1
|
Xing B, Ma X, Zhou Y. Enhancing boiling histotripsy efficacy with a tandem pulse sequence: Immediate hypoechoic Sonograhy and expanded lesion size. ULTRASONICS 2025; 150:107602. [PMID: 39986205 DOI: 10.1016/j.ultras.2025.107602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
Boiling histotripsy (BH) has proven effective in noninvasively disintegrating various soft tissues through cavitation effects. Although liquefied tissue appears as hypoechoic in sonography, the transition of BH-induced bubbles from hyperechoic to hypoechoic in the focal region typically requires several minutes. To facilitate rapid clinical assessment, a tandem pulse sequence of high-power BH pulses (with an acoustic power of 1484 W, a pulse duration of 10 ms, and a pulse repetition frequency of 1 Hz) followed by low-power long ultrasound pulses (with an acoustic power of 240 W, a pulse duration of 100 ms, and a pulse repetition frequency of 1 Hz) was introduced to expedite bubble clearance, resulting in an immediate hypoechoic presentation in sonography. This method was evaluated through high-speed photography, red blood cell (RBC) phantom, and ex vivo tissue experiments. High-speed photography experiments captured the enhanced bubble clearance induced by the low-power long pulses, validating our hypothesis. In RBC phantom experiments, conventional BH sequences yielded hypoechic patterns after 4.39 ± 0.84 min, whereas the tandem pulse sequences achieved hypoechic appearance instantaneously post-treatment (p < 0.05). Moreover, the tandem pulse sequences increased the erosion area in the RBC layer by 7.8 folds, from 2.36 ± 0.88 mm2 to 18.43 ± 5.15 mm2 (p < 0.05), at the equivalent energy output. Ex vivo bovine liver experiments mirrored these findings, with hypoechoic appearance at > 10 min vs. 0 min (p < 0.05) and liquefied areas of 33.78 ± 3.28 mm2 vs. 66.52 ± 11.24 mm2 (p < 0.05), respectively. In summary, our results suggest that the strategic modulation of cavitation activities not only accelerates the immediate hypoechoic appearance in sonography but also enlarges the area of BH-induced disintegration. The tandem pulse sequence strategy presents a promising avenue for enhancing the efficacy and efficiency of BH treatment in clinical applications.
Collapse
Affiliation(s)
- Baicheng Xing
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoyan Ma
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yufeng Zhou
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; National Medical Products Administration (NMPA) Key Laboratory for Quality Evaluation of Ultrasonic Surgical Equipment, 507 Gaoxin Ave., Donghu New Technology Development Zone, Wuhan, Hubei 430075, China; National Engineering Research Center of Ultrasound Medicine, Chongqing 401120, China.
| |
Collapse
|
2
|
Miao K, Basterrechea KF, Hernandez SL, Ahmed OS, Patel MV, Bader KB. Development of Convolutional Neural Network to Segment Ultrasound Images of Histotripsy Ablation. IEEE Trans Biomed Eng 2024; 71:1789-1797. [PMID: 38198256 DOI: 10.1109/tbme.2024.3352538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
OBJECTIVE Histotripsy is a focused ultrasound therapy that ablates tissue via the action of bubble clouds. It is under investigation to treat a number of ailments, including renal tumors. Ultrasound imaging is used to monitor histotripsy, though there remains a lack of definitive imaging metrics to confirm successful treatment outcomes. In this study, a convolutional neural network (CNN) was developed to segment ablation on ultrasound images. METHODS A transfer learning approach was used to replace classification layers of the residual network ResNet-18. Inputs to the classification layers were based on ultrasound images of ablated red blood cell phantoms. Digital photographs served as the ground truth. The efficacy of the CNN was compared to subtraction imaging, and manual segmentation of images by two board-certified radiologists. RESULTS The CNN had a similar performance to manual segmentation, though was improved relative to segmentation with subtraction imaging. Predictions of the network improved over the course of treatment, with the Dice similarity coefficient less than 20% for fewer than 500 applied pulses, but 85% for more than 750 applied pulses. The network was also applied to ultrasound images of ex vivo kidney exposed to histotripsy, which indicated a morphological shift in the treatment profile relative to the phantoms. These findings were consistent with histology that confirmed ablation of the targeted tissue. CONCLUSION Overall, the CNN showed promise as a rapid means to assess outcomes of histotripsy and automate treatment. SIGNIFICANCE Data collected in this study indicate integration of CNN image segmentation to gauge outcomes for histotripsy ablation holds promise for automating treatment procedures.
