1
|
Stevenson J, Lucas M. A miniature FUS transducer based on an acoustic Fresnel lens for integration with a surgical robot. ULTRASONICS 2025; 149:107587. [PMID: 39884107 DOI: 10.1016/j.ultras.2025.107587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
A new focussed ultrasound surgery (FUS) transducer for soft tissue ablation is proposed, with a miniaturised configuration that can be readily integrated with a surgical robot. The transducer fills a gap in FUS technology at this size, with capability for acoustic focus steering within a very simple transducer configuration. Miniaturisation is enabled by the incorporation of an acoustic Fresnel lens as the focussing element driven by a single piezoceramic disc. The transducer housing and Fresnel lens are made from photopolymer resins in a mask stereolithography (mSLA) printer and a microballoon filled epoxy backing layer is added to approximate an air backing. In this study, four versions of the miniature FUS transducer were fabricated and tested, each incorporating a different piezoceramic material: a soft PZT, a specialised composition for high intensity focused ultrasound, a low acoustic impedance porous PZT, and a lead free piezoceramic. It is shown that the FUS transducer containing the porous piezoceramic disc, which has lower piezoelectric and coupling coefficients than the other materials, achieves the highest focal zone intensity. Through finite element analysis (FEA) and experimental characterisations of the acoustic field, the FUS transducer is demonstrated to be capable of both creating and steering a focal intensity suitable for tissue ablation.
Collapse
Affiliation(s)
- Jack Stevenson
- Centre for Medical & Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - Margaret Lucas
- Centre for Medical & Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow, UK.
| |
Collapse
|
2
|
Abstract
Histotripsy is a relatively new therapeutic ultrasound technology to mechanically liquefy tissue into subcellular debris using high-amplitude focused ultrasound pulses. In contrast to conventional high-intensity focused ultrasound thermal therapy, histotripsy has specific clinical advantages: the capacity for real-time monitoring using ultrasound imaging, diminished heat sink effects resulting in lesions with sharp margins, effective removal of the treated tissue, a tissue-selective feature to preserve crucial structures, and immunostimulation. The technology is being evaluated in small and large animal models for treating cancer, thrombosis, hematomas, abscesses, and biofilms; enhancing tumor-specific immune response; and neurological applications. Histotripsy has been recently approved by the US Food and Drug Administration to treat liver tumors, with clinical trials undertaken for benign prostatic hyperplasia and renal tumors. This review outlines the physical principles of various types of histotripsy; presents major parameters of the technology and corresponding hardware and software, imaging methods, and bioeffects; and discusses the most promising preclinical and clinical applications.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA;
| | - Tatiana D Khokhlova
- Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Clifford S Cho
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Vera A Khokhlova
- Department of Acoustics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Mallay MG, Landry TG, Brown JA. An 8 mm endoscopic histotripsy array with integrated high-resolution ultrasound imaging. ULTRASONICS 2024; 139:107275. [PMID: 38508082 DOI: 10.1016/j.ultras.2024.107275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/31/2024] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
An 8 mm diameter, image-guided, annular array histotripsy transducer was fabricated and characterized. The array was laser etched on a 5 MHz, 1-3 dice and fill, PZT-5H/epoxy composite with a 45 % volume fraction. Flexible PCBs were used to electrically connect to the array elements using wirebonds. The array was backed with a low acoustic impedance epoxy mixture. A 3.6 by 3.8 mm, 64-element, 30 MHz phased array imaging probe was positioned in the center hole, to co-align the imaging plane with the bubble cloud produced by the therapy array. A custom 16-channel high voltage pulse generator was used to test the annular array for focal lengths ranging from 3- to 8-mm. An aluminum lens-focussed transducer with a 7 mm focal length was fabricated using the same piezocomposite and backing material and tested along with the histotripsy array. Simulated results from COMSOL FEM models were compared to measured results for low voltage characterization of the array and lens-focussed transducer. The measured transmit sensitivity of the array ranged from 0.113 to 0.167 MPa/V, while the lens-focussed transducer was 0.192 MPa/V. Simulated values were 0.160 to 0.174 MPa/V and 0.169 MPa/V, respectively. The measured acoustic fields showed a significantly increased depth-of-field compared the lens-focussed transducer, while the beamwidths of the array focus were comparable to the lens. The measured cavitation voltage in water was between 254 V and 498 V depending on the focal length, and 336 V for the lens-focussed transducer. The array had a lower cavitation voltage than the lens-focussed transducer for a comparable operating depth. The histotripsy array was tested in a tissue phantom and an in vivo rat brain. It was used to produce an elongated lesion in the brain by electronically steering the focal length from 3- to 8-mm axially. Real time ultrasound imaging with a Doppler overlay was used to target the tissue and monitor ablation progress, and histology confirmed the targeted tissue was fully homogenized.
