1
|
Bader KB, Padilla F, Haworth KJ, Ellens N, Dalecki D, Miller DL, Wear KA. Overview of Therapeutic Ultrasound Applications and Safety Considerations: 2024 Update. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2025; 44:381-433. [PMID: 39526313 PMCID: PMC11796337 DOI: 10.1002/jum.16611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
A 2012 review of therapeutic ultrasound was published to educate researchers and physicians on potential applications and concerns for unintended bioeffects (doi: 10.7863/jum.2012.31.4.623). This review serves as an update to the parent article, highlighting advances in therapeutic ultrasound over the past 12 years. In addition to general mechanisms for bioeffects produced by therapeutic ultrasound, current applications, and the pre-clinical and clinical stages are outlined. An overview is provided for image guidance methods to monitor and assess treatment progress. Finally, other topics relevant for the translation of therapeutic ultrasound are discussed, including computational modeling, tissue-mimicking phantoms, and quality assurance protocols.
Collapse
Affiliation(s)
| | - Frederic Padilla
- Gene Therapy ProgramFocused Ultrasound FoundationCharlottesvilleVirginiaUSA
- Department of RadiologyUniversity of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Kevin J. Haworth
- Department of PediatricsUniversity of CincinnatiCincinnatiOhioUnited States
- Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
- Department of Biomedical EngineeringUniversity of CincinnatiCincinnatiOhioUSA
| | | | - Diane Dalecki
- Department of Biomedical EngineeringUniversity of RochesterRochesterNew YorkUSA
| | - Douglas L. Miller
- Department of RadiologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Keith A. Wear
- Center for Devices and Radiological HealthU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
2
|
Leong TW, Gao Z, David ET, Li X, Cai Q, Mwirigi JM, Zhang T, Giannotta M, Dejana E, Wiggins J, Krishnagiri S, Bachoo RM, Ge X, Price TJ, Qin Z. Spatially Precise and Minimally Invasive Delivery of Peptides to the Spinal Cord for Behavior Modulation. ACS NANO 2024; 18:34720-34729. [PMID: 39655357 DOI: 10.1021/acsnano.4c06030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The blood-spinal cord barrier (BSCB) tightly regulates the transport of molecules from the blood to the spinal cord. Herein, we present an approach for transient modulation of BSCB permeability and localized delivery of peptides into the spinal cord for behavior modulation with high spatial resolution. This approach utilizes optical stimulation of vasculature-targeted nanoparticles and allows delivery of BSCB-impermeable molecules into the spinal cord without significant glial activation or impact on animal locomotor behavior. We demonstrate minimally invasive light delivery into the spinal cord using an optical fiber and BSCB permeability modulation in the lumbar region. Our method of BSCB modulation allows the delivery of bombesin, a centrally acting and itch-inducing peptide, into the spinal cord and induces a rapid and transient increase in itching behaviors in mice. This minimally invasive approach enables behavior modulation without genetic modifications and is promising for delivering a wide range of biologics into the spinal cord for potential therapy with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Tiffany W Leong
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Zhenghong Gao
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Eric T David
- Department of Neuroscience, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Xiaoqing Li
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Qi Cai
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Juliet M Mwirigi
- Department of Neuroscience, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Tingting Zhang
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Monica Giannotta
- FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy
| | - Elisabetta Dejana
- FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy
| | - John Wiggins
- Department of Neuroscience, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Sharada Krishnagiri
- Department of Neuroscience, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Robert M Bachoo
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Xiaoqian Ge
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Theodore J Price
- Department of Neuroscience, University of Texas at Dallas, Richardson, Texas 75080, United States
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Zhenpeng Qin
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
3
|
Martin D, Xu R, Dressler M, O'Reilly MA. Ex vivovalidation of non-invasive phase correction for transspine focused ultrasound: model performance and target feasibility. Phys Med Biol 2024; 69:235001. [PMID: 39509818 DOI: 10.1088/1361-6560/ad8fed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024]