Collapse
|
3
|
Worlikar T, Hall T, Zhang M, Mendiratta-Lala M, Green M, Cho CS, Xu Z. Insights from in vivo preclinical cancer studies with histotripsy. Int J Hyperthermia 2024; 41:2297650. [PMID: 38214171 PMCID: PMC11102041 DOI: 10.1080/02656736.2023.2297650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/13/2024] Open
Abstract
Histotripsy is the first noninvasive, non-ionizing, and non-thermal ablation technique that mechanically fractionates target tissue into acellular homogenate via controlled acoustic cavitation. Histotripsy has been evaluated for various preclinical applications requiring noninvasive tissue removal including cancer, brain surgery, blood clot and hematoma liquefaction, and correction of neonatal congenital heart defects. Promising preclinical results including local tumor suppression, improved survival outcomes, local and systemic anti-tumor immune responses, and histotripsy-induced abscopal effects have been reported in various animal tumor models. Histotripsy is also being investigated in veterinary patients with spontaneously arising tumors. Research is underway to combine histotripsy with immunotherapy and chemotherapy to improve therapeutic outcomes. In addition to preclinical cancer research, human clinical trials are ongoing for the treatment of liver tumors and renal tumors. Histotripsy has been recently approved by the FDA for noninvasive treatment of liver tumors. This review highlights key learnings from in vivo shock-scattering histotripsy, intrinsic threshold histotripsy, and boiling histotripsy cancer studies treating cancers of different anatomic locations and discusses the major considerations in planning in vivo histotripsy studies regarding instrumentation, tumor model, study design, treatment dose, and post-treatment tumor monitoring.
Collapse
Affiliation(s)
- Tejaswi Worlikar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Timothy Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Man Zhang
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Michael Green
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
- Radiation Oncology, Ann Arbor VA Healthcare, Ann Arbor, Michigan, USA
| | - Clifford S. Cho
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Research Service, Ann Arbor VA Healthcare, Ann Arbor, Michigan, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Williams RP, Simon JC, Khokhlova VA, Sapozhnikov OA, Khokhlova TD. The histotripsy spectrum: differences and similarities in techniques and instrumentation. Int J Hyperthermia 2023; 40:2233720. [PMID: 37460101 PMCID: PMC10479943 DOI: 10.1080/02656736.2023.2233720] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 07/02/2023] [Indexed: 07/20/2023] Open
Abstract
Since its inception about two decades ago, histotripsy - a non-thermal mechanical tissue ablation technique - has evolved into a spectrum of methods, each with distinct potentiating physical mechanisms: intrinsic threshold histotripsy, shock-scattering histotripsy, hybrid histotripsy, and boiling histotripsy. All methods utilize short, high-amplitude pulses of focused ultrasound delivered at a low duty cycle, and all involve excitation of violent bubble activity and acoustic streaming at the focus to fractionate tissue down to the subcellular level. The main differences are in pulse duration, which spans microseconds to milliseconds, and ultrasound waveform shape and corresponding peak acoustic pressures required to achieve the desired type of bubble activity. In addition, most types of histotripsy rely on the presence of high-amplitude shocks that develop in the pressure profile at the focus due to nonlinear propagation effects. Those requirements, in turn, dictate aspects of the instrument design, both in terms of driving electronics, transducer dimensions and intensity limitations at surface, shape (primarily, the F-number) and frequency. The combination of the optimized instrumentation and the bio-effects from bubble activity and streaming on different tissues, lead to target clinical applications for each histotripsy method. Here, the differences and similarities in the physical mechanisms and resulting bioeffects of each method are reviewed and tied to optimal instrumentation and clinical applications.
