1
|
Huber CM, Dorsch N, Ermert H, Vossiek M, Ullmann I, Lyer S. Passive cavitation mapping for biomedical applications using higher order delay multiply and sum beamformer with linear complexity. ULTRASONICS 2025; 153:107653. [PMID: 40203513 DOI: 10.1016/j.ultras.2025.107653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025]
Abstract
Ultrasound-induced cavitation can be used in various biomedical therapies, including localized drug delivery, sonoporation, gene transfer, noninvasive sonothrombolysis, lithotripsy, and histotripsy. It can also enhance thermal ablation of tumors and facilitate trans-blood-brain-barrier treatments. Accurate monitoring of cavitation activity, including dose and location, is essential for the safe and effective application of these therapies. Passive cavitation mapping (PCM) is a key technique used to achieve this. However, conventional Delay and Sum (DAS) beamforming methods suffer from low resolution and high side-lobe levels in standard diagnostic ultrasound transducer, limiting their effectiveness or are computationally expensive, in the case of robust capon beamformer (RCB). To address these challenges, we propose a higher-order nonlinear Delay Multiply and Sum (DMAS) beamformer for improved passive cavitation mapping. Our approach utilizes a novel implementation with linear complexity, using a determinant from symmetrical polynomials. Simulation and experimental results demonstrate that the proposed method enhances both axial and lateral point spread function, resolution and increasing image quality, while exhibiting linear complexity. These improvements suggest that higher-order nonlinear beamforming is a promising advancement for more accurate and reliable cavitation monitoring in biomedical applications.
Collapse
Affiliation(s)
- Christian Marinus Huber
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for AI-Controlled Nanomaterials (KINAM), Universitätsklinikum Erlangen, Glücksstrasse 10a, Erlangen, 91054, Bavaria, Germany; Institute of Microwaves and Photonics (LHFT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 9, Erlangen, 91058, Bavaria, Germany.
| | - Nicole Dorsch
- Institute of Microwaves and Photonics (LHFT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 9, Erlangen, 91058, Bavaria, Germany
| | - Helmut Ermert
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for AI-Controlled Nanomaterials (KINAM), Universitätsklinikum Erlangen, Glücksstrasse 10a, Erlangen, 91054, Bavaria, Germany
| | - Martin Vossiek
- Institute of Microwaves and Photonics (LHFT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 9, Erlangen, 91058, Bavaria, Germany
| | - Ingrid Ullmann
- Institute of Microwaves and Photonics (LHFT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 9, Erlangen, 91058, Bavaria, Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for AI-Controlled Nanomaterials (KINAM), Universitätsklinikum Erlangen, Glücksstrasse 10a, Erlangen, 91054, Bavaria, Germany
| |
Collapse
|
2
|
Bader KB, Padilla F, Haworth KJ, Ellens N, Dalecki D, Miller DL, Wear KA. Overview of Therapeutic Ultrasound Applications and Safety Considerations: 2024 Update. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2025; 44:381-433. [PMID: 39526313 PMCID: PMC11796337 DOI: 10.1002/jum.16611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
A 2012 review of therapeutic ultrasound was published to educate researchers and physicians on potential applications and concerns for unintended bioeffects (doi: 10.7863/jum.2012.31.4.623). This review serves as an update to the parent article, highlighting advances in therapeutic ultrasound over the past 12 years. In addition to general mechanisms for bioeffects produced by therapeutic ultrasound, current applications, and the pre-clinical and clinical stages are outlined. An overview is provided for image guidance methods to monitor and assess treatment progress. Finally, other topics relevant for the translation of therapeutic ultrasound are discussed, including computational modeling, tissue-mimicking phantoms, and quality assurance protocols.