Abstract
Objective.To evaluate the feasibility of transspine focused ultrasound using simulation-based phase corrections from a CT-derived ray acoustics model.Approach.Bilateral transspine focusing was performed inex vivohuman vertebrae with a spine-specific ultrasound array. Ray acoustics-derived phase correction was compared to geometric focusing and a hydrophone-corrected gold standard. Planar hydrophone scans were recorded in the spinal canal and three metrics were calculated: target pressure, coronal and sagittal focal shift, and coronal and sagittal Sørensen-Dice similarity to the free-field.Post hocanalysis was performedin silicoto assess the impact of windows between vertebrae on focal shift.Main results.Hydrophone correction reduced mean sagittal plane shift from 1.74 ± 0.82 mm to 1.40 ± 0.82 mm and mean coronal plane shift from 1.07 ± 0.63 mm to 0.54 ± 0.49 mm. Ray acoustics correction reduced mean sagittal plane and coronal plane shift to 1.63 ± 0.83 mm and 0.83 ± 0.60 mm, respectively. Hydrophone correction increased mean sagittal similarity from 0.48 ± 0.22 to 0.68 ± 0.19 and mean coronal similarity from 0.48 ± 0.23 to 0.70 ± 0.19. Ray acoustics correction increased mean sagittal and coronal similarity to 0.53 ± 0.25 and 0.55 ± 0.26, respectively. Target pressure was relatively unchanged across beamforming methods.In silicoanalysis found that, for some targets, unoccluded paths may have increased focal shift.Significance. Gold standard phase correction significantly reduced coronal shift and significantly increased sagittal and coronal Sørensen-Dice similarity (p< 0.05). Ray acoustics-derived phase correction reduced sagittal and coronal shift and increased sagittal and coronal similarity but did not achieve statistical significance. Across beamforming methods, mean focal shift was comparable to MRI resolution, suggesting that transspine focusing is possible with minimal correction in favourable targets. Future work will explore the mitigation of acoustic windows with anti-focus control points.
Collapse
Affiliation(s)
- David Martin
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, 101 College Street Suite 15-701, Toronto, ON M5G 1L7, Canada
| | - Rui Xu
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, 101 College Street Suite 15-701, Toronto, ON M5G 1L7, Canada
| | - Max Dressler
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Meaghan A O'Reilly
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, 101 College Street Suite 15-701, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
4
|
Xu R, Bestmann S, Treeby BE, Martin E. Strategies and safety simulations for ultrasonic cervical spinal cord neuromodulation. Phys Med Biol 2024; 69:125011. [PMID: 38788727 DOI: 10.1088/1361-6560/ad506f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/24/2024] [Indexed: 05/26/2024]
Abstract
Objective. Focused ultrasound spinal cord neuromodulation has been demonstrated in small animals. However, most of the tested neuromodulatory exposures are similar in intensity and exposure duration to the reported small animal threshold for possible spinal cord damage. All efforts must be made to minimize the risk and assure the safety of potential human studies, while maximizing potential treatment efficacy. This requires an understanding of ultrasound propagation and heat deposition within the human spine.Approach. Combined acoustic and thermal modelling was used to assess the pressure and heat distributions produced by a 500 kHz source focused to the C5/C6 level via two approaches (a) the posterior acoustic window between vertebral posterior arches, and (b) the lateral intervertebral foramen from which the C6 spinal nerve exits. Pulse trains of fifty 0.1 s pulses (pulse repetition frequency: 0.33 Hz, free-field spatial peak pulse-averaged intensity: 10 W cm-2) were simulated for four subjects and for ±10 mm translational and ±10∘rotational source positioning errors.Main results.Target pressures ranged between 20%-70% of free-field spatial peak pressures with the posterior approach, and 20%-100% with the lateral approach. When the posterior source was optimally positioned, peak spine heating values were below 1 ∘C, but source mispositioning resulted in bone heating up to 4 ∘C. Heating with the lateral approach did not exceed 2 ∘C within the mispositioning range. There were substantial inter-subject differences in target pressures and peak heating values. Target pressure varied three to four-fold between subjects, depending on approach, while peak heating varied approximately two-fold between subjects. This results in a nearly ten-fold range between subjects in the target pressure achieved per degree of maximum heating.Significance. This study highlights the utility of trans-spine ultrasound simulation software and need for precise source-anatomy positioning to assure the subject-specific safety and efficacy of focused ultrasound spinal cord therapies.