Collapse
Affiliation(s)
- Matthew G Mallay
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada.
| | - Thomas G Landry
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| | - Jeremy A Brown
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada; Department of Electrical and Computer Engineering, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
4
|
Woodacre JK, Mallay M, Brown JA. Fabrication and characterization of a flat aperture Fresnel lens based histotripsy transducer. ULTRASONICS 2023; 131:106934. [PMID: 36773482 DOI: 10.1016/j.ultras.2023.106934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/10/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Two single element, 8 mm focal depth, 6 MHz PZT-5A 40% volume fraction 1-3 composite Fresnel aluminum lens based therapeutic ultrasound transducers for use in small animal histotripsy applications were built with 15 mm outer diameters - one with a central hole of 5.7 mm diameter for future co-registration and one full-aperture. The device was built with the front face filled with acoustically transparent epoxy to create a flat aperture allowing gel-coupling to tissue, where the Fresnel lens design allowed flattening of the aperture with minimal epoxy fill. Epoxy fill resulted in a 6% loss of focal pressure. The full-aperture device achieved 37 MPa/100 V peak-to-peak focal pressures with the removed center element device achieving 25 MPa/100V - a 32% reduction, which matches COMSOL simulated results. Pulsing between 190 V and 270 V at 17 cycles and 1 kHz PRF, the full-aperture device generated bubble clouds in water ranging from 0.31 mm to 0.51 mm radially, and 0.53 mm to 0.81 mm axially. Cavitation for the removed center element device was observed to begin at 370 V, and was consistent at 400 V.
Collapse
Affiliation(s)
- Jeffrey K Woodacre
- School of Biomedical Engineering, Dalhousie University, 5981 University Avenue, B3H1W2, Halifax, Canada.
| | - Matthew Mallay
- School of Biomedical Engineering, Dalhousie University, 5981 University Avenue, B3H1W2, Halifax, Canada.
| | - Jeremy A Brown
- School of Biomedical Engineering, Dalhousie University, 5981 University Avenue, B3H1W2, Halifax, Canada; School of Electrical Engineering, Dalhousie University, 1459 Oxford Street, B3H4R2, Halifax, Canada.
| |
Collapse
|
5
|
Williams RP, Simon JC, Khokhlova VA, Sapozhnikov OA, Khokhlova TD. The histotripsy spectrum: differences and similarities in techniques and instrumentation. Int J Hyperthermia 2023; 40:2233720. [PMID: 37460101 PMCID: PMC10479943 DOI: 10.1080/02656736.2023.2233720] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 07/02/2023] [Indexed: 07/20/2023] Open
Abstract
Since its inception about two decades ago, histotripsy - a non-thermal mechanical tissue ablation technique - has evolved into a spectrum of methods, each with distinct potentiating physical mechanisms: intrinsic threshold histotripsy, shock-scattering histotripsy, hybrid histotripsy, and boiling histotripsy. All methods utilize short, high-amplitude pulses of focused ultrasound delivered at a low duty cycle, and all involve excitation of violent bubble activity and acoustic streaming at the focus to fractionate tissue down to the subcellular level. The main differences are in pulse duration, which spans microseconds to milliseconds, and ultrasound waveform shape and corresponding peak acoustic pressures required to achieve the desired type of bubble activity. In addition, most types of histotripsy rely on the presence of high-amplitude shocks that develop in the pressure profile at the focus due to nonlinear propagation effects. Those requirements, in turn, dictate aspects of the instrument design, both in terms of driving electronics, transducer dimensions and intensity limitations at surface, shape (primarily, the F-number) and frequency. The combination of the optimized instrumentation and the bio-effects from bubble activity and streaming on different tissues, lead to target clinical applications for each histotripsy method. Here, the differences and similarities in the physical mechanisms and resulting bioeffects of each method are reviewed and tied to optimal instrumentation and clinical applications.
