1
|
Shinar H, Ilovitsh T. Volumetric Passive Acoustic Mapping and Cavitation Detection of Nanobubbles under Low-Frequency Insonation. ACS MATERIALS AU 2025; 5:159-169. [PMID: 39802150 PMCID: PMC11718533 DOI: 10.1021/acsmaterialsau.4c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 01/16/2025]
Abstract
Gas bubbles, commonly used in medical ultrasound (US), witness advancements with nanobubbles (NB), providing improved capabilities over microbubbles (MB). NBs offer enhanced penetration into capillaries and the ability to extravasate into tumors following systemic injection, alongside prolonged circulation and persistent acoustic contrast. Low-frequency insonation (<1 MHz) with NBs holds great potential in inducing significant bioeffects, making the monitoring of their acoustic response critical to achieving therapeutic goals. We introduce a US-guided focused US system comprising a one-dimensional (1D) motorized rotating imaging transducer positioned within a low-frequency therapeutic transducer (center frequencies of 105 and 200 kHz), facilitating precise monitoring of NB cavitation activity in three-dimensional (3D) and comparison with MBs. Passive cavitation detection (PCD) revealed frequency-dependent responses, with NBs exhibiting significantly higher stable and inertial cavitation doses compared to MBs of the same gas volume when excited at a center frequency of 105 kHz and peak negative pressures ranging from 100 to 350 kPa. At 200 kHz, MBs showed higher cavitation doses than NBs. PCD showed that 105 kHz enhanced both NBs' and MBs' oscillations compared to 200 kHz. The system was further used for 3D passive acoustic mapping (PAM) to provide spatial resolution alongside PCD monitoring. Two-dimensional PAM was captured for each rotation angle and used to generate a complete 3D PAM reconstruction. Experimental results obtained from a tube phantom demonstrated consistent contrast PAM full-width half-maximum (FWHM) as a function of rotation angle, with similar FWHM between MBs and NBs. Frequency-selective PAM maps distinguished between stable and inertial cavitation via the harmonic, ultraharmonic and broadband content, offering insights into cavitation dynamics. These findings highlight NBs' superior performance at lower frequencies. The developed 3D-PAM technique with a 1D transducer presents a promising technology for real-time, noninvasive monitoring of cavitation-based US therapies.
Collapse
Affiliation(s)
- Hila Shinar
- Department
of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tali Ilovitsh
- Department
of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- The Sagol
School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
2
|
Magnier C, Kwiecinski W, Escudero DS, Garcia SA, Vacher E, Delplanque M, Messas E, Pernot M. Self-Sensing Cavitation Detection for Pulsed Cavitational Ultrasound Therapy. IEEE Trans Biomed Eng 2025; 72:435-444. [PMID: 39236142 DOI: 10.1109/tbme.2024.3454798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
OBJECTIVES Monitoring cavitation during ultrasound therapy is crucial for assessing the procedure safety and efficacy. This work aims to develop a self-sensing and low-complexity approach for robust cavitation detection in moving organs such as the heart. METHODS An analog-to-digital converter was connected onto one channel of the therapeutic transducer from a clinical system dedicated to cardiac therapy, allowing to record signals on a computer. Acquisition of successive echoes backscattered by the cavitation cloud on the therapeutic transducer was performed at a high repetition rate. Temporal variations of the backscattered echoes were analyzed with a Singular-Value Decomposition filter to discriminate signals associated to cavitation, based on its stochastic nature. Metrics were derived to classify the filtered backscattered echoes. Classification of raw backscattered echoes was also performed with a machine learning approach. The performances were evaluated on 155 in vitro acquisitions and 110 signals acquired in vivo during transthoracic cardiac ultrasound therapy on 3 swine. RESULTS Cavitation detection was achieved successfully in moving tissues with high signal to noise ratio in vitro (cSNR = 25±5) and in vivo (cSNR = 20±6) and outperformed conventional methods (cSNR = 11±6). Classification methods were validated with spectral analysis of hydrophone measurements. High accuracy was obtained using either the clutter filter-based method (accuracy of 1) or the neural network-based method (accuracy of 0.99). CONCLUSION Robust self-sensing cavitation detection was demonstrated to be possible with a clutter filter-based method and a machine learning approach. SIGNIFICANCE The self-sensing cavitation detection method enables robust, reliable and low complexity cavitation activity monitoring during ultrasound therapy.