Collapse
Affiliation(s)
- Rui Xu
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, United Kingdom
| | - Sven Bestmann
- Department of Clinical and Movement Neuroscience, University College London, London, United Kingdom
| | - Bradley E Treeby
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Eleanor Martin
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, United Kingdom
| |
Collapse
|
5
|
Song W, Jayaprakash N, Saleknezhad N, Puleo C, Al-Abed Y, Martin JH, Zanos S. Transspinal Focused Ultrasound Suppresses Spinal Reflexes in Healthy Rats. Neuromodulation 2024; 27:614-624. [PMID: 37530695 DOI: 10.1016/j.neurom.2023.04.476] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVES Low-intensity, focused ultrasound (FUS) is an emerging noninvasive neuromodulation approach, with improved spatial and temporal resolution and penetration depth compared to other noninvasive electrical stimulation strategies. FUS has been used to modulate circuits in the brain and the peripheral nervous system, however, its potential to modulate spinal circuits is unclear. In this study, we assessed the effect of trans-spinal FUS (tsFUS) on spinal reflexes in healthy rats. MATERIALS AND METHODS tsFUS targeting different spinal segments was delivered for 1 minute, under anesthesia. Monosynaptic H-reflex of the sciatic nerve, polysynaptic flexor reflex of the sural nerve, and withdrawal reflex tested with a hot plate were measured before, during, and after tsFUS. RESULTS tsFUS reversibly suppresses the H-reflex in a spinal segment-, acoustic pressure- and pulse-repetition frequency (PRF)-dependent manner. tsFUS with high PRF augments the degree of homosynaptic depression of the H-reflex observed with paired stimuli. It suppresses the windup of components of the flexor reflex associated with slower, C-afferent, but not faster, A- afferent fibers. Finally, it increases the latency of the withdrawal reflex. tsFUS does not elicit neuronal loss in the spinal cord. CONCLUSIONS Our study provides evidence that tsFUS reversibly suppresses spinal reflexes and suggests that tsFUS could be a safe and effective strategy for spinal cord neuromodulation in disorders associated with hyperreflexia, including spasticity after spinal cord injury and painful syndromes.
Collapse
Affiliation(s)
- Weiguo Song
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Naveen Jayaprakash
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Nafiseh Saleknezhad
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Chris Puleo
- General Electric Research, Niskayuna, NY, USA
| | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - John H Martin
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA; Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY.
| |
Collapse
|
6
|
Perolina E, Meissner S, Raos B, Harland B, Thakur S, Svirskis D. Translating ultrasound-mediated drug delivery technologies for CNS applications. Adv Drug Deliv Rev 2024; 208:115274. [PMID: 38452815 DOI: 10.1016/j.addr.2024.115274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/18/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Ultrasound enhances drug delivery into the central nervous system (CNS) by opening barriers between the blood and CNS and by triggering release of drugs from carriers. A key challenge in translating setups from in vitro to in vivo settings is achieving equivalent acoustic energy delivery. Multiple devices have now been demonstrated to focus ultrasound to the brain, with concepts emerging to also target the spinal cord. Clinical trials to date have used ultrasound to facilitate the opening of the blood-brain barrier. While most have focused on feasibility and safety considerations, therapeutic benefits are beginning to emerge. To advance translation of these technologies for CNS applications, researchers should standardise exposure protocol and fine-tune ultrasound parameters. Computational modelling should be increasingly used as a core component to develop both in vitro and in vivo setups for delivering accurate and reproducible ultrasound to the CNS. This field holds promise for transformative advancements in the management and pharmacological treatment of complex and challenging CNS disorders.
Collapse
Affiliation(s)
- Ederlyn Perolina
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Svenja Meissner
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Brad Raos
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Bruce Harland
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Sachin Thakur
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand.
| |
Collapse
|
7
|
Xu R, Treeby BE, Martin E. Safety Review of Therapeutic Ultrasound for Spinal Cord Neuromodulation and Blood-Spinal Cord Barrier Opening. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:317-331. [PMID: 38182491 DOI: 10.1016/j.ultrasmedbio.2023.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 01/07/2024]
Abstract
New focused ultrasound spinal cord applications have emerged, particularly those improving therapeutic agent delivery to the spinal cord via blood-spinal cord barrier opening and the neuromodulation of spinal cord tracts. One hurdle in the development of these applications is safety. It may be possible to use safety trends from seminal and subsequent works in focused ultrasound to guide the development of safety guidelines for spinal cord applications. We collated data from decades of pre-clinical studies and illustrate a clear relationship between damage, time-averaged spatial peak intensity and exposure duration. This relationship suggests a thermal mechanism underlies ultrasound-induced spinal cord damage. We developed minimum and mean thresholds for damage from these pre-clinical studies. When these thresholds were plotted against the parameters used in recent pre-clinical ultrasonic spinal cord neuromodulation studies, the majority of the neuromodulation studies were near or above the minimum threshold. This suggests that a thermal neuromodulatory effect may exist for ultrasonic spinal cord neuromodulation, and that the thermal dose must be carefully controlled to avoid damage to the spinal cord. By contrast, the intensity-exposure duration threshold had no predictive value when applied to blood-spinal cord barrier opening studies that employed injected contrast agents. Most blood-spinal cord barrier opening studies observed slight to severe damage, except for small animal studies that employed an active feedback control method to limit pressures based on measured bubble oscillation behavior. The development of new focused ultrasound spinal cord applications perhaps reflects the recent success in the development of focused ultrasound brain applications, and recent work has begun on the translation of these technologies from brain to spinal cord. However, a great deal of work remains to be done, particularly with respect to developing and accepting safety standards for these applications.