Collapse
Affiliation(s)
- Randall P Williams
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Julianna C Simon
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, PA, USA
| | - Vera A Khokhlova
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
- Department of Acoustics, Physics Faculty, Moscow State University, Moscow, Russia
| | - Oleg A Sapozhnikov
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
- Department of Acoustics, Physics Faculty, Moscow State University, Moscow, Russia
| | - Tatiana D Khokhlova
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Kim J, Menichella B, Lee H, Dayton PA, Pinton GF. A Rapid Prototyping Method for Sub-MHz Single-Element Piezoelectric Transducers by Using 3D-Printed Components. SENSORS (BASEL, SWITZERLAND) 2022; 23:s23010313. [PMID: 36616910 PMCID: PMC9823623 DOI: 10.3390/s23010313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 06/05/2023]
Abstract
We present a rapid prototyping method for sub-megahertz single-element piezoelectric transducers by using 3D-printed components. In most of the early research phases of applying new sonication ideas, the prototyping quickness is prioritized over the final packaging quality, since the quickness of preliminary demonstration is crucial for promptly determining specific aims and feasible research approaches. We aim to develop a rapid prototyping method for functional ultrasonic transducers to overcome the current long lead time (>a few weeks). Here, we used 3D-printed external housing parts considering a single matching layer and either air backing or epoxy-composite backing (acoustic impedance > 5 MRayl). By molding a single matching layer on the top surface of a piezoceramic in a 3D-printed housing, an entire packaging time was significantly reduced (<26 h) compared to the conventional methods with grinding, stacking, and bonding. We demonstrated this prototyping method for 590-kHz single-element, rectangular-aperture transducers for moderate pressure amplitudes (mechanical index > 1) at focus with temporal pulse controllability (maximum amplitude by <5-cycle burst). We adopted an air-backing design (Type A) for efficient pressure outputs, and bandwidth improvement was tested by a tungsten-composite-backing (Type B) design. The acoustic characterization results showed that the type A prototype provided 3.3 kPa/Vpp far-field transmitting sensitivity with 25.3% fractional bandwidth whereas the type B transducer showed 2.1 kPa/Vpp transmitting sensitivity with 43.3% fractional bandwidth. As this method provided discernable quickness and cost efficiency, this detailed rapid prototyping guideline can be useful for early-phase sonication projects, such as multi-element therapeutic ultrasound array and micro/nanomedicine testing benchtop device prototyping.
Collapse
|
7
|
Landry TG, Gannon J, Vlaisavljevich E, Mallay MG, Woodacre JK, Croul S, Fawcett JP, Brown JA. Endoscopic Coregistered Ultrasound Imaging and Precision Histotripsy: Initial In Vivo Evaluation. BME FRONTIERS 2022; 2022:9794321. [PMID: 37850178 PMCID: PMC10521722 DOI: 10.34133/2022/9794321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/06/2022] [Indexed: 10/19/2023] Open
Abstract
Objective. Initial performance evaluation of a system for simultaneous high-resolution ultrasound imaging and focused mechanical submillimeter histotripsy ablation in rat brains. Impact Statement. This study used a novel combination of high-resolution imaging and histotripsy in an endoscopic form. This would provide neurosurgeons with unprecedented accuracy in targeting and executing nonthermal ablations in minimally invasive surgeries. Introduction. Histotripsy is a safe and effective nonthermal focused ablation technique. However, neurosurgical applications, such as brain tumor ablation, are difficult due to the presence of the skull. Current devices are too large to use in the minimally invasive approaches surgeons prefer. We have developed a combined imaging and histotripsy endoscope to provide neurosurgeons with a new tool for this application. Methods. The histotripsy component had a 10 mm diameter, operating at 6.3 MHz. Affixed within a cutout hole in its center was a 30 MHz ultrasound imaging array. This coregistered pair was used to ablate brain tissue of anesthetized rats while imaging. Histological sections were examined, and qualitative descriptions of ablations and basic shape descriptive statistics were generated. Results. Complete ablations with submillimeter area were produced in seconds, including with a moving device. Ablation progress could be monitored in real time using power Doppler imaging, and B-mode was effective for monitoring post-ablation bleeding. Collateral damage was minimal, with a 100 μm maximum distance of cellular damage from the ablation margin. Conclusion. The results demonstrate a promising hardware suite to enable precision ablations in endoscopic procedures or fundamental preclinical research in histotripsy, neuroscience, and cancer.