Collapse
Affiliation(s)
| | - Frederic Padilla
- Gene Therapy ProgramFocused Ultrasound FoundationCharlottesvilleVirginiaUSA
- Department of RadiologyUniversity of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Kevin J. Haworth
- Department of PediatricsUniversity of CincinnatiCincinnatiOhioUnited States
- Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
- Department of Biomedical EngineeringUniversity of CincinnatiCincinnatiOhioUSA
| | | | - Diane Dalecki
- Department of Biomedical EngineeringUniversity of RochesterRochesterNew YorkUSA
| | - Douglas L. Miller
- Department of RadiologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Keith A. Wear
- Center for Devices and Radiological HealthU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
3
|
Lian Y, Zeng Y, Zhou S, Zhu H, Li F, Cai X. Deep Beamforming for Real-Time 3-D Passive Acoustic Mapping With Row-Column-Addressed Arrays. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2025; 72:226-237. [PMID: 40030804 DOI: 10.1109/tuffc.2024.3524436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Passive acoustic mapping (PAM) is a promising tool to monitor acoustic cavitation activities for focused ultrasound (FUS) therapies. While 2-D matrix arrays allow 3-D PAM, the high channel count requirement and the complexity of the receiving electronics limit their practical value in real-time imaging applications. In this regard, row-column-addressed (RCA) arrays have shown great potential in addressing the difficulties in real-time 3-D ultrasound imaging. However, currently, there is no applicable method for 3-D PAM with RCA arrays. In this work, we propose a deep beamformer for real-time 3-D PAM with RCA arrays. The deep beamformer leverages a deep neural network (DNN) to map radio frequency (RF) microbubble (MB) cavitation signals acquired with the RCA array to 3-D PAM images, achieving similar image quality to the reconstructions performed using the fully populated 2-D matrix array with the angular spectrum (AS) method. In the simulation, the images reconstructed by the deep beamformer showed less than 13.2% and 1.8% differences in the energy spread volume (ESV) and image signal-to-noise ratio (ISNR), compared with those reconstructed using the matrix array. However, the image reconstruction time was reduced by 11 and 30 times on the CPU and GPU, respectively, achieving 42.4 volumes per second image reconstruction speed on a GPU for a volume sized $128\times 128\times 128$ . Experimental data further validated the capabilities of the deep beamformer to accurately localize MB cavitation activities in 3-D space. These results clearly demonstrated the feasibility of real-time and 3-D monitoring of MB cavitation activities with RCA arrays and neural network-based beamformers.
Collapse
|
4
|
Yildiz YO, Ruan JL, Gray MD, Bau L, Browning RJ, Mannaris C, Kiltie AE, Vojnovic B, Stride E. Combined drug delivery and treatment monitoring using a single high frequency ultrasound system. Int J Hyperthermia 2024; 41:2430330. [PMID: 39592132 DOI: 10.1080/02656736.2024.2430330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/19/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Ultrasound-mediated drug delivery is typically performed using transducers with center frequencies ≤ 1 MHz to promote acoustic cavitation. Such frequencies are not commonly used for diagnostic ultrasound due to limited spatial resolution. Therefore, delivery and monitoring of therapeutic ultrasound typically requires two transducers to enable both treatment and imaging. This study investigates the feasibility of using a single commercial ultrasound imaging transducer operating at 5 MHz for both drug delivery and real-time imaging. We compared a single-transducer system (STS) at 5 MHz with a conventional dual-transducer system (DTS) using a 1.1 MHz therapeutic transducer and an imaging probe. in vitro experiments demonstrated that the STS could achieve comparable extravasation depth and area as the DTS, with higher drug deposition observed at 5 MHz. Additionally, extravasation patterns were influenced by peak negative pressure (PNP) and duty cycle, with the narrower beam width at 5 MHz offering potential advantages for targeted drug delivery. in vivo experiments in a murine bladder cancer model confirmed the efficacy of the STS for real-time imaging and drug delivery, with cavitation dose correlating with drug deposition. The results suggest that a single-transducer approach may enhance the precision and efficiency of ultrasound-mediated drug delivery, potentially reducing system complexity and cost.