Collapse
|
3
|
Zhang Q, Zhu Y, Zhang G, Xue H, Ding B, Tu J, Zhang D, Guo X. 2D spatiotemporal passive cavitation imaging and evaluation during ultrasound thrombolysis based on diagnostic ultrasound platform. ULTRASONICS SONOCHEMISTRY 2024; 110:107051. [PMID: 39232288 PMCID: PMC11404082 DOI: 10.1016/j.ultsonch.2024.107051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Acoustic cavitation plays a critical role in various biomedical applications. However, uncontrolled cavitation can lead to undesired damage to healthy tissues. Therefore, real-time monitoring and quantitative evaluation of cavitation dynamics is essential for understanding underlying mechanisms and optimizing ultrasound treatment efficiency and safety. The current research addressed the limitations of traditionally used cavitation detection methods by developing introduced an adaptive time-division multiplexing passive cavitation imaging (PCI) system integrated into a commercial diagnostic ultrasound platform. This new method combined real-time cavitation monitoring with B-mode imaging, allowing for simultaneous visualization of treatment progress and 2D quantitative evaluation of cavitation dosage within targeted area. An improved delay-and-sum (DAS) algorithm, optimized with a minimum variance (MV) beamformer, is utilized to minimize the side lobe effect and improve the axial resolution typically associated with PCI. In additional to visualize and quantitatively assess the cavitation activities generated under varied acoustic pressures and microbubble concentrations, this system was specifically applied to perform 2D cavitation evaluation for ultrasound thrombolysis mediated by different solutions, e.g., saline, nanodiamond (ND) and nitrogen-annealed nanodiamond (N-AND). This research aims to bridge the gap between laboratory-based research systems and real-time spatiotemporal cavitation evaluation demands in practical uses. Results indicate that this improved 2D cavitation monitoring and evaluation system could offer a useful tool for comprehensive evaluating cavitation-mediated effects (e.g., ultrasound thrombolysis), providing valuable insights into in-depth understanding of cavitation mechanisms and optimization of cavitation applications.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Yifei Zhu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Guofeng Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Honghui Xue
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China; Wuxi Vocational Institute of Commerce, Wuxi 214153, Jiangsu, China
| | - Bo Ding
- Zhuhai Ecare Electronics Science & Technology Co., Ltd., Zhuhai 519041, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| |
Collapse
|
4
|
Mondou P, Mériaux S, Nageotte F, Vappou J, Novell A, Larrat B. State of the art on microbubble cavitation monitoring and feedback control for blood-brain-barrier opening using focused ultrasound. Phys Med Biol 2023; 68:18TR03. [PMID: 37369229 DOI: 10.1088/1361-6560/ace23e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/27/2023] [Indexed: 06/29/2023]
Abstract
Focused ultrasound (FUS) is a non-invasive and highly promising method for targeted and reversible blood-brain barrier permeabilization. Numerous preclinical studies aim to optimize the localized delivery of drugs using this method in rodents and non-human primates. Several clinical trials have been initiated to treat various brain diseases in humans using simultaneous BBB permeabilization and drug injection. This review presents the state of the art ofin vitroandin vivocavitation control algorithms for BBB permeabilization using microbubbles (MB) and FUS. Firstly, we describe the different cavitation states, their physical significance in terms of MB behavior and their translation into the spectral composition of the backscattered signal. Next, we report the different indexes calculated and used during the ultrasonic monitoring of cavitation. Finally, the differentin vitroandin vivocavitation control strategies described in the literature are presented and compared.
