1
|
Wahyulaksana G, Wei L, Voorneveld J, Te Lintel Hekkert M, Bowen DJ, Strachinaru M, Duncker DJ, van der Steen AFW, Vos HJ. Assessment of Coronary Microcirculation with High Frame-Rate Contrast-Enhanced Echocardiography. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:585-591. [PMID: 39757049 DOI: 10.1016/j.ultrasmedbio.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025]
Abstract
OBJECTIVE Assessing myocardial perfusion in acute myocardial infarction is important for guiding clinicians in choosing appropriate treatment strategies. Echocardiography can be used due to its direct feedback and bedside nature, but it currently faces image quality issues and an inability to differentiate coronary macro- from micro-circulation. We previously developed an imaging scheme using high frame-rate contrast-enhanced ultrasound (HFR CEUS) with higher order singular value decomposition (HOSVD) that provides dynamic perfusion and vascular flow visualization. In this study, we aim to show the ability of this technique to image perfusion deficits and investigate the potential occurrence of false-positive contrast detection. METHODS We used a porcine model comprising occlusion and release of the left anterior descending coronary artery. During slow contrast agent infusion, the afore-mentioned imaging scheme was used to capture and process the data offline using HOSVD. RESULTS Fast and slow coronary flow was successfully differentiated, presumably representing the different compartments of the micro-circulation. Low perfusion was seen in the area that was affected, as expected by vascular occlusion. Furthermore, we also imaged coronary flow dynamics before, during and after release of the occlusion, the latter showing hyperemia as expected. A contrast agent destruction test showed that the processed images contained actual contrast signal in the cardiac phases with minimal motion. With larger tissue motion, tissue signal leaked into the contrast-enhanced images. CONCLUSION Our results demonstrate the feasibility of HFR CEUS with HOSVD as a viable option for assessing myocardial perfusion. Flow dynamics were resolved, which potentially helped to directly evaluate coronary flow deficits.
Collapse
Affiliation(s)
- Geraldi Wahyulaksana
- Biomedical Engineering, Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Radiology, Weill Cornell Medicine, NY, USA
| | - Luxi Wei
- Biomedical Engineering, Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jason Voorneveld
- Biomedical Engineering, Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Maaike Te Lintel Hekkert
- Experimental Cardiology, Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Daniel J Bowen
- Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mihai Strachinaru
- Biomedical Engineering, Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dirk J Duncker
- Experimental Cardiology, Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Antonius F W van der Steen
- Biomedical Engineering, Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Medical Imaging, Department of Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Hendrik J Vos
- Biomedical Engineering, Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Medical Imaging, Department of Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
2
|
Requirements and Hardware Limitations of High-Frame-Rate 3-D Ultrasound Imaging Systems. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The spread of high frame rate and 3-D imaging techniques has raised pressing requirements for ultrasound systems. In particular, the processing power and data transfer rate requirements may be so demanding to hinder the real-time (RT) implementation of such techniques. This paper first analyzes the general requirements involved in RT ultrasound systems. Then, it identifies the main bottlenecks in the receiving section of a specific RT scanner, the ULA-OP 256, which is one of the most powerful available open scanners and may therefore be assumed as a reference. This case study has evidenced that the “star” topology, used to digitally interconnect the system’s boards, may easily saturate the data transfer bandwidth, thus impacting the achievable frame/volume rates in RT. The architecture of the digital scanner was exploited to tackle the bottlenecks by enabling a new “ring“ communication topology. Experimental 2-D and 3-D high-frame-rate imaging tests were conducted to evaluate the frame rates achievable with both interconnection modalities. It is shown that the ring topology enables up to 4400 frames/s and 510 volumes/s, with mean increments of +230% (up to +620%) compared to the star topology.
Collapse
|
3
|
Orlowska M, Ramalli A, Bezy S, Meacci V, Voigt JU, D'Hooge J. In Vivo Comparison of Multiline Transmission and Diverging Wave Imaging for High-Frame-Rate Speckle-Tracking Echocardiography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1511-1520. [PMID: 33170777 DOI: 10.1109/tuffc.2020.3037043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High-frame-rate (HFR) speckle-tracking echocardiography (STE) assesses myocardial function by quantifying motion and deformation at high temporal resolution. Among the proposed HFR techniques, multiline transmission (MLT) and diverging wave (DW) imaging have been used in this context both being characterized by specific advantages and disadvantages. Therefore, in this article, we directly contrast both approaches in an in vivo setting while operating at the same frame rate (FR). First, images were recorded at baseline (resting condition) from healthy volunteers and patients. Next, additional acquisitions during stress echocardiography were performed on volunteers. Each scan was contoured and processed by a previously proposed 2-D HFR STE algorithm based on cross correlation. Then, strain curves and their end-systolic (ES) values were extracted for all myocardial segments for further statistical analysis. The baseline acquisitions did not reveal differences in estimated strain between the acquisition modes ( ); myocardial segments ( ); or an interaction between imaging mode and depth ( ). Similarly, during stress testing, no difference ( p = 0.7 ) was observed for the two scan sequences, stress levels or an interaction sequence-stress level ( p = 0.94 ). Overall, our findings show that MLT and DW compoundings give comparable HFR STE strain values and that the choice for using one method or the other may thus rather be based on other factors, for example, system requirements or computational cost.