Collapse
Affiliation(s)
- Rui Xu
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
| | - Bradley E Treeby
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Eleanor Martin
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
8
|
Frizado AP, O'Reilly MA. A numerical investigation of passive acoustic mapping for monitoring bubble-mediated focused ultrasound treatment of the spinal cord. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:2271. [PMID: 37092915 DOI: 10.1121/10.0017836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
Focused ultrasound (FUS) combined with intravenous microbubbles (MBs) has been shown to increase drug delivery to the spinal cord in animal models. Eventual clinical translation of such a technique in the sensitive spinal cord requires robust treatment monitoring to ensure efficacy, localization, safety, and provide key intraprocedural feedback. Here, the use of passive acoustic mapping (PAM) of MB emissions with a spine-specific detector array in the context of transvertebral FUS sonications is investigated in silico. Using computed tomography-derived human vertebral geometry, transvertebral detection of MBs is evaluated over varying source locations with and without phase and amplitude corrections (PACs). The impact of prefocal cavitation is studied by simulating concurrent cavitation events in the canal and pre-laminar region. Spatially sensitive application of phase and amplitude is used to balance signal strengths emanating from different axial depths in combination with multiple dynamic ranges to elicit multisource viewing. Collectively, the results of this study encourage the use of PAM in transvertebral FUS applications with PACs to not only localize sources originating in the spinal canal but also multiple sources of innate amplitude mismatches when corrective methods are applied.
Collapse
Affiliation(s)
- Andrew Paul Frizado
- Department of Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Meaghan Anne O'Reilly
- Department of Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| |
Collapse
|
9
|
Alarcan H, Al Ojaimi Y, Lanznaster D, Escoffre JM, Corcia P, Vourc'h P, Andres CR, Veyrat-Durebex C, Blasco H. Taking Advantages of Blood–Brain or Spinal Cord Barrier Alterations or Restoring Them to Optimize Therapy in ALS? J Pers Med 2022; 12:jpm12071071. [PMID: 35887567 PMCID: PMC9319288 DOI: 10.3390/jpm12071071] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder that still lacks an efficient therapy. The barriers between the central nervous system (CNS) and the blood represent a major limiting factor to the development of drugs for CNS diseases, including ALS. Alterations of the blood–brain barrier (BBB) or blood–spinal cord barrier (BSCB) have been reported in this disease but still require further investigations. Interestingly, these alterations might be involved in the complex etiology and pathogenesis of ALS. Moreover, they can have potential consequences on the diffusion of candidate drugs across the brain. The development of techniques to bypass these barriers is continuously evolving and might open the door for personalized medical approaches. Therefore, identifying robust and non-invasive markers of BBB and BSCB alterations can help distinguish different subgroups of patients, such as those in whom barrier disruption can negatively affect the delivery of drugs to their CNS targets. The restoration of CNS barriers using innovative therapies could consequently present the advantage of both alleviating the disease progression and optimizing the safety and efficiency of ALS-specific therapies.