Collapse
Affiliation(s)
- Paul Mondou
- Université de Strasbourg, CNRS, ICube, UMR7357, Strasbourg, France
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, 91191, Gif-sur-Yvette, France
| | - Sébastien Mériaux
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, 91191, Gif-sur-Yvette, France
| | - Florent Nageotte
- Université de Strasbourg, CNRS, ICube, UMR7357, Strasbourg, France
| | - Jonathan Vappou
- Université de Strasbourg, CNRS, ICube, UMR7357, Strasbourg, France
| | - Anthony Novell
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, 91191, Gif-sur-Yvette, France
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, 91401 , Orsay, France
| | - Benoit Larrat
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, 91191, Gif-sur-Yvette, France
| |
Collapse
|
5
|
Kang Z, Yang M, Feng X, Liao H, Zhang Z, Du Y. Multifunctional Theranostic Nanoparticles for Enhanced Tumor Targeted Imaging and Synergistic FUS/Chemotherapy on Murine 4T1 Breast Cancer Cell. Int J Nanomedicine 2022; 17:2165-2187. [PMID: 35592098 PMCID: PMC9113557 DOI: 10.2147/ijn.s360161] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/01/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose Triple negative breast cancer (TNBC) is challenging for effective remission due to its very aggressive, extremely metastatic and resistant to conventional chemotherapy. Herein, a multifunctional theranostic nanoparticle was fabricated to enhance tumor targeted imaging and promote focused ultrasound (FUS) ablation and chemotherapy and sonodynamic therapy (SDT). A multi-modal synergistic therapy can improve the therapeutic efficacy and prognosis of TNBC. Methods AS1411 aptamer modified PEG@PLGA nanoparticles encapsulated with perfluorohexane (PFH) and anti-cancer drug doxorubicin (DOX) were constructed (AS1411-DOX/PFH-PEG@PLGA) to enhance tumor targeted imaging to guide ablation and synergistic effect of FUS/chemotherapy. FUS was utilized to trigger the co-release of doxorubicin and simultaneously PFH phase transition and activate DOX for SDT effect. The physicochemical, phase-changeable imaging capability, biosafety of nanoparticles and multi-mode synergistic effects on growth of TNBC were thoroughly evaluated in vivo and in vitro. Results The synthesized AS1411-DOX/PFH-PEG@PLGA (A-DPPs) nanoparticles are uniformly round with an average diameter of 306.03 ± 5.35 nm and the zeta potential of −4.05 ± 0.13 mV, displaying high biosafety and FUS-responsive drug release in vitro and in vivo. AS1411 modified NPs specifically bind to 4T1 cells and elevate the ultrasound contrast agent (UCA) image contrast intensity via PFH phase-transition after FUS exposure. Moreover, the combined treatment of A-DPPs nanoparticles with FUS exhibited significantly higher apoptosis rate, stronger inhibitory effect on 4T1 cell invasion in vitro, induced more reactive oxygen species (ROS), and enhanced anti-tumor effect compared to a single therapy (p < 0.05). Additionally, the joint strategy resulted in more intense cavitation effect and larger ablated areas and reduced energy efficiency factor (EEF) both in vitro and in vivo. Conclusion The multifunctional AS1411-DOX/PFH-PEG@PLGA nanoparticles can perform as a marvelous synergistic agent for enhanced FUS/chemotherapy, promote real-time contrast enhanced US imaging and improve the therapeutic efficacy and prognosis of TNBC.
Collapse
Affiliation(s)
- Zhengyue Kang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Min Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Xiaoling Feng
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Hongjian Liao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Zhifei Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yonghong Du
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Correspondence: Yonghong Du, State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China, Tel/Fax +86-23-68485021, Email
| |
Collapse
|
6
|
Jeong MK, Choi MJ. A Novel Approach for the Detection of Every Significant Collapsing Bubble in Passive Cavitation Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1288-1300. [PMID: 35167448 DOI: 10.1109/tuffc.2022.3151882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Passive cavitation image (PCI) shows the power distribution of the acoustic emissions resulting from cavitation bubble collapses. The conventional PCI convolves the emitted cavitation signals with the point spread function of an imaging system, and it suffers from a low spatial resolution and contrast due to the increased sidelobe artifacts accumulated during the temporal integral process. To overcome the problems, the present study considers a 3-D time history of instantaneous PCIs where cavitation occurs at the local maxima of the main lobes of the beamformed cavitation field surrounded by the sidelobes largely spreading out in a time-space domain. A spatial and temporal gating technique was employed to detect the local maxima so that cavitation bubbles can be identified with their collapsing strength. The proposed approach was verified by the simulation for single and multiple cavitation bubbles, proving that it accurately detects the location and strength of the collapsing bubbles. An experimental test was also carried out for the cavitation bubbles produced by a clinical extracorporeal shock wave therapeutic device, which underpins that the proposed method successfully identifies every individual cavitation bubble.
Collapse
|