Collapse
|
4
|
Vos HJ, Voorneveld JD, Groot Jebbink E, Leow CH, Nie L, van den Bosch AE, Tang MX, Freear S, Bosch JG. Contrast-Enhanced High-Frame-Rate Ultrasound Imaging of Flow Patterns in Cardiac Chambers and Deep Vessels. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2875-2890. [PMID: 32843233 DOI: 10.1016/j.ultrasmedbio.2020.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Cardiac function and vascular function are closely related to the flow of blood within. The flow velocities in these larger cavities easily reach 1 m/s, and generally complex spatiotemporal flow patterns are involved, especially in a non-physiologic state. Visualization of such flow patterns using ultrasound can be greatly enhanced by administration of contrast agents. Tracking the high-velocity complex flows is challenging with current clinical echographic tools, mostly because of limitations in signal-to-noise ratio; estimation of lateral velocities; and/or frame rate of the contrast-enhanced imaging mode. This review addresses the state of the art in 2-D high-frame-rate contrast-enhanced echography of ventricular and deep-vessel flow, from both technological and clinical perspectives. It concludes that current advanced ultrasound equipment is technologically ready for use in human contrast-enhanced studies, thus potentially leading to identification of the most clinically relevant flow parameters for quantifying cardiac and vascular function.
Collapse
Affiliation(s)
- Hendrik J Vos
- Biomedical Engineering, Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands; Medical Imaging, Department of Imaging Physics, Applied Sciences, Delft University of Technology, Delft, The Netherlands.
| | - Jason D Voorneveld
- Biomedical Engineering, Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Erik Groot Jebbink
- M3i: Multi-modality Medical Imaging Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands; Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | - Chee Hau Leow
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Luzhen Nie
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, United Kingdom
| | | | - Meng-Xing Tang
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Steven Freear
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, United Kingdom
| | - Johan G Bosch
- Biomedical Engineering, Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Guidi F, Supponen O, Upadhyay A, Vos HJ, Borden MA, Tortoli P. Microbubble Radiation Force-Induced Translation in Plane-Wave Versus Focused Transmission Modes. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:1856-1865. [PMID: 31449011 PMCID: PMC6900931 DOI: 10.1109/tuffc.2019.2937158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Due to the primary radiation force, microbubble displacement has been observed previously in the focal region of single-element and array ultrasound probes. This effect has been harnessed to increase the contact between the microbubbles and targeted endothelium for drug delivery and ultrasound molecular imaging. In this study, microbubble displacements associated with plane-wave (PW) transmission are thoroughly investigated and compared to those obtained in focused-wave (FW) transmission over a range of pulse repetition frequencies, burst lengths (BLs), peak negative pressures, and transmission frequencies. In PW mode, the displacements, depending upon the experimental conditions, are in some cases consistently higher (e.g., by 28%, when the longest BL was used at PRF = 4 kHz), and the axial displacements are spatially more uniform compared to FW mode. Statistical analysis on the measured displacements reveals a slightly different frequency dependence of statistical quantities compared to transient peak microbubble displacements, which may suggest the need to consider the size range within the tested microbubble population.
Collapse
Affiliation(s)
- Francesco Guidi
- Department of Information Engineering, University of Florence, Italy
| | - Outi Supponen
- Department of Mechanical Engineering, University of Colorado, Boulder, USA
| | - Awaneesh Upadhyay
- Department of Mechanical Engineering, University of Colorado, Boulder, USA
| | - Hendrik J. Vos
- Biomedical Engineering Thorax Center, Erasmus MC Rotterdam, The Netherlands
| | - Mark A. Borden
- Department of Mechanical Engineering, University of Colorado, Boulder, USA
| | - Piero Tortoli
- Department of Information Engineering, University of Florence, Italy
| |
Collapse
|
6
|
Nie L, Cowell DMJ, Carpenter TM, Mclaughlan JR, Cubukcu AA, Freear S. High-Frame-Rate Contrast-Enhanced Echocardiography Using Diverging Waves: 2-D Motion Estimation and Compensation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:359-371. [PMID: 30575531 DOI: 10.1109/tuffc.2018.2887224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Combining diverging ultrasound waves and microbubbles could improve contrast-enhanced echocardiography (CEE), by providing enhanced temporal resolution for cardiac function assessment over a large imaging field of view. However, current image formation techniques using coherent summation of echoes from multiple steered diverging waves (DWs) are susceptible to tissue and microbubble motion artifacts, resulting in poor image quality. In this study, we used correlation-based 2-D motion estimation to perform motion compensation for CEE using DWs. The accuracy of this motion estimation method was evaluated with Field II simulations. The root-mean-square velocity errors were 5.9% ± 0.2% and 19.5% ± 0.4% in the axial and lateral directions, when normalized to the maximum value of 62.8 cm/s which is comparable to the highest speed of blood flow in the left ventricle (LV). The effects of this method on image contrast ratio (CR) and contrast-to-noise ratio (CNR) were tested in vitro using a tissue mimicking rotating disk with a diameter of 10 cm. Compared against the control without motion compensation, a mean increase of 12 dB in CR and 7 dB in CNR were demonstrated when using this motion compensation method. The motion correction algorithm was tested in vivo on a CEE data set acquired with the Ultrasound Array Research Platform II performing coherent DW imaging. Improvement of the B-mode and contrast-mode image quality with cardiac motion and blood flow-induced microbubble motion was achieved. The results of motion estimation were further processed to interpret blood flow in the LV. This allowed for a triplex cardiac imaging technique, consisting of B mode, contrast mode, and 2-D vector flow imaging with a high frame rate of 250 Hz.
Collapse
|