clinical practice.
Collapse
Affiliation(s)
- Ryan M Jones
- 1 Physical Sciences Platform, Sunnybrook Research Institute , Toronto, ON , Canada
| | - Kullervo Hynynen
- 1 Physical Sciences Platform, Sunnybrook Research Institute , Toronto, ON , Canada.,2 Department of Medical Biophysics, University of Toronto , Toronto, ON , Canada.,3 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
15
|
Chen KT, Wei KC, Liu HL. Theranostic Strategy of Focused Ultrasound Induced Blood-Brain Barrier Opening for CNS Disease Treatment. Front Pharmacol 2019; 10:86. [PMID: 30792657 PMCID: PMC6374338 DOI: 10.3389/fphar.2019.00086] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 01/21/2019] [Indexed: 12/22/2022] Open
Abstract
Focused Ultrasound (FUS) in combination with gaseous microbubbles has emerged as a potential new means of effective drug delivery to the brain. Recent research has shown that, under burst-type energy exposure with the presence of microbubbles, this modality can transiently permeate the blood-brain barrier (BBB). The bioavailability of therapeutic agents is site-specifically augmented only in the zone where the FUS energy is targeted. The non-invasiveness of this approach makes FUS-induced BBB opening a novel and attractive means to perform localized CNS therapeutic agent delivery. Over the past decade, FUS-BBB opening has been preclinically confirmed to successfully enhance CNS penetration of therapeutic agents including chemotherapeutic agents, therapeutic peptides, monoclonal antibodies, and nanoparticles. Recently, a number of clinical human trials have begun to explore clinical utility. This review article, explores this technology through its physical mechanisms, summarizes the existing preclinical findings (including current medical device designs and technical approaches), and summarizes current ongoing clinical trials.
Collapse
Affiliation(s)
- Ko-Ting Chen
- Ph.D. Program in Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan.,Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hao-Li Liu
- Ph.D. Program in Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan.,Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Department of Electrical Engineering, Chang-Gung University, Taoyuan, Taiwan
| |
Collapse
|
16
|
Acconcia CN, Jones RM, Hynynen K. Receiver array design for sonothrombolysis treatment monitoring in deep vein thrombosis. Phys Med Biol 2018; 63:235017. [PMID: 30484436 DOI: 10.1088/1361-6560/aaee91] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
High intensity focused ultrasound (HIFU) can disintegrate blood clots through the generation and stimulation of bubble clouds within thrombi. This work examined the design of a device to image bubble clouds for monitoring cavitation-based HIFU treatments of deep vein thrombosis (DVT). Acoustic propagation simulations were carried out on multi-layered models of the human thigh using two patient data sets from the Visible Human Project. The design considerations included the number of receivers (32, 64, 128, 256, and 512), their spatial positioning, and the effective angular array aperture (100° and 180° about geometric focus). Imaging array performance was evaluated for source frequencies of 250, 750, and 1500 kHz. Receiver sizes were fixed relative to the wavelength (pistons, diameter = λ/2) and noise was added at levels that scaled with receiver area. With a 100° angular aperture the long axis size of the -3 dB main lobe was ~1.2λ-i.e. on the order of the vessel diameter at 250 kHz (~7 mm). Increasing the array aperture to span 180° about the geometric focus reduced the long axis by a factor of ~2. The smaller main lobe sizes achieved by imaging at higher frequencies came at the cost of increased levels of sensitivity to phase aberrations induced during acoustic propagation through the intervening soft tissue layers. With noise added to receiver signals, images could be reconstructed with peak sidelobe ratios < -3 dB using single-cycle integration times for source frequencies of 250 and 750 kHz (NRx ⩾ 128). At 1500 kHz, longer integration times and/or higher element counts were required to achieve similar peak sidelobe ratios. Our results suggest that a modest number of receivers(i.e. NRx = 128) arranged on a semi-cylindrical shell may be sufficient to enable passive acoustic imaging with single-cycle integration times (i.e. volumetric rates up to 0.75 MHz) for monitoring cavitation-based HIFU treatments of DVT.
Collapse
Affiliation(s)
- Christopher N Acconcia
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | | |
Collapse
|