1
|
Mougharbel M, Poree J, Lee SA, Xing P, Wu A, Tardif JC, Provost J. A unified framework combining coherent compounding, harmonic imaging and angular coherence for simultaneous high-quality B-mode and tissue Doppler in ultrafast echocardiography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; PP:141-152. [PMID: 40030463 DOI: 10.1109/tuffc.2024.3505060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Various methods have been proposed to enhance image quality in ultrafast ultrasound. Coherent compounding can improve image quality using multiple steered diverging transmits when motion occurring between transmits is corrected for. Harmonic imaging, a standard technique in conventional focused echocardiography, has been adapted for ultrafast imaging, reducing clutter. Coherence-based approaches have also been shown to increase contrast in clinical settings by enhancing signals from coherent echoes and reducing clutter. Herein, we introduce a simple, unified framework that combines motion-correction, harmonic imaging, and angular-coherence, showing for the first time that their benefits can be combined in real-time. Validation was conducted through in vitro testing on a spinning disk model and in vivo on 4 volunteers. In vitro results confirmed the unified framework capability to achieve high contrast in large-motion contexts up to 17 cm/s. In vivo testing highlighted proficiency in generating images of high quality during low and high tissue velocity phases of the cardiac cycle. Specifically, during ventricular filling, the unified framework increased the gCNR from 0.47 to 0.87 when compared against coherent compounding.
Collapse
|
2
|
Hoving AM, Mikhal J, Kuipers H, de Borst GJ, Slump CH. Development of an in vitro setup for flow studies in a stented carotid artery bifurcation. Med Biol Eng Comput 2024; 62:1165-1176. [PMID: 38155315 DOI: 10.1007/s11517-023-02977-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023]
Abstract
To investigate flow conditions in a double-layered carotid artery stent, a bench-top in vitro flow setup including a bifurcation phantom was designed and fabricated. The geometry of the tissue-mimicking phantom was based on healthy individuals. Two identical phantoms were created using 3D-printing techniques and molding with PVA-gel. In one of them, a clinically available CGuard double-layer stent was inserted. Measurements were performed using both continuous and pulsatile flow conditions. Blood flow studies were performed using echoPIV: a novel ultrasound-based technique combined with particle image velocimetry. A maximum deviation of 3% was visible between desired and measured flow patterns. The echoPIV measurements showed promising results on visualization and quantification of blood flow in and downstream the stent. Further research could demonstrate the effects of a double-layered stent on blood flow patterns in a carotid bifurcation in detail.
Collapse
Affiliation(s)
- Astrid M Hoving
- Robotics and Mechatronics Group, TechMed Centre, University of Twente, 7500 AE, Enschede, The Netherlands.
| | - Julia Mikhal
- Health Technology and Services Research Group, TechMed Centre, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Henny Kuipers
- Robotics and Mechatronics Group, TechMed Centre, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Gert J de Borst
- Department of Vascular Surgery, University Medical Centre Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Cornelis H Slump
- Robotics and Mechatronics Group, TechMed Centre, University of Twente, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
3
|
Chen Y, Zhuang Z, Luo J, Luo X. Doppler and Pair-Wise Optical Flow Constrained 3D Motion Compensation for 3D Ultrasound Imaging. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2023; 32:4501-4516. [PMID: 37540607 DOI: 10.1109/tip.2023.3300591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Volumetric (3D) ultrasound imaging using a 2D matrix array probe is increasingly developed for various clinical procedures. However, 3D ultrasound imaging suffers from motion artifacts due to tissue motions and a relatively low frame rate. Current Doppler-based motion compensation (MoCo) methods only allow 1D compensation in the in-range dimension. In this work, we propose a new 3D-MoCo framework that combines 3D velocity field estimation and a two-step compensation strategy for 3D diverging wave compounding imaging. Specifically, our framework explores two constraints of a round-trip scan sequence of 3D diverging waves, i.e., Doppler and pair-wise optical flow, to formulate the estimation of the 3D velocity fields as a global optimization problem, which is further regularized by the divergence-free and first-order smoothness. The two-step compensation strategy is to first compensate for the 1D displacements in the in-range dimension and then the 2D displacements in the two mutually orthogonal cross-range dimensions. Systematical in-silico experiments were conducted to validate the effectiveness of our proposed 3D-MoCo method. The results demonstrate that our 3D-MoCo method achieves higher image contrast, higher structural similarity, and better speckle patterns than the corresponding 1D-MoCo method. Particularly, the 2D cross-range compensation is effective for fully recovering image quality.