Collapse
Affiliation(s)
- Randall P Williams
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Julianna C Simon
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, PA, USA
| | - Vera A Khokhlova
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
- Department of Acoustics, Physics Faculty, Moscow State University, Moscow, Russia
| | - Oleg A Sapozhnikov
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
- Department of Acoustics, Physics Faculty, Moscow State University, Moscow, Russia
| | - Tatiana D Khokhlova
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Wallach EL, Shekhar H, Flores-Guzman F, Hernandez SL, Bader KB. Histotripsy Bubble Cloud Contrast With Chirp-Coded Excitation in Preclinical Models. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:787-794. [PMID: 34748487 PMCID: PMC11652668 DOI: 10.1109/tuffc.2021.3125922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Histotripsy is a focused ultrasound therapy for tissue ablation via the generation of bubble clouds. These effects can be achieved noninvasively, making sensitive and specific bubble imaging essential for histotripsy guidance. Plane-wave ultrasound imaging can track bubble clouds with an excellent temporal resolution, but there is a significant reduction in echoes when deep-seated organs are targeted. Chirp-coded excitation uses wideband, long-duration imaging pulses to increase signals at depth and promote nonlinear bubble oscillations. In this study, we evaluated histotripsy bubble contrast with chirp-coded excitation in scattering gel phantoms and a subcutaneous mouse tumor model. A range of imaging pulse durations were tested, and compared to a standard plane-wave pulse sequence. Received chirped signals were processed with matched filters to highlight components associated with either fundamental or subharmonic (bubble-specific) frequency bands. The contrast-to-tissue ratio (CTR) was improved in scattering media for subharmonic contrast relative to fundamental contrast (both chirped and standard imaging pulses) with the longest-duration chirped-pulse tested (7.4 [Formula: see text] pulse duration). The CTR was improved for subharmonic contrast relative to fundamental contrast (both chirped and standard imaging pulses) by 4.25 dB ± 1.36 dB in phantoms and 3.84 dB ± 6.42 dB in vivo. No systematic changes were observed in the bubble cloud size or dissolution rate between sequences, indicating image resolution was maintained with the long-duration imaging pulses. Overall, this study demonstrates the feasibility of specific histotripsy bubble cloud visualization with chirp-coded excitation.
Collapse
|
6
|
Mallay MG, Woodacre JK, Landry TG, Campbell NA, Brown JA. A Dual-Frequency Lens-Focused Endoscopic Histotripsy Transducer. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2906-2916. [PMID: 33961553 DOI: 10.1109/tuffc.2021.3078326] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A forward-looking miniature histotripsy transducer has been developed that incorporates an acoustic lens and dual-frequency stacked transducers. An acoustic lens is used to increase the peak negative pressure through focal gain and the dual-frequency transducers are designed to increase peak negative pressure by summing the pressure generated by each transducer individually. Four lens designs, each with an f -number of approximately 1, were evaluated in a PZT5A composite transducer. The finite-element model (FEM) predicted axial beamwidths of 1.61, 2.40, 2.84, and 2.36 mm for the resin conventional, resin Fresnel, silicone conventional, and silicone Fresnel lenses, respectively; the measured axial beamwidths were 1.30, 2.28, 2.71, and 2.11 mm, respectively. Radial beamwidths from the model were between 0.32 and 0.35 mm, while measurements agreed to within 0.2 mm. The measured peak negative was 0.150, 0.124, 0.160, and 0.160 MPa/V for the resin conventional, resin Fresnel, silicone conventional, and silicone Fresnel lenses, respectively. For the dual-frequency device, the 5-MHz (therapy) transducer had a measured peak negative pressure of 0.136 MPa/V for the PZT5A composite and 0.163 MPa/V for the PMN-PT composite. The 1.2-MHz (pump) transducer had a measured peak negative pressure of 0.028 MPa/V. The pump transducer significantly lowered the cavitation threshold of the therapy transducer. The dual-frequency device was tested on an ex vivo rat brain, ablating tissue at up to 4-mm depth, with lesion sizes as small as [Formula: see text].