Collapse
Affiliation(s)
- Yesna O Yildiz
- Department of Oncology, University of Oxford, Oxford, UK
| | - Jia-Ling Ruan
- Department of Oncology, University of Oxford, Oxford, UK
| | - Michael D Gray
- Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Luca Bau
- Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | | | - Christophoros Mannaris
- Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Anne E Kiltie
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Eleanor Stride
- Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Lu N, Yeats EM, Sukovich JR, Hall TL, Pandey AS, Xu Z. Treatment envelope of transcranial histotripsy: challenges and strategies to maximize the treatment location profile. Phys Med Biol 2024; 69:225006. [PMID: 39481233 PMCID: PMC11551913 DOI: 10.1088/1361-6560/ad8d9f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/02/2024]
Abstract
A 750 kHz, 360-element ultrasound array has been built for transcranial histotripsy applications. This study aims to evaluate its performance to determine whether this array is adequate for treating a wide range of brain locations through a human skull. Treatment location profiles in 2 excised human skulls were experimentally characterized based on passive cavitation mapping. Full-wave acoustic simulations were performed in 8 human skulls to analyze the ultrasound propagation at shallow targets in skulls with different properties. Results showed that histotripsy successfully generated cavitation from deep to shallow targets within 5 mm from the skull surface in the skull with high SDR and small thickness, whereas in the skull with low SDR and large thickness, the treatment envelope was limited up to 16 mm from the skull surface. Simulation results demonstrated that the treatment envelope was highly dependent on the skull acoustic properties. Pre-focal pressure hotspots were observed in both simulation and experiments when targeting near the skull. For each skull, the acoustic pressure loss increases significantly for shallow targets compared to central targets due to high attenuation, large incident angles, and pre-focal pressure hotspots. Strategies including array design optimization, pose optimization, and amplitude correction, are proposed to broaden the treatment envelope. This study identifies the capabilities and limitations of the 360-element transcranial histotripsy array and suggests strategies for designing the next-generation transcranial histotripsy array to expand the treatment location profile for a future clinical trial.
Collapse
Affiliation(s)
- Ning Lu
- Department of Radiology, Stanford University, Palo Alto, CA 94304, United States of America
| | - Ellen M Yeats
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Jonathan R Sukovich
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Timothy L Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Aditya S Pandey
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| |
Collapse
|
6
|
Engelen Y, Krysko DV, Effimova I, Breckpot K, Versluis M, De Smedt S, Lajoinie G, Lentacker I. Optimizing high-intensity focused ultrasound-induced immunogenic cell-death using passive cavitation mapping as a monitoring tool. J Control Release 2024; 375:389-403. [PMID: 39293525 DOI: 10.1016/j.jconrel.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Over the past decade, ultrasound (US) has gathered significant attention and research focus in the realm of medical treatments, particularly within the domain of anti-cancer therapies. This growing interest can be attributed to its non-invasive nature, precision in delivery, availability, and safety. While the conventional objective of US-based treatments to treat breast, prostate, and liver cancer is the ablation of target tissues, the introduction of the concept of immunogenic cell death (ICD) has made clear that inducing cell death can take different non-binary pathways through the activation of the patient's anti-tumor immunity. Here, we investigate high-intensity focused ultrasound (HIFU) to induce ICD by unraveling the underlying physical phenomena and resulting biological effects associated with HIFU therapy using an automated and fully controlled experimental setup. Our in-vitro approach enables the treatment of adherent cancer cells (B16F10 and CT26), analysis for ICD hallmarks and allows to monitor and characterize in real time the US-induced cavitation activity through passive cavitation detection (PCD). We demonstrate HIFU-induced cell death, CRT exposure, HMGB1 secretion and antigen release. This approach holds great promise in advancing our understanding of the therapeutic potential of HIFU for anti-cancer strategies.
Collapse
Affiliation(s)
- Yanou Engelen
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Dmitri V Krysko
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Iuliia Effimova
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Translational Oncology Research Center, Department of Biomedical Sciences, Faculty of Pharmacy and Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Michel Versluis
- Physics of Fluids Group, Technical Medical (TechMed) Center, and Max Planck Center for Complex Fluid Dynamics, University of Twente, Enschede, the Netherlands
| | - Stefaan De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Guillaume Lajoinie
- Physics of Fluids Group, Technical Medical (TechMed) Center, and Max Planck Center for Complex Fluid Dynamics, University of Twente, Enschede, the Netherlands
| | - Ine Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
7
|
Wu Q, Gray M, Smith CAB, Bau L, Cleveland RO, Coussios C, Stride E. Challenges in classifying cavitation: Correlating high-speed optical imaging and passive acoustic mapping of cavitation dynamics. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 156:3608-3620. [PMID: 39589331 DOI: 10.1121/10.0034426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024]
Abstract
Both the biological effects and acoustic emissions generated by cavitation are functions of bubble dynamics. Monitoring of acoustic emissions is therefore desirable to improve treatment safety and efficacy. The relationship between the emission spectra and bubble dynamics is, however, complex. The aim of this study was to characterise this relationship for single microbubbles using simultaneous ultra-high-speed optical imaging and passive acoustic mapping of cavitation emissions. As expected, both the number of discrete harmonics and broadband content in the emissions increased with increasing amplitude of bubble oscillation, but the spectral content was also dependent upon other variables, including the frequency of bubble collapse and receiving transducer characteristics. Moreover, phenomena, such as fragmentation and microjetting, could not be distinguished from spherical oscillations when using the full duration acoustic waveform to calculate the emission spectra. There was also no correlation between the detection of broadband noise and widely used thresholds for distinguishing bubble dynamics. It is therefore concluded that binary categorisations, such as stable and inertial cavitation, should be avoided, and different types of bubble behavior should not be inferred on the basis of frequency content alone. Treatment monitoring criteria should instead be defined according to the relevant bioeffect(s) for a particular application.