Collapse
Affiliation(s)
- Hugo Alarcan
- Laboratoire de Biochimie et Biologie Moleculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Yara Al Ojaimi
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Debora Lanznaster
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Jean-Michel Escoffre
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Philippe Corcia
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
- Service de Neurologie, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
| | - Patrick Vourc'h
- Laboratoire de Biochimie et Biologie Moleculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Christian R Andres
- Laboratoire de Biochimie et Biologie Moleculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Charlotte Veyrat-Durebex
- Laboratoire de Biochimie et Biologie Moleculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Hélène Blasco
- Laboratoire de Biochimie et Biologie Moleculaire, CHRU Bretonneau, 2 Boulevard Tonnellé, 37000 Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37000 Tours, France
| |
Collapse
|
10
|
Xu R, O'Reilly MA. Establishing density-dependent longitudinal sound speed in the vertebral lamina. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:1516. [PMID: 35364923 DOI: 10.1121/10.0009316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Focused ultrasound treatments of the spinal cord may be facilitated using a phased array transducer and beamforming to correct spine-induced focal aberrations. Simulations can non-invasively calculate aberration corrections using x-ray computed tomography (CT) data that are correlated to density (ρ) and longitudinal sound speed (cL). We aimed to optimize vertebral lamina-specific cL(ρ) functions at a physiological temperature (37 °C) to maximize time domain simulation accuracy. Odd-numbered ex vivo human thoracic vertebrae were imaged with a clinical CT-scanner (0.511 × 0.511 × 0.5 mm), then sonicated with a transducer (514 kHz) focused on the canal via the vertebral lamina. Vertebra-induced signal time shifts were extracted from pressure waveforms recorded within the canals. Measurements were repeated 5× per vertebra, with 2.5 mm vertical vertebra shifts between measurements. Linear functions relating cL with CT-derived density were optimized. The optimized function was cL(ρ)=0.35(ρ-ρw)+ cL,w m/s, where w denotes water, giving the tested laminae a mean bulk density of 1600 ± 30 kg/m3 and a mean bulk cL of 1670 ± 60 m/s. The optimized lamina cL(ρ) function was accurate to λ/16 when implemented in a multi-layered ray acoustics model. This modelling accuracy will improve trans-spine ultrasound beamforming.
Collapse
Affiliation(s)
- Rui Xu
- Department of Medical Biophysics, University of Toronto, 101 College Street, Suite 15-701, Toronto, Ontario, M5G 1L7, Canada
| | - Meaghan A O'Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| |
Collapse
|
11
|
Cross CG, Payne AH, Hawryluk GW, Haag-Roeger R, Cheeniyil R, Brady D, Odéen H, Minoshima S, Cross DJ, Anzai Y. Technical Note: Quantification of blood-spinal cord barrier permeability after application of magnetic resonance-guided focused ultrasound in spinal cord injury. Med Phys 2021; 48:4395-4401. [PMID: 33999427 DOI: 10.1002/mp.14947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
PURPOSE To demonstrate that magnetic resonance-guided focused ultrasound (MRgFUS) facilitates blood-spinal cord barrier (BSCB) permeability and develop observer-independent MRI quantification of BSCB permeability after MRgFUS for spinal cord injury (SCI). METHODS Noninjured Sprague-Dawley rats (n = 3) underwent MRgFUS and were administered Evans blue post-MRgFUS to confirm BSCB opening. Absorbance was measured by spectrophotometry and correlated with its corresponding image intensity. Rats (n = 21) underwent T8-T10 laminectomy and extradural compression of the spinal cord (23g weighted aneurysm-type clip, 1 min). The intervention group (n = 11) was placed on a preclinical MRgFUS system, administered microbubbles (Optison, 0.2 mL/kg), and received 3 MRgFUS sonications (25 ms bursts, 1 Hz pulses for 3 min, 3 acoustic W, approximately 1.0-2.1 MPa peak pressure as measured via hydrophone). The sham group (n = 10) received equivalent procedures with no sonications. T1w MRI was obtained both pre- and post-MRgFUS BSCB opening. Spinal cords were segmented manually or semiautomatically and a Pearson correlation with P ≤ 0.001 was used to correlate the two segmentation methods. MRgFUS sonication and control regions intensity values were evaluated with a paired t-test with a P ≤ 0.01. RESULTS Semiautomatic segmentation reduced computational time by 95% and was correlated with manual segmentation (Pearson = 0.92, P < 0.001, n = 71 regions). In the noninjured rat group, Evans blue absorbance correlated with image intensity in the MRgFUS and control regions (Pearson = 0.82, P = 0.02, n = 6). In rats that underwent the SCI procedure, an increase in signal intensity in the MRgFUS targeted region relative to control was seen in all SCI rats (10.65 ± 12.4%, range: 0.96-43.9%, n = 11, P = 0.002). SCI sham MRgFUS revealed no change (0.63 ± 0.52%, 95% CI 0.320.95, n = 10). This result was significant between both groups (P = 0.003). CONCLUSION The implemented semiautomatic segmentation procedure improved data analysis efficiency. Quantitative methods using contrast-enhanced MRI with histological validation are sensitive for detection of blood-spinal cord barrier opening induced by magnetic resonance-guided focused ultrasound.