Collapse
|
7
|
Bader KB, Wallach EL, Shekhar H, Flores-Guzman F, Halpern HJ, Hernandez SL. Estimating the mechanical energy of histotripsy bubble clouds with high frame rate imaging. Phys Med Biol 2021; 66:10.1088/1361-6560/ac155d. [PMID: 34271560 PMCID: PMC10680990 DOI: 10.1088/1361-6560/ac155d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/16/2021] [Indexed: 11/11/2022]
Abstract
Mechanical ablation with the focused ultrasound therapy histotripsy relies on the generation and action of bubble clouds. Despite its critical role for ablation, quantitative metrics of bubble activity to gauge treatment outcomes are still lacking. Here, plane wave imaging was used to track the dissolution of bubble clouds following initiation with the histotripsy pulse. Information about the rate of change in pixel intensity was coupled with an analytic diffusion model to estimate bubble size. Accuracy of the hybrid measurement/model was assessed by comparing the predicted and measured dissolution time of the bubble cloud. Good agreement was found between predictions and measurements of bubble cloud dissolution times in agarose phantoms and murine subcutaneous SCC VII tumors. The analytic diffusion model was extended to compute the maximum bubble size as well as energy imparted to the tissue due to bubble expansion. Regions within tumors predicted to have undergone strong bubble expansion were collocated with ablation. Further, the dissolution time was found to correlate with acoustic emissions generated by the bubble cloud during histotripsy insonation. Overall, these results indicate a combination of modeling and high frame rate imaging may provide means to quantify mechanical energy imparted to the tissue due to bubble expansion for histotripsy.
Collapse
Affiliation(s)
- Kenneth B Bader
- Department of Radiology, University of Chicago, Chicago, IL, United States of America
| | - Emily L Wallach
- Department of Radiology, University of Chicago, Chicago, IL, United States of America
| | - Himanshu Shekhar
- Discipline of Electrical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| | | | - Howard J Halpern
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL United States of America
| | - Sonia L Hernandez
- Department of Surgery, University of Chicago, Chicago, IL, United States of America
| |
Collapse
|
8
|
Bigelow TA, Thomas CL, Wu H. Scan Parameter Optimization for Histotripsy Treatment of S. Aureus Biofilms on Surgical Mesh. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:341-349. [PMID: 31634828 PMCID: PMC7039400 DOI: 10.1109/tuffc.2019.2948305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
There is a critical need to develop new noninvasive therapies to treat bacteria biofilms. Previous studies have demonstrated the effectiveness of cavitation-based ultrasound histotripsy to destroy these biofilms. In this study, the dependence of biofilm destruction on multiple scan parameters was assessed by conducting exposures at different scan speeds (0.3-1.4 beamwidths/s), step sizes (0.25-0.5 beamwidths), and the number of passes of the focus across the mesh (2-6). For each of the exposure conditions, the number of colony-forming units (CFUs) remaining on the mesh was quantified. A regression analysis was then conducted, revealing that the scan speed was the most critical parameter for biofilm destruction. Reducing the number of passes and the scan speed should allow for more efficient biofilm destruction in the future, reducing the treatment time.
Collapse
|
9
|
Carrozzo U, Toniato M, Harrison A. Assessment of Noninvasive Low-Frequency Ultrasound as a Means of Treating Injuries to Suspensory Ligaments in Horses: A Research Paper. J Equine Vet Sci 2019; 80:80-89. [PMID: 31443840 DOI: 10.1016/j.jevs.2019.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/12/2019] [Indexed: 01/09/2023]
Abstract
Therapeutic ultrasound is a noninvasive technique, which is well tolerated by horses, does not need sedation, and can easily be performed in a routine clinical setting. Twenty-three client-owned sport horses were recruited at Clinica Equina San Biagio and included in this case study. Treatment of the injured suspensory ligament apparatus was administered using an EQ Pro, low-frequency therapeutic unit (38 kHz). The noninvasive treatment consisted of massaging the injured area in combination with a traditional ultrasound gel while maintaining the head of the device in direct contact with the injured area. The results indicate that 20 of the 23 horses in this study benefitted from EQ Pro treatment and, following a routine rehabilitation program, returned to competition status: a success rate of 87%. Furthermore, treatment duration was 3.3 ± 0.4 weeks on average, with a healthy outcome as assessed by ultrasound at 6.8 ± 1.9 weeks. Among the 23 horses in this study, 65% of them benefitted from EQ Pro treatment of a duration of just ≤3.3 weeks. It is concluded that EQ Pro therapy is a promising and effective form of treatment for horses with suspensory ligament injury. It is furthermore rapid and easy to use in the Equine Veterinary Clinic setting and does not require sedation. Future studies should now focus on the mechanisms by which this new treatment activates the healing process of the suspensory ligaments of injured horses.