Collapse
|
4
|
Voorneveld J, Keijzer LBH, Strachinaru M, Bowen DJ, Mutluer FO, van der Steen AFW, Cate FJT, de Jong N, Vos HJ, van den Bosch AE, Bosch JG. Optimization of Microbubble Concentration and Acoustic Pressure for Left Ventricular High-Frame-Rate EchoPIV in Patients. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2432-2443. [PMID: 33720832 DOI: 10.1109/tuffc.2021.3066082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High-frame-rate (HFR) echo-particle image velocimetry (echoPIV) is a promising tool for measuring intracardiac blood flow dynamics. In this study, we investigate the optimal ultrasound contrast agent (UCA: SonoVue) infusion rate and acoustic output to use for HFR echoPIV (PRF = 4900 Hz) in the left ventricle (LV) of patients. Three infusion rates (0.3, 0.6, and 1.2 ml/min) and five acoustic output amplitudes (by varying transmit voltage: 5, 10, 15, 20, and 30 V-corresponding to mechanical indices of 0.01, 0.02, 0.03, 0.04, and 0.06 at 60-mm depth) were tested in 20 patients admitted for symptoms of heart failure. We assess the accuracy of HFR echoPIV against pulsed-wave Doppler acquisitions obtained for mitral inflow and aortic outflow. In terms of image quality, the 1.2-ml/min infusion rate provided the highest contrast-to-background ratio (CBR) (3-dB improvement over 0.3 ml/min). The highest acoustic output tested resulted in the lowest CBR. Increased acoustic output also resulted in increased microbubble disruption. For the echoPIV results, the 1.2-ml/min infusion rate provided the best vector quality and accuracy; mid-range acoustic outputs (corresponding to 15-20-V transmit voltages) provided the best agreement with the pulsed-wave Doppler. Overall, the highest infusion rate (1.2 ml/min) and mid-range acoustic output amplitudes provided the best image quality and echoPIV results.
Collapse
|
5
|
Hoving AM, Voorneveld J, Mikhal J, Bosch JG, Groot Jebbink E, Slump CH. In vitro performance of echoPIV for assessment of laminar flow profiles in a carotid artery stent. J Med Imaging (Bellingham) 2021; 8:017001. [PMID: 33457445 PMCID: PMC7804295 DOI: 10.1117/1.jmi.8.1.017001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/22/2020] [Indexed: 11/14/2022] Open
Abstract
Purpose: Detailed blood flow studies may contribute to improvements in carotid artery stenting. High-frame-rate contrast-enhanced ultrasound followed by particle image velocimetry (PIV), also called echoPIV, is a technique to study blood flow patterns in detail. The performance of echoPIV in presence of a stent has not yet been studied extensively. We compared the performance of echoPIV in stented and nonstented regions in an in vitro flow setup. Approach: A carotid artery stent was deployed in a vessel-mimicking phantom. High-frame-rate contrast-enhanced ultrasound images were acquired with various settings. Signal intensities of the contrast agent, velocity values, and flow profiles were calculated. Results: The results showed decreased signal intensities and correlation coefficients inside the stent, however, PIV analysis in the stent still resulted in plausible flow vectors. Conclusions: Velocity values and laminar flow profiles can be measured in vitro in stented arteries using echoPIV.