Collapse
Affiliation(s)
- Chloe G Cross
- School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Allison H Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | | | - Riley Haag-Roeger
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Rahul Cheeniyil
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Dalton Brady
- School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Satoshi Minoshima
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Donna J Cross
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Yoshimi Anzai
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
12
|
Fletcher SMP, Choi M, Ramesh R, O'Reilly MA. Focused Ultrasound-Induced Blood-Spinal Cord Barrier Opening Using Short-Burst Phase-Keying Exposures in Rats: A Parameter Study. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1747-1760. [PMID: 33879388 DOI: 10.1016/j.ultrasmedbio.2021.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Transient opening of the blood-spinal cord barrier has the potential to improve drug delivery options to the spinal cord. We previously developed short-burst phase-keying exposures to reduce focal depth of field and mitigate standing waves in the spinal canal. However, optimal short-burst phase-keying parameters for drug delivery have not been identified. Here, the effects of pressure, treatment duration, pulse length, burst repetition frequency and burst length on resulting tissue effects were investigated. Increased in situ pressures (0.23-0.33 MPa) led to increased post-treatment T1-weighted contrast enhancement in magnetic resonance imaging (p = 0.015). Increased treatment duration (120 vs. 300 s) led to increased enhancement, but without statistical significance (p = 0.056). Increased burst repetition frequency (20 vs. 40 kHz) yielded a non-significant increase in enhancement (p = 0.064) but corresponded with increased damage observed on histology. No difference was observed in enhancement between pulse lengths of 2 and 10 ms (p = 0.912), corresponding with a sharp drop in the recorded second harmonic signal during the first 2 ms of the pulse. Increasing the burst length from two to five cycles (514 kHz) led to increased enhancement (p = 0.014). Results indicate that increasing the burst length may be the most effective method to enhance drug delivery. Additionally, shorter pulse lengths may allow more interleaved targets, and therefore a larger treatment volume, within one sonication.
Collapse
Affiliation(s)
- Stecia-Marie P Fletcher
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Min Choi
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Ranjith Ramesh
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Meaghan A O'Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Characterization of ultrasound-mediated delivery of trastuzumab to normal and pathologic spinal cord tissue. Sci Rep 2021; 11:4412. [PMID: 33627726 PMCID: PMC7904756 DOI: 10.1038/s41598-021-83874-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/08/2021] [Indexed: 01/31/2023] Open
Abstract
Extensive studies on focused ultrasound (FUS)-mediated drug delivery through the blood-brain barrier have been published, yet little work has been published on FUS-mediated drug delivery through the blood-spinal cord barrier (BSCB). This work aims to quantify the delivery of the monoclonal antibody trastuzumab to rat spinal cord tissue and characterize its distribution within a model of leptomeningeal metastases. 10 healthy Sprague-Dawley rats were treated with FUS + trastuzumab and sacrificed at 2-h or 24-h post-FUS. A human IgG ELISA (Abcam) was used to measure trastuzumab concentration and a 12 ± fivefold increase was seen in treated tissue over control tissue at 2 h versus no increase at 24 h. Three athymic nude rats were inoculated with MDA-MB-231-H2N HER2 + breast cancer cells between the meninges in the thoracic region of the spinal cord and treated with FUS + trastuzumab. Immunohistochemistry was performed to visualize trastuzumab delivery, and semi-quantitative analysis revealed similar or more intense staining in tumor tissue compared to healthy tissue suggesting a comparable or greater concentration of trastuzumab was achieved. FUS can increase the permeability of the BSCB, improving drug delivery to specifically targeted regions of healthy and pathologic tissue in the spinal cord. The achieved concentrations within the healthy tissue are comparable to those reported in the brain.
Collapse
|
14
|
Fletcher SMP, Choi M, Ogrodnik N, O'Reilly MA. A Porcine Model of Transvertebral Ultrasound and Microbubble-Mediated Blood-Spinal Cord Barrier Opening. Am J Cancer Res 2020; 10:7758-7774. [PMID: 32685018 PMCID: PMC7359082 DOI: 10.7150/thno.46821] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/05/2020] [Indexed: 12/17/2022] Open
Abstract
Blood-spinal cord barrier opening, using focused ultrasound and microbubbles, has the potential to improve drug delivery for the treatment of spinal cord pathologies. Delivering and detecting ultrasound through the spine is a challenge for clinical translation. We have previously developed short burst, phase keying exposures, which can be used in a dual-aperture configuration to address clinical scale targeting challenges. Here we demonstrate the use of these pulses for blood-spinal cord barrier opening, in vivo in pigs. Methods: The spinal cords of Yorkshire pigs (n=8) were targeted through the vertebral laminae, in the lower thoracic to upper lumbar region using focused ultrasound (486 kHz) and microbubbles. Four animals were treated with a combination of pulsed sinusoidal exposures (1.0-4.0 MPa, non-derated) and pulsed short burst, phase keying exposures (1.0-2.0 MPa, non-derated). Four animals were treated using ramped short burst, phase keying exposures (1.8-2.1 MPa, non-derated). A 250 kHz narrowband receiver was used to detect acoustic emissions from microbubbles. Blood-spinal cord barrier opening was assessed by the extravasation of Evans blue dye. Histological analysis of the spinal cords was used to assess tissue damage and excised vertebral samples were used in benchtop experiments. Results: Ramped short burst, phase keying exposures successfully modified the blood-spinal cord barrier at 16/24 targeted locations, as assessed by the extravasation of Evans blue dye. At 4 of these locations, opening was confirmed with minimal adverse effects observed through histology. Transmission measurements through excised vertebrae indicated a mean transmission of (47.0 ± 7.0 %) to the target. Conclusions: This study presents the first evidence of focused ultrasound-induced blood-spinal cord barrier opening in a large animal model, through the intact spine. This represents an important step towards clinical translation.