Collapse
Affiliation(s)
- Ugo Carrozzo
- Clinica Equina San Biagio, San Biagio di Argenta, FE, Italy.
| | - Matteo Toniato
- Clinica Equina San Biagio, San Biagio di Argenta, FE, Italy
| | - Adrian Harrison
- Department of Pathobiological Sciences, Faculty of Health & Medical Science, Copenhagen University, Frederiksberg C, Copenhagen, Denmark
| |
Collapse
|
10
|
Bader KB, Hendley SA, Anthony GJ, Bollen V. Observation and modulation of the dissolution of histotripsy-induced bubble clouds with high-frame rate plane wave imaging. Phys Med Biol 2019; 64:115012. [PMID: 30995623 DOI: 10.1088/1361-6560/ab1a64] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Focused ultrasound therapies are a noninvasive means to ablate tissue. Histotripsy utilizes short ultrasound pulses with sufficient tension to nucleate bubble clouds that impart lethal strain to the surrounding tissues. Tracking bubble cloud dissolution between the application of histotripsy pulses is critical to ensure treatment efficacy. In this study, plane wave B-mode imaging was employed to monitor bubble cloud motion and grayscale at frame rates up to 11.25 kHz. Minimal changes in the area or position of the bubble clouds were observed 50 ms post excitation. The bubble cloud grayscale was observed to decrease with the square root of time, indicating a diffusion-driven process. These results were qualitatively consistent with an analytic model of gas diffusion during the histotripsy process. Finally, the rate of bubble cloud dissolution was found to be dependent on the output of the imaging pulse, indicating an interaction between the bubble cloud and imaging parameters. Overall, these results highlight the utility of plane wave B-mode imaging for monitoring histotripsy bubble clouds.
Collapse
Affiliation(s)
- Kenneth B Bader
- Department of Radiology, University of Chicago, Chicago, IL, United States of America. Committee on Medical Physics, University of Chicago, Chicago, IL, United States of America. Author to whom any correspondence should be addressed
| | | | | | | |
Collapse
|
11
|
Anthony GJ, Bollen V, Hendley S, Antic T, Sammet S, Bader KB. Assessment of histotripsy-induced liquefaction with diagnostic ultrasound and magnetic resonance imaging in vitro and ex vivo. Phys Med Biol 2019; 64:095023. [PMID: 30921780 DOI: 10.1088/1361-6560/ab143f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Histotripsy is a therapeutic ultrasound modality under development to liquefy tissue mechanically via bubble clouds. Image guidance of histotripsy requires both quantification of the bubble cloud activity and accurate delineation of the treatment zone. In this study, magnetic resonance (MR) and diagnostic ultrasound imaging were combined to assess histotripsy treatment in vitro and ex vivo. Mechanically ablative histotripsy pulses were applied to agarose phantoms or porcine livers. Bubble cloud emissions were monitored with passive cavitation imaging (PCI), and hyperechogenicity via plane wave imaging. Changes in the medium structure due to bubble activity were assessed with diagnostic ultrasound using conventional B-mode imaging and T 1-, T 2-, and diffusion-weighted MR images acquired at 3 Tesla. Liquefaction zones were correlated with diagnostic ultrasound and MR imaging via receiver operating characteristic (ROC) analysis and Dice similarity coefficient (DSC) analysis. Diagnostic ultrasound indicated strong bubble activity for all samples. Histotripsy-induced changes in sample structure were evident on conventional B-mode and T 2-weighted images for all samples, and were dependent on the sample type for T 1- and diffusion-weighted imaging. The greatest changes observed on conventional B-mode or MR imaging relative to baseline in the samples did not necessarily indicate the regions of strongest bubble activity. Areas under the ROC curve for predicting phantom or liver liquefaction were significantly greater than 0.5 for PCI power, plane wave and conventional B-mode grayscale, T 1, T 2, and ADC. The acoustic power mapped via PCI provided a better prediction of liquefaction than assessment of the liquefaction zone via conventional B-mode or MR imaging for all samples. The DSC values for T 2-weighted images were greater than those derived from conventional B-mode images. These results indicate diagnostic ultrasound and MR imaging provide complimentary sets of information, demonstrating that multimodal imaging is useful for assessment of histotripsy liquefaction.