Collapse
Affiliation(s)
- Thomas G. Landry
- School of Biomedical Engineering, Dalhousie University, Canada
- Division of Surgery, Nova Scotia Health Authority, Canada
| | - Jessica Gannon
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Virginia, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Virginia, USA
| | | | | | - Sidney Croul
- Department of Pathology & Laboratory Medicine, Dalhousie University, Canada
| | - James P. Fawcett
- Department of Pharmacology, Dalhousie University, Canada
- Department of Surgery, Dalhousie University, Canada
| | - Jeremy A. Brown
- School of Biomedical Engineering, Dalhousie University, Canada
- Division of Surgery, Nova Scotia Health Authority, Canada
| |
Collapse
|
8
|
Woodacre JK, Landry TG, Brown JA. Fabrication and Characterization of a 5 mm × 5 mm Aluminum Lens-Based Histotripsy Transducer. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1442-1451. [PMID: 35171768 DOI: 10.1109/tuffc.2022.3152174] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two 5 mm by 5 mm square aluminum lenses with a 6 mm depth of focus were machined and tested for histotripsy with a 40% volume fraction 1-3 PZT-5A composite and a Meggitt Pz-39 porous ceramics lapped to 315 [Formula: see text] as the piezoelectric elements. The devices were air-backed, and an 89 [Formula: see text] layer of Parylene-C was deposited on the lens, matching aluminum to water. Both devices were driven single-ended at 5.8 MHz, their optimal frequency after bonding to the lens, with ten cycles at a PRF of 1 kHz. The composite-based device showed no sign of free-field cavitation in water up to a drive level of 600 V, whereas the Pz39-based device was able to cavitate in water at a drive level of 220 V. In vivo ablation of a rat brain tissue was demonstrated through an opening in the skull and required the drive voltage be increased to 280 V. The ablation was monitored using B-mode imaging with an endoscopic 30 MHz ultrasound phased array and power Doppler overlay. Ablation was maintained for 12 s and, in the power Doppler image, the ablation zone grew steadily over this time to 1.9 mm by 3.4 mm. Immediately after treatment, the ablated area appeared anechoic, slowly filling with specular material.
Collapse
|
9
|
Mallay MG, Woodacre JK, Landry TG, Campbell NA, Brown JA. A Dual-Frequency Lens-Focused Endoscopic Histotripsy Transducer. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2906-2916. [PMID: 33961553 DOI: 10.1109/tuffc.2021.3078326] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A forward-looking miniature histotripsy transducer has been developed that incorporates an acoustic lens and dual-frequency stacked transducers. An acoustic lens is used to increase the peak negative pressure through focal gain and the dual-frequency transducers are designed to increase peak negative pressure by summing the pressure generated by each transducer individually. Four lens designs, each with an f -number of approximately 1, were evaluated in a PZT5A composite transducer. The finite-element model (FEM) predicted axial beamwidths of 1.61, 2.40, 2.84, and 2.36 mm for the resin conventional, resin Fresnel, silicone conventional, and silicone Fresnel lenses, respectively; the measured axial beamwidths were 1.30, 2.28, 2.71, and 2.11 mm, respectively. Radial beamwidths from the model were between 0.32 and 0.35 mm, while measurements agreed to within 0.2 mm. The measured peak negative was 0.150, 0.124, 0.160, and 0.160 MPa/V for the resin conventional, resin Fresnel, silicone conventional, and silicone Fresnel lenses, respectively. For the dual-frequency device, the 5-MHz (therapy) transducer had a measured peak negative pressure of 0.136 MPa/V for the PZT5A composite and 0.163 MPa/V for the PMN-PT composite. The 1.2-MHz (pump) transducer had a measured peak negative pressure of 0.028 MPa/V. The pump transducer significantly lowered the cavitation threshold of the therapy transducer. The dual-frequency device was tested on an ex vivo rat brain, ablating tissue at up to 4-mm depth, with lesion sizes as small as [Formula: see text].
Collapse
|
10
|
Stocker GE, Zhang M, Xu Z, Hall TL. Endocavity Histotripsy for Efficient Tissue Ablation-Transducer Design and Characterization. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2896-2905. [PMID: 33507869 PMCID: PMC8451243 DOI: 10.1109/tuffc.2021.3055138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A 34-mm aperture transducer was designed and tested for proof of concept to ablate tissues using an endocavity histotripsy device. Several materials and two drivers were modeled and tested to determine an effective piezoelectric-matching layer combination and driver design. The resulting transducer was fabricated using 1.5 MHz porous PZT and PerFORM 3-D printed acoustic lenses and was driven with a multicycle class-D amplifier. The lower frequency, compared to previously developed small form factor histotripsy transducers, was selected to allow for more efficient volume ablation of tissue. The transducer was characterized and tested by measuring pressure field maps in the axial and lateral planes and pressure output as a function of driving voltage. The axial and lateral full-width-half-maximums of the focus were found to be 6.1 and 1.1 mm, respectively. The transducer was estimated to generate 34.5-MPa peak negative focal pressure with a peak-to-peak driving voltage of 1345 V. Performance testing was done by ablating volumes of bovine liver tissues ( n = 3 ). The transducer was found to be capable of ablating tissues at its full working distance of 17 mm.