Collapse
Affiliation(s)
- Qiang Wu
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Michael Gray
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Cameron A B Smith
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Luca Bau
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Robin O Cleveland
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Constantin Coussios
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Botnar Institute for Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Yang S, Zemzemi C, Escudero DS, Vela DC, Haworth KJ, Holland CK. Histotripsy and Catheter-Directed Lytic: Efficacy in Highly Retracted Porcine Clots In Vitro. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1167-1177. [PMID: 38777639 DOI: 10.1016/j.ultrasmedbio.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Standard treatment for deep vein thrombosis (DVT) involves catheter-directed anticoagulants or thrombolytics, but the chronic thrombi present in many DVT cases are often resistant to this therapy. Histotripsy has been found to be a promising adjuvant treatment, using the mechanical action of cavitating bubble clouds to enhance thrombolytic activity. The objective of this study was to determine if histotripsy enhanced recombinant tissue plasminogen activator (rt-PA) thrombolysis in highly retracted porcine clots in vitro in a flow model of occlusive DVT. METHODS Highly retracted porcine whole blood clots were treated for 1 h with either catheter-directed saline (negative control), rt-PA (lytic control), histotripsy, DEFINITY and histotripsy or the combination of rt-PA and histotripsy with or without DEFINITY. Five-cycle, 1.5 MHz histotripsy pulses with a peak negative pressure of 33.2 MPa and pulse repetition frequency of 40 Hz were applied along the clot. B-Mode and passive cavitation images were acquired during histotripsy insonation to monitor bubble activity. RESULTS Clots subjected to histotripsy with and without rt-PA exhibited greater thrombolytic efficacy than controls (7.0% flow recovery or lower), and histotripsy with rt-PA was more efficacious than histotripsy with saline (86.1 ± 10.2% compared with 61.7 ± 19.8% flow recovery). The addition of DEFINITY to histotripsy with or without rt-PA did not enhance either thrombolytic efficacy or cavitation dose. Cavitation dose generally did not correlate with thrombolytic efficacy. CONCLUSION Enhancement of thrombolytic efficacy was achieved using histotripsy, with and without catheter-directed rt-PA, in the presence of physiologic flow. This suggests these treatments may be effective as therapy for DVT.
Collapse
Affiliation(s)
- Shumeng Yang
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA.
| | - Chadi Zemzemi
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | | | - Deborah C Vela
- Cardiovascular Pathology, Texas Heart Institute, Houston, TX, USA
| | - Kevin J Haworth
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Christy K Holland
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
9
|
Zhu H, Zeng Y, Cai X. Passive Acoustic Mapping for Convex Arrays With the Helical Wave Spectrum Method. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1923-1933. [PMID: 38198274 DOI: 10.1109/tmi.2024.3352283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Passive acoustic mapping (PAM) has emerged as a valuable imaging modality for monitoring the cavitation activity in focused ultrasound therapies. When it comes to imaging in the human abdomen, convex arrays are preferred due to their large acoustic window. However, existing PAM methods for convex arrays rely on the computationally expensive delay-and-sum (DAS) operation limiting the image reconstruction speed when the field-of-view (FOV) is large. In this work, we propose an efficient and frequency-selective PAM method for convex arrays. This method is based on projecting the helical wave spectrum (HWS) between cylindrical surfaces in the imaging field. Both the in silico and in vitro experiments showed that the HWS method has comparable image quality and similar acoustic cavitation source localization accuracy as the DAS-based methods. Compared to the frequency-domain and time-domain DAS methods, the time-complexity of the HWS method is reduced by one order and two orders of magnitude, respectively. A parallel implementation of the HWS method realized millisecond-level image reconstruction speed. We also show that the HWS method is inherently capable of mapping microbubble (MB) cavitation activity of different status, i.e., no cavitation, stable cavitation, or inertial cavitation. After compensating for the lens effects of the convex array, we further combined PAM formed by the HWS method and B-mode imaging as a real-time dual-mode imaging approach to map the anatomical location where MBs cavitate in a liver phantom experiment. This method may find use in applications where convex arrays are required for cavitation activity monitoring in real time.