Collapse
|
15
|
Kooiman K, Roovers S, Langeveld SAG, Kleven RT, Dewitte H, O'Reilly MA, Escoffre JM, Bouakaz A, Verweij MD, Hynynen K, Lentacker I, Stride E, Holland CK. Ultrasound-Responsive Cavitation Nuclei for Therapy and Drug Delivery. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1296-1325. [PMID: 32165014 PMCID: PMC7189181 DOI: 10.1016/j.ultrasmedbio.2020.01.002] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 05/03/2023]
Abstract
Therapeutic ultrasound strategies that harness the mechanical activity of cavitation nuclei for beneficial tissue bio-effects are actively under development. The mechanical oscillations of circulating microbubbles, the most widely investigated cavitation nuclei, which may also encapsulate or shield a therapeutic agent in the bloodstream, trigger and promote localized uptake. Oscillating microbubbles can create stresses either on nearby tissue or in surrounding fluid to enhance drug penetration and efficacy in the brain, spinal cord, vasculature, immune system, biofilm or tumors. This review summarizes recent investigations that have elucidated interactions of ultrasound and cavitation nuclei with cells, the treatment of tumors, immunotherapy, the blood-brain and blood-spinal cord barriers, sonothrombolysis, cardiovascular drug delivery and sonobactericide. In particular, an overview of salient ultrasound features, drug delivery vehicles, therapeutic transport routes and pre-clinical and clinical studies is provided. Successful implementation of ultrasound and cavitation nuclei-mediated drug delivery has the potential to change the way drugs are administered systemically, resulting in more effective therapeutics and less-invasive treatments.
Collapse
Affiliation(s)
- Klazina Kooiman
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Silke Roovers
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Simone A G Langeveld
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert T Kleven
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Heleen Dewitte
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Laboratory for Molecular and Cellular Therapy, Medical School of the Vrije Universiteit Brussel, Jette, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Meaghan A O'Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Martin D Verweij
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Christy K Holland
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA; Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
16
|
Zhou Y. The Effects of Phase-Modulated Excitation on the Focused Acoustic Field. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:727-734. [PMID: 31794390 DOI: 10.1109/tuffc.2019.2955453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Various modulation approaches, such as amplitude and frequency modulations, have been applied widely to modify the acoustic field and improve the performance of ultrasound imaging and therapy. However, phase modulation (PM) has not been investigated extensively in the ultrasound applications, especially at a long-pulse duration. In this study, the effects of PM on the acoustic field were investigated. The radiated acoustic pressure waveforms produced using different PM strategies (i.e., sequential phase inversion every cycle, every two cycles, and random phase inversion) were explored, and the distributions of acoustic pressure and average acoustic intensity along and transverse to the transducer axis were compared with those of a sinusoidal wave excitation in both measurement and simulation. It is found that the phase inversion between the modulated signals is not clearly seen in the radiated waveform because of the limited fractional bandwidth of the therapeutic ultrasound transducer. As a result, the radiated waveform has a higher oscillating frequency, and the pressure at the focus and the -6-dB beam size are decreased. Both simulation and measurement show similar trends. Furthermore, produced acoustic fields of the phased array using these PM strategies were also simulated at the varied lateral and axial focus shifting distances. The magnitude and beam size of both the main lobe and grating lobe are found between them, especially at the large focus shifting. In summary, the acoustic field is dependent on the PM, and the appropriate excitation scheme could improve the ultrasound application.