Collapse
|
11
|
Xu Z, Hall TL, Vlaisavljevich E, Lee FT. Histotripsy: the first noninvasive, non-ionizing, non-thermal ablation technique based on ultrasound. Int J Hyperthermia 2021; 38:561-575. [PMID: 33827375 PMCID: PMC9404673 DOI: 10.1080/02656736.2021.1905189] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/23/2021] [Accepted: 03/12/2021] [Indexed: 01/09/2023] Open
Abstract
Histotripsy is the first noninvasive, non-ionizing, and non-thermal ablation technology guided by real-time imaging. Using focused ultrasound delivered from outside the body, histotripsy mechanically destroys tissue through cavitation, rendering the target into acellular debris. The material in the histotripsy ablation zone is absorbed by the body within 1-2 months, leaving a minimal remnant scar. Histotripsy has also been shown to stimulate an immune response and induce abscopal effects in animal models, which may have positive implications for future cancer treatment. Histotripsy has been investigated for a wide range of applications in preclinical studies, including the treatment of cancer, neurological diseases, and cardiovascular diseases. Three human clinical trials have been undertaken using histotripsy for the treatment of benign prostatic hyperplasia, liver cancer, and calcified valve stenosis. This review provides a comprehensive overview of histotripsy covering the origin, mechanism, bioeffects, parameters, instruments, and the latest results on preclinical and human studies.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Timothy L. Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Eli Vlaisavljevich
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Fred T. Lee
- Departments of Radiology, Biomedical Engineering, and Urology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
12
|
Dubinsky TJ, Khokhlova TD, Khokhlova V, Schade GR. Histotripsy: The Next Generation of High-Intensity Focused Ultrasound for Focal Prostate Cancer Therapy. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 39:1057-1067. [PMID: 31830312 DOI: 10.1002/jum.15191] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/12/2019] [Accepted: 11/17/2019] [Indexed: 05/28/2023]
Abstract
This article reviews the most current methods and technological aspects of high-intensity focused ultrasound (HIFU), which is termed histotripsy. The rationale for focal therapy for prostate carcinoma rather than prostatectomy, which is being used extensively throughout Europe and Asia, is presented, and an argument for why HIFU is the modality of choice for primary therapy and recurrent disease is offered. The article presents a review of the technical advances including higher ultrasound beam energy than current thermal HIFU which allows for more accurate tissue targeting, less collateral tissue damage, and faster treatment times. Finally, the article presents a discussion about the advantage of ultrasound guidance for histotripsy in preference to magnetic resonance imaging guidance primarily based on cost, ease of application, and portability.
Collapse
Affiliation(s)
- Theodore J Dubinsky
- Department of Radiology, University of Washington, Seattle, Washington, USA
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Tanya D Khokhlova
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Gastroenterology, University of Washington, Seattle, Washington, USA
| | - Vera Khokhlova
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
- Department of Acoustics, Physics Faculty, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - George R Schade
- Department of Urology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
13
|
Kim H, Wu H, Cho N, Zhong P, Mahmood K, Lyerly HK, Jiang X. Miniaturized Intracavitary Forward-Looking Ultrasound Transducer for Tissue Ablation. IEEE Trans Biomed Eng 2019; 67:2084-2093. [PMID: 31765299 DOI: 10.1109/tbme.2019.2954524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE This paper aims to develop a miniaturized forward-looking ultrasound transducer for intracavitary tissue ablation, which can be used through an endoscopic device. The internal ultrasound (US) delivery is capable of directly interacting with the target tumor, resolving adverse issues of currently available US devices, such as unintended tissue damage and insufficient delivery of acoustic power. METHODS To transmit a high acoustic pressure from a small aperture (<3 mm), a double layer transducer (1.3 MHz) was designed and fabricated based on numerical simulations. The electric impedance and the acoustic pressure of the actual device was characterized with an impedance analyzer and a hydrophone. Ex vivo tissue ablation tests and temperature monitoring were then conducted with porcine livers. RESULTS The acoustic intensity of the transducer was 37.1 W/cm2 under 250 Vpp and 20% duty cycle. The tissue temperature was elevated to 51.8 °C with a 67 Hz pulse-repetition frequency. The temperature profile in the tissue indicated that ultrasound energy was effectively absorbed inside the tissue. During a 5-min sonification, an approximate tissue volume of 2.5 × 2.5 × 1.0 mm3 was ablated, resulting in an irreversible lesion. CONCLUSION This miniaturized US transducer is a promising medical option for the precise tissue ablation, which can reduce the risk of unintended tissue damage found in noninvasive US treatments. SIGNIFICANCE Having a small aperture (2 mm), the intracavitary device is capable of ablating a bio tissue in 5 min with a relatively low electric power (<17 W).
Collapse
|