Collapse
|
10
|
Suarez Escudero D, Haworth KJ, Genstler C, Holland CK. Quantifying the Effect of Acoustic Parameters on Temporal and Spatial Cavitation Activity: Gauging Cavitation Dose. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:2388-2397. [PMID: 37648590 PMCID: PMC10581030 DOI: 10.1016/j.ultrasmedbio.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVE Cavitation-enhanced delivery of therapeutic agents is under development for the treatment of cancer and neurodegenerative and cardiovascular diseases, including sonothrombolysis for deep vein thrombosis. The objective of this study was to quantify the spatial and temporal distribution of cavitation activity nucleated by Definity infused through the EKOS catheter over a range of acoustic parameters controlled by the EKOS endovascular system. METHODS Three insonation protocols were compared in an in vitro phantom mimicking venous flow to measure the effect of peak rarefactional pressure, pulse duration and pulse repetition frequency on cavitation activity energy, location and duration. Inertial and stable cavitation activity was quantified using passive cavitation imaging, and a metric of cavitation dose based on energy density was defined. RESULTS For all three insonation protocols, cavitation was sustained for the entire 30 min Definity infusion. The evolution of cavitation energy during each pulse duration was similar for all three protocols. For insonation protocols with higher peak rarefactional acoustic pressures, inertial and stable cavitation doses also increased. A complex relationship between the temporal behavior of cavitation energy within each pulse and the pulse repetition frequency affected the cavitation dose for the three insonation protocols. The relative predominance of stable or inertial cavitation dose varied according to insonation schemes. Passive cavitation images revealed the spatial distribution of cavitation activity. CONCLUSION Our cavitation dose metric based on energy density enabled the impact of different acoustic parameters on cavitation activity to be measured. Depending on the type of cavitation to be promoted or suppressed, particular pulsing schemes could be employed in future studies, for example, to correlate cavitation dose with sonothrombolytic efficacy.
Collapse
Affiliation(s)
- Daniel Suarez Escudero
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA
| | - Kevin J Haworth
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | | | - Christy K Holland
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
11
|
Telichko AV, Lee T, Jakovljevic M, Dahl JJ. Passive Cavitation Mapping by Cavitation Source Localization From Aperture-Domain Signals-Part I: Theory and Validation Through Simulations. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1184-1197. [PMID: 33141665 PMCID: PMC8486001 DOI: 10.1109/tuffc.2020.3035696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Passive cavitation mapping (PCM) algorithms for diagnostic ultrasound arrays based on time exposure acoustics (TEA) exhibit poor axial resolution, which is in part due to the diffraction-limited point spread function of the imaging system and poor rejection by the delay-and-sum beamformer. In this article, we adapt a method for speed of sound estimation to be utilized as a cavitation source localization (CSL) approach. This method utilizes a hyperbolic fit to the arrival times of the cavitation signals in the aperture domain, and the coefficients of the fit are related to the position of the cavitation source. Wavefronts exhibiting poor fit to the hyperbolic function are corrected to yield improved source localization. We demonstrate through simulations that this method is capable of accurate estimation of the origin of coherent spherical waves radiating from cavitation/point sources. The average localization error from simulated microbubble sources was 0.12 ± 0.12mm ( 0.15 ± 0.14λ0 for a 1.78-MHz transmit frequency). In simulations of two simultaneous cavitation sources, the proposed technique had an average localization error of 0.2mm ( 0.23λ0 ), whereas conventional TEA had an average localization error of 0.81mm ( 0.97λ0 ). The reconstructed PCM-CSL image showed a significant improvement in resolution compared with the PCM-TEA approach.