Collapse
Affiliation(s)
- Astrid M Hoving
- University of Twente, TechMed Centre, Robotics and Mechatronics Group, Enschede, The Netherlands
| | - Jason Voorneveld
- Erasmus MC, Thorax Center, Department of Biomedical Engineering, Rotterdam, The Netherlands
| | - Julia Mikhal
- University of Twente, TechMed Centre, BIOS Lab-on-a-Chip Group, Enschede, The Netherlands
| | - Johan G Bosch
- Erasmus MC, Thorax Center, Department of Biomedical Engineering, Rotterdam, The Netherlands
| | - Erik Groot Jebbink
- University of Twente, TechMed Centre, Multi-Modality Medical Imaging Group, Enschede, The Netherlands
| | - Cornelis H Slump
- University of Twente, TechMed Centre, Robotics and Mechatronics Group, Enschede, The Netherlands
| |
Collapse
|
6
|
Chen P, van Sloun RJG, Turco S, Wijkstra H, Filomena D, Agati L, Houthuizen P, Mischi M. Blood flow patterns estimation in the left ventricle with low-rate 2D and 3D dynamic contrast-enhanced ultrasound. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 198:105810. [PMID: 33218707 DOI: 10.1016/j.cmpb.2020.105810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Left ventricle (LV) dysfunction always occurs at early heart-failure stages, producing variations in the LV flow patterns. Cardiac diagnostics may therefore benefit from flow-pattern analysis. Several visualization tools have been proposed that require ultrafast ultrasound acquisitions. However, ultrafast ultrasound is not standard in clinical scanners. Meanwhile techniques that can handle low frame rates are still lacking. As a result, the clinical translation of these techniques remains limited, especially for 3D acquisitions where the volume rates are intrinsically low. METHODS To overcome these limitations, we propose a novel technique for the estimation of LV blood velocity and relative-pressure fields from dynamic contrast-enhanced ultrasound (DCE-US) at low frame rates. Different from other methods, our method is based on the time-delays between time-intensity curves measured at neighbor pixels in the DCE-US loops. Using Navier-Stokes equation, we regularize the obtained velocity fields and derive relative-pressure estimates. Blood flow patterns were characterized with regard to their vorticity, relative-pressure changes (dp/dt) in the LV outflow tract, and viscous energy loss, as these reflect the ejection efficiency. RESULTS We evaluated the proposed method on 18 patients (9 responders and 9 non-responders) who underwent cardiac resynchronization therapy (CRT). After CRT, the responder group evidenced a significant (p<0.05) increase in vorticity and peak dp/dt, and a non-significant decrease in viscous energy loss. No significant difference was found in the non-responder group. Relative feature variation before and after CRT evidenced a significant difference (p<0.05) between responders and non-responders for vorticity and peak dp/dt. Finally, the method feasibility is also shown with 3D DCE-US. CONCLUSIONS Using the proposed method, adequate visualization and quantification of blood flow patterns are successfully enabled based on low-rate DCE-US of the LV, facilitating the clinical adoption of the method using standard ultrasound scanners. The clinical value of the method in the context of CRT is also shown.
Collapse
Affiliation(s)
- Peiran Chen
- Department of Electrical Engineering, Eindhoven University of Technology, Netherlands.
| | - Ruud J G van Sloun
- Department of Electrical Engineering, Eindhoven University of Technology, Netherlands
| | - Simona Turco
- Department of Electrical Engineering, Eindhoven University of Technology, Netherlands
| | - Hessel Wijkstra
- Department of Electrical Engineering, Eindhoven University of Technology, Netherlands; Department of Urology, Amsterdam University Medical Centers, Netherlands
| | - Domenico Filomena
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, Sapienza University of Rome, Italy
| | - Luciano Agati
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, Sapienza University of Rome, Italy
| | | | - Massimo Mischi
- Department of Electrical Engineering, Eindhoven University of Technology, Netherlands
| |
Collapse
|
7
|
Vos HJ, Voorneveld JD, Groot Jebbink E, Leow CH, Nie L, van den Bosch AE, Tang MX, Freear S, Bosch JG. Contrast-Enhanced High-Frame-Rate Ultrasound Imaging of Flow Patterns in Cardiac Chambers and Deep Vessels. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2875-2890. [PMID: 32843233 DOI: 10.1016/j.ultrasmedbio.2020.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Cardiac function and vascular function are closely related to the flow of blood within. The flow velocities in these larger cavities easily reach 1 m/s, and generally complex spatiotemporal flow patterns are involved, especially in a non-physiologic state. Visualization of such flow patterns using ultrasound can be greatly enhanced by administration of contrast agents. Tracking the high-velocity complex flows is challenging with current clinical echographic tools, mostly because of limitations in signal-to-noise ratio; estimation of lateral velocities; and/or frame rate of the contrast-enhanced imaging mode. This review addresses the state of the art in 2-D high-frame-rate contrast-enhanced echography of ventricular and deep-vessel flow, from both technological and clinical perspectives. It concludes that current advanced ultrasound equipment is technologically ready for use in human contrast-enhanced studies, thus potentially leading to identification of the most clinically relevant flow parameters for quantifying cardiac and vascular function.