Collapse
|
12
|
Shi A, Lundt J, Deng Z, Macoskey J, Gurm H, Owens G, Zhang X, Hall TL, Xu Z. Integrated Histotripsy and Bubble Coalescence Transducer for Thrombolysis. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2697-2709. [PMID: 30279032 PMCID: PMC6215517 DOI: 10.1016/j.ultrasmedbio.2018.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 05/04/2023]
Abstract
After the collapse of a cavitation bubble cloud, residual microbubbles can persist for up to seconds and function as weak cavitation nuclei for subsequent pulses in a phenomenon known as cavitation memory effect. In histotripsy, the cavitation memory effect can cause bubble clouds to repeatedly form at the same discrete set of sites. This effect limits the efficacy of histotripsy-based tissue fractionation. Our previous studies have indicated that low-amplitude bubble-coalescing (BC) ultrasound sequences interleaved with high-amplitude histotripsy pulses can coalesce the residual bubbles into one large bubble quickly. This reduces the cavitation memory effect and may increase treatment efficacy. Histotripsy has been investigated for thrombolysis by breaking up clots into debris smaller than red blood cells. However, this treatment has low efficacy for aged or retracted clots. In this study, we investigate the use of histotripsy with BC to improve the efficacy of treatment of retracted clots. An integrated histotripsy and bubble-coalescing (HBC) transducer system with specialized electronic driving system was built in-house. One high-amplitude (32 MPa), one-cycle histotripsy pulse followed by 36 low-amplitude (2.4 MPa), one-cycle BC pulses formed one HBC sequence. Results indicate that HBC sequences successfully generated a flow channel through the retracted clots at scan speeds of 0.2-0.5 mm/s. The channel size created using the HBC sequence was 128% to 480% larger than that created using histotripsy alone. The clot debris particles generated during HBC treatments were within the tolerable range. These results illustrate the concept that BC improves the treatment efficacy of histotripsy thrombolysis for retracted clots.
Collapse
Affiliation(s)
- Aiwei Shi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
| | - Jonathan Lundt
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Zilin Deng
- Department of Biomedical Engineering, Beihang University, Beijing, China
| | - Jonathan Macoskey
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Hitinder Gurm
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Gabe Owens
- Division of Pediatric Cardiology, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Xi Zhang
- Fitbit Corporation, San Francisco, California, USA
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA; Division of Pediatric Cardiology, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Lundt J, Hall T, Rao A, Fowlkes JB, Cain C, Lee F, Xu Z. Coalescence of residual histotripsy cavitation nuclei using low-gain regions of the therapy beam during electronic focal steering. Phys Med Biol 2018; 63:225010. [PMID: 30418936 DOI: 10.1088/1361-6560/aaeaf3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Following collapse of a histotripsy cloud, residual microbubbles may persist for seconds, distributed throughout the focus. Their presence can attenuate and scatter subsequent pulses, hindering treatment speed and homogeneity. Previous studies have demonstrated use of separate low-amplitude (~1 MPa) pulses interleaved with histotripsy pulses to drive bubble coalescence (BC), significantly improving treatment speed without sacrificing homogeneity. We propose that by using electronic focal steering (EFS) to direct the therapy focus throughout specially-designed EFS sequences, it is possible to use low-gain regions of the therapy beam to accomplish BC during EFS without any additional acoustic sequence. First, to establish proof of principle for an isolated focus, a 50-foci EFS sequence was constructed with the first position isolated near the geometric focus and remaining positions distributed post-focally. EFS sequences were evaluated in tissue-mimicking phantoms with gas concentrations of 20% and 100% with respect to saturation. Results using an isolated focus demonstrated that at 20% gas concentration, 49 EFS pulses were sufficient to achieve BC in all samples for pulse repetition frequency (PRF) ⩽ 800 Hz and 84.1% ± 3.0% of samples at 5 kHz PRF. For phantoms prepared with 100% gas concentration, BC was achieved by 49 EFS pulses in 39.2% ± 4.7% of samples at 50 Hz PRF and 63.4% ± 15.3% of samples at 5 kHz. To show feasibility of using the EFS-BC method to ablate a large volume quickly, a 1000-foci EFS sequence covering a volume of approximately 27 ml was tested. Results indicate that the BC effect was similarly present. A treatment rate of 27 ± 6 ml min-1 was achieved, which is signficantly faster than standard histotripsy and ultrasound thermal ablation. This study demonstrates that histotripsy with EFS can achieve BC without employing a separate acoustic sequence which has the potential to accelerate large-volume ablation while minimizing energy deposition.
Collapse
Affiliation(s)
- Jonathan Lundt
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | | | | | | | | | | | | |
Collapse
|