Collapse
|
12
|
Gray MD, Elbes D, Paverd C, Lyka E, Coviello CM, Cleveland RO, Coussios CC. Dual-Array Passive Acoustic Mapping for Cavitation Imaging With Enhanced 2-D Resolution. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:647-663. [PMID: 32845836 DOI: 10.1109/tuffc.2020.3019573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Passive acoustic mapping (PAM) techniques have been developed for the purposes of detecting, localizing, and quantifying cavitation activity during therapeutic ultrasound procedures. Implementation with conventional diagnostic ultrasound arrays has allowed planar mapping of bubble acoustic emissions to be overlaid with B-mode anatomical images, with a variety of beamforming approaches providing enhanced resolution at the cost of extended computation times. However, no passive signal processing techniques implemented to date have overcome the fundamental physical limitation of the conventional diagnostic array aperture that results in point spread functions with axial/lateral beamwidth ratios of nearly an order of magnitude. To mitigate this problem, the use of a pair of orthogonally oriented diagnostic arrays was recently proposed, with potential benefits arising from the substantially expanded range of observation angles. This article presents experiments and simulations intended to demonstrate the performance and limitations of the dual-array system concept. The key finding of this study is that source pair resolution of better than 1 mm is now possible in both dimensions of the imaging plane using a pair of 7.5-MHz center frequency conventional arrays at a distance of 7.6cm. With an eye toward accelerating computations for real-time applications, channel count reductions of up to a factor of eight induce negligible performance losses. Modest sensitivities to sound speed and relative array position uncertainties were identified, but if these can be kept on the order of 1% and 1 mm, respectively, then the proposed methods offer the potential for a step improvement in cavitation monitoring capability.
Collapse
|
13
|
Smith CAB, Coussios CC. Spatiotemporal Assessment of the Cellular Safety of Cavitation-Based Therapies by Passive Acoustic Mapping. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1235-1243. [PMID: 32111455 DOI: 10.1016/j.ultrasmedbio.2020.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/09/2019] [Accepted: 01/13/2020] [Indexed: 05/09/2023]
Abstract
Many useful therapeutic bio-effects can be generated using ultrasound-induced cavitation. However, cavitation is also capable of causing unwanted cellular and vascular damage, which should be monitored to ensure treatment safety. In this work, the unique opportunity provided by passive acoustic mapping (PAM) to quantify cavitation dose across an entire volume of interest during therapy is utilised to provide setup-independent measures of spatially localised cavitation dose. This spatiotemporally quantifiable cavitation dose is then related to the level of cellular damage generated. The cavitation-mediated destruction of equine red blood cells mixed with one of two types of cavitation nuclei at a variety of concentrations is investigated. The blood is placed within a 0.5-MHz ultrasound field and exposed to a range of peak rarefactional pressures up to 2 MPa, with 50 to 50,000 cycle pulses maintaining a 5% duty cycle. Two co-planar linear arrays at 90° to each other are used to generate 400-µm-resolution frequency domain robust capon beamforming PAM maps, which are then used to generate estimates of cavitation dose. A relationship between this cavitation dose and the levels of haemolysis generated was found which was comparable regardless of the applied acoustic pressure, pulse length, cavitation agent type or concentration used. PAM was then used to monitor cellular damage in multiple locations within a tissue phantom simultaneously, with the damage-cavitation dose relationship being similar for the two experimental models tested. These results lay the groundwork for this method to be applied to other measures of safety, allowing for improved ultrasound monitoring of cavitation-based therapies.
Collapse
Affiliation(s)
- Cameron A B Smith
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Constantin C Coussios
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
14
|
Jin Z, Zhou Y, Shen M, Wang Y, Lu F, Zhu D. Assessment of corneal viscoelasticity using elastic wave optical coherence elastography. JOURNAL OF BIOPHOTONICS 2020; 13:e201960074. [PMID: 31626371 DOI: 10.1002/jbio.201960074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/21/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
The corneal viscoelasticity have great clinical significance, such as the early diagnosis of keratoconus. In this work, an analysis method which utilized the elastic wave velocity, frequency and energy attenuation to assess the corneal viscoelasticity is presented. Using phase-resolved optical coherence tomography, the spatial-temporal displacement map is derived. The phase velocity dispersion curve and center frequency are obtained by transforming the displacement map into the wavenumber-frequency domain through the 2D fast Fourier transform (FFT). The shear modulus is calculated through Rayleigh wave equation using the phase velocity in the high frequency. The normalized energy distribution is plotted by transforming the displacement map into the spatial-frequency domain through the 1D FFT. The energy attenuation coefficient is derived by exponential fitting to calculate the viscous modulus. Different concentrations of tissue-mimicking phantoms and porcine corneas are imaged to validate this method, which demonstrates that the method has the capability to assess the corneal viscoelasticity.