Collapse
|
17
|
Xu R, O'Reilly MA. A Spine-Specific Phased Array for Transvertebral Ultrasound Therapy: Design and Simulation. IEEE Trans Biomed Eng 2020; 67:256-267. [DOI: 10.1109/tbme.2019.2912146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Abrahao A, Meng Y, Llinas M, Huang Y, Hamani C, Mainprize T, Aubert I, Heyn C, Black SE, Hynynen K, Lipsman N, Zinman L. First-in-human trial of blood-brain barrier opening in amyotrophic lateral sclerosis using MR-guided focused ultrasound. Nat Commun 2019; 10:4373. [PMID: 31558719 PMCID: PMC6763482 DOI: 10.1038/s41467-019-12426-9] [Citation(s) in RCA: 316] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 09/06/2019] [Indexed: 12/17/2022] Open
Abstract
MR-guided focused ultrasound (MRgFUS) is an emerging technology that can accurately and transiently permeabilize the blood-brain barrier (BBB) for targeted drug delivery to the central nervous system. We conducted a single-arm, first-in-human trial to investigate the safety and feasibility of MRgFUS-induced BBB opening in eloquent primary motor cortex in four volunteers with amyotrophic lateral sclerosis (ALS). Here, we show successful BBB opening using MRgFUS as demonstrated by gadolinium leakage at the target site immediately after sonication in all subjects, which normalized 24 hours later. The procedure was well-tolerated with no serious clinical, radiologic or electroencephalographic adverse events. This study demonstrates that non-invasive BBB permeabilization over the motor cortex using MRgFUS is safe, feasible, and reversible in ALS subjects. In future, MRgFUS can be coupled with promising therapeutics providing a targeted delivery platform in ALS.
Collapse
Affiliation(s)
- Agessandro Abrahao
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada. .,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada. .,Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada.
| | - Ying Meng
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada.,Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada.,Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada
| | - Maheleth Llinas
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada.,Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada
| | - Yuexi Huang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada
| | - Clement Hamani
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada.,Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada.,Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada
| | - Todd Mainprize
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada
| | - Isabelle Aubert
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 3H7, Canada
| | - Chinthaka Heyn
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada.,Odette Cancer Research, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada
| | - Sandra E Black
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada.,Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3H7, Canada
| | - Kullervo Hynynen
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada.,Odette Cancer Research, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3H7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, M5S 3H7, Canada
| | - Nir Lipsman
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada.,Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada.,Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada
| | - Lorne Zinman
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada
| |
Collapse
|
19
|
Fletcher SMP, Ogrodnik N, O'Reilly MA. Enhanced Detection of Bubble Emissions Through the Intact Spine for Monitoring Ultrasound-Mediated Blood-Spinal Cord Barrier Opening. IEEE Trans Biomed Eng 2019; 67:1387-1396. [PMID: 31442968 DOI: 10.1109/tbme.2019.2936972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE We previously developed short burst, phase keying (SBPK) focused ultrasound (FUS) to mitigate standing waves in the human vertebral canal. Here, we show microbubble emissions from these pulses can be detected through the human vertebral arch and that these pulses are effective for blood-spinal cord barrier (BSCB) opening. METHODS At f0 = 514 kHz, circulating microbubbles were sonicated through ex vivo human vertebrae (60 kPa-1 MPa) using a dual-aperture approach and SBPK exposures engineered to incorporate pulse inversion (PI). Signals from a 250 kHz receiver were analyzed using PI, short-time Fourier analysis and the maximum projection over the pulse train. In rats (n = 14), SBPK FUS+microbubbles was applied to 3 locations/spinal cord at fixed pressures (∼0.20-0.47 MPa). MRI and histology were used to assess opening and tissue damage. RESULTS In human vertebrae between 0.2-0.4 MPa, PI amplified the microbubble/baseline ratio at f0/2 and 2f0 by 202 ± 40% (132-291%). This was maximal at 0.4 MPa, coinciding with the onset of broadband emissions. In vivo, opening was achieved at 40/42 locations, with mean MRI enhancement of 46 ± 32%(16%-178%). Using PI, f0/2 was detected at 14/40 opening locations. At the highest pressures (f0/2 present) histology showed widespread bleeding throughout the focal region. At the lowest pressures, opening was achieved without bleeding. CONCLUSION This study confirmed that PI can increase sensitivity to transvertebral detection of microbubble signals. Preliminary in vivo investigations show that SBPK FUS can increase BSCB permeability without tissue damage. SIGNIFICANCE SBPK is a clinically relevant pulse scheme and, in combination with PI, provides a means of mediating and monitoring BSCB opening noninvasively.
Collapse
|