Collapse
Affiliation(s)
- Hendrik J Vos
- Biomedical Engineering, Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands; Medical Imaging, Department of Imaging Physics, Applied Sciences, Delft University of Technology, Delft, The Netherlands.
| | - Jason D Voorneveld
- Biomedical Engineering, Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Erik Groot Jebbink
- M3i: Multi-modality Medical Imaging Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands; Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | - Chee Hau Leow
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Luzhen Nie
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, United Kingdom
| | | | - Meng-Xing Tang
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Steven Freear
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, United Kingdom
| | - Johan G Bosch
- Biomedical Engineering, Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Tan Q, Wang C, Liu J, Huang J, Li Y, Xiao Y, Xia GS, Ma T, Zheng H. Ultrafast Endoscopic Ultrasonography With Circular Array. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2110-2120. [PMID: 31944947 DOI: 10.1109/tmi.2019.2963290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rapid development of ultrafast ultrasound imaging has led to novel medical ultrasound applications, including shear wave elastography and super-resolution vascular imaging. However, these have yet to incorporate endoscopic ultrasonography (EUS) with a circular array, which provides a wider view in the alimentary canal than traditional linear and convex arrays. A coherent diverging wave compounding (CDWC) imaging method was proposed for ultrafast EUS imaging and implemented on a custom circular array. In CDWC, virtual acoustic point sources are allocated and virtually insonified diverging waves from each source are achieved by adjusting all circular array elements' emission time delays. Diverging waves emitted from different virtual sources are coherently compounded, generating synthetic transmit focusing at every location in the image plane. As the field of view of the circular array is centrally symmetric, all virtual sources are equidistantly distributed on a concentric circle of radius r . To achieve the highest frame rate possible with image quality comparable to that obtained with the traditional multi-focus imaging method, the effects of various radii r and virtual source quantities on the compounded image quality were theoretically analyzed and experimentally verified. Simulation, phantom, and ex-vivo experiments were conducted with an 8 MHz, 124-element circular array, with a 5.35 mm radius. When 16 virtual sources were used with r=1.605 mm, image quality comparable to that obtained with the multi-focus approach was achieved at a frame rate of 1000 frames/s. This demonstrates the feasibility of the proposed ultrafast EUS imaging method and promotes further development of multi-functional EUS devices.
Collapse
|
9
|
Moghimirad E, Bamber J, Harris E. Plane wave versus focused transmissions for contrast enhanced ultrasound imaging: the role of parameter settings and the effects of flow rate on contrast measurements. Phys Med Biol 2019; 64:095003. [PMID: 30917360 PMCID: PMC7655116 DOI: 10.1088/1361-6560/ab13f2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Contrast enhanced ultrasound (CEUS) and dynamic contrast enhanced ultrasound
(DCE-US) can be used to provide information about the vasculature aiding
diagnosis and monitoring of a number of pathologies including cancer. In the
development of a CEUS imaging system, there are many choices to be made, such as
whether to use plane wave (PW) or focused imaging (FI), and the values for
parameters such as transmit frequency, F-number, mechanical index, and number of
compounding angles (for PW imaging). CEUS image contrast may also be dependent
on subject characteristics, e.g. flow speed and vessel orientation. We evaluated
the effect of such choices on vessel contrast for PW and FI in
vitro, using 2D ultrasound imaging. CEUS images were obtained using
a VantageTM (Verasonics Inc.) and a pulse-inversion (PI) algorithm on
a flow phantom. Contrast (C) and contrast reduction (CR) were calculated, where
C was the initial ratio of signal in vessel to signal in background and CR was
its reduction after 200 frames (acquired in 20 s). Two transducer orientations
were used: parallel and perpendicular to the vessel direction. Similar C and CR
was achievable for PW and FI by choosing optimal parameter values. PW imaging
suffered from high frequency grating lobe artefacts, which may lead to degraded
image quality and misinterpretation of data. Flow rate influenced the contrast
based on: (1) false contrast increase due to the bubble motion between the PI
positive and negative pulses (for both PW and FI), and (2) contrast reduction
due to the incoherency caused by bubble motion between the compounding angles
(for PW only). The effects were less pronounced for perpendicular transducer
orientation compared to a parallel one. Although both effects are undesirable,
it may be more straight forward to account for artefacts in FI as it only
suffers from the former effect. In conclusion, if higher frame rate imaging is
not required (a benefit of PW), FI appears to be a better choice of imaging mode
for CEUS, providing greater image quality over PW for similar rates of contrast
reduction.
Collapse
Affiliation(s)
- Elahe Moghimirad
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, United Kingdom
| | | | | |
Collapse
|