Collapse
Affiliation(s)
- Zi Jin
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Yuheng Zhou
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Meixiao Shen
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Wang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Fan Lu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Dexi Zhu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
15
|
Hendley SA, Bollen V, Anthony GJ, Paul JD, Bader KB. In vitro assessment of stiffness-dependent histotripsy bubble cloud activity in gel phantoms and blood clots. Phys Med Biol 2019; 64:145019. [PMID: 31146275 DOI: 10.1088/1361-6560/ab25a6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
As a bubble-based ablative therapy, the efficacy of histotripsy has been demonstrated in healthy or acutely diseased models. Chronic conditions associated with stiff tissues may require additional bubble activity prior to histotripsy liquefaction. In this study, histotripsy pulses were generated in agarose phantoms of Young's moduli ranging from 12.3 to 142 kPa, and in vitro clot models with mild and strong platelet-activated retraction. Bubble cloud emissions were tracked with passive cavitation imaging, and the threshold acoustic power associated with phantom liquefaction was extracted with receiver operator characteristic analysis. The power of histotripsy-generated emissions and the degree of liquefaction were tabulated for both clot models. For the agarose phantoms, the acoustic power associated with liquefaction increased with Young's modulus. When grouped based on agarose concentration, only two arms displayed a significant difference in the liquefaction threshold acoustic power (22.1 kPa versus 142 kPa Young's modulus). The bubble cloud dynamics tracked with passive cavitation imaging indicated no strong changes in the bubble dynamics based on the phantom stiffness. For identical histotripsy exposure, the power of acoustic emissions and degree of clot lysis did not vary based on the clot model. Overall, these results indicate that a fixed threshold acoustic power mapped with passive cavitation imaging can be utilized for predicting histotripsy liquefaction over a wide range of tissue stiffness.
Collapse
Affiliation(s)
- Samuel A Hendley
- The University of Chicago, Chicago, IL, United States of America. 5812 S Ellis Ave, IB-016, Chicago, IL 60637, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | |
Collapse
|
16
|
Gray MD, Coussios CC. Compensation of array lens effects for improved co-registration of passive acoustic mapping and B-mode images for cavitation monitoring. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146. [PMID: 31370617 PMCID: PMC7080234 DOI: 10.1121/1.5118238#suppl] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Passive acoustic mapping (PAM) techniques offer a simple means of spatio-temporal cavitation monitoring during therapeutic ultrasound procedures. Implementation with a conventional diagnostic ultrasound system allows natural integration of PAM with B-mode imaging. However, the refracting properties of diagnostic array lenses may introduce PAM image registration errors that could lead to inaccuracies in treatment monitoring and guidance. To address these concerns, this paper presents lens characterization of two different array designs, analytical estimation of lens-induced source mapping errors in simple media, and experimental demonstration and correction of lens effects, reducing the depth-averaged image co-registration errors to no more than 0.52 mm.
Collapse
Affiliation(s)
- Michael D Gray
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, United ,
| | - Constantin C Coussios
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, United ,
| |
Collapse
|
17
|
Gray MD, Coussios CC. Compensation of array lens effects for improved co-registration of passive acoustic mapping and B-mode images for cavitation monitoring. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:EL78. [PMID: 31370617 PMCID: PMC7080234 DOI: 10.1121/1.5118238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Passive acoustic mapping (PAM) techniques offer a simple means of spatio-temporal cavitation monitoring during therapeutic ultrasound procedures. Implementation with a conventional diagnostic ultrasound system allows natural integration of PAM with B-mode imaging. However, the refracting properties of diagnostic array lenses may introduce PAM image registration errors that could lead to inaccuracies in treatment monitoring and guidance. To address these concerns, this paper presents lens characterization of two different array designs, analytical estimation of lens-induced source mapping errors in simple media, and experimental demonstration and correction of lens effects, reducing the depth-averaged image co-registration errors to no more than 0.52 mm.
Collapse
Affiliation(s)
- Michael D Gray
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, United ,
| | - Constantin C Coussios
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, United ,
| |
Collapse
|