1
|
Zhang L, Du W, Kim JH, Yu CC, Dagdeviren C. An Emerging Era: Conformable Ultrasound Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307664. [PMID: 37792426 DOI: 10.1002/adma.202307664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/19/2023] [Indexed: 10/05/2023]
Abstract
Conformable electronics are regarded as the next generation of personal healthcare monitoring and remote diagnosis devices. In recent years, piezoelectric-based conformable ultrasound electronics (cUSE) have been intensively studied due to their unique capabilities, including nonradiative monitoring, soft tissue imaging, deep signal decoding, wireless power transfer, portability, and compatibility. This review provides a comprehensive understanding of cUSE for use in biomedical and healthcare monitoring systems and a summary of their recent advancements. Following an introduction to the fundamentals of piezoelectrics and ultrasound transducers, the critical parameters for transducer design are discussed. Next, five types of cUSE with their advantages and limitations are highlighted, and the fabrication of cUSE using advanced technologies is discussed. In addition, the working function, acoustic performance, and accomplishments in various applications are thoroughly summarized. It is noted that application considerations must be given to the tradeoffs between material selection, manufacturing processes, acoustic performance, mechanical integrity, and the entire integrated system. Finally, current challenges and directions for the development of cUSE are highlighted, and research flow is provided as the roadmap for future research. In conclusion, these advances in the fields of piezoelectric materials, ultrasound transducers, and conformable electronics spark an emerging era of biomedicine and personal healthcare.
Collapse
Affiliation(s)
- Lin Zhang
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Wenya Du
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jin-Hoon Kim
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Chia-Chen Yu
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Canan Dagdeviren
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
2
|
Bao GC, Shi DL, Zhang JM, Yang F, Yang G, Li K, Fang BJ, Lam KH. Samarium-Doped Lead Magnesium Niobate-Lead Titanate Ceramics Fabricated by Sintering the Mixture of Two Different Crystalline Phases. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6781. [PMID: 37895761 PMCID: PMC10608320 DOI: 10.3390/ma16206781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
The fabrication method plays a key role in the performance of lead magnesium niobate-lead titanate-based ceramics. (1 - w)[Pb(Mg1/3Nb2/3)0.67Ti0.33O3]-w[Pb1-1.5xSmx(Mg1/3Nb2/3)yTi1-yO3] piezoelectric ceramics were prepared by sintering the mixture of two different crystalline phases in which two pre-sintered precursor powders were mixed and co-fired at designated ratios (w = 0.3, 0.4, 0.5, 0.6). The X-ray diffraction results show that all the ceramics presented a pure perovskite structure. The grains were closely packed and the average size was ~5.18 μm based on observations from scanning electron microscopy images, making the ceramics have a high density that is 97.8% of the theoretical one. The piezoelectric, dielectric, and ferroelectric properties of the ceramics were investigated systematically. It was found that the properties of the ceramics were significantly enhanced when compared to the ceramics fabricated using the conventional one-step approach. An outstanding piezoelectric coefficient d33 of 1103 pC/N and relative dielectric permittivity ε33/ε0 of 9154 was achieved for the ceramics with w = 0.5.
Collapse
Affiliation(s)
- Guo-Cui Bao
- Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hong Kong, China; (G.-C.B.)
| | - Dong-Liang Shi
- Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hong Kong, China; (G.-C.B.)
| | - Jia-Ming Zhang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Fan Yang
- Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hong Kong, China; (G.-C.B.)
| | - Guang Yang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Kun Li
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Bi-Jun Fang
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Kwok-Ho Lam
- Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hong Kong, China; (G.-C.B.)
- Centre for Medical and Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
3
|
Lin R, Zhang Q, Lv S, Zhang J, Wang X, Shi D, Gong X, Lam KH. Miniature intravascular photoacoustic endoscopy with coaxial excitation and detection. JOURNAL OF BIOPHOTONICS 2023; 16:e202200269. [PMID: 36510391 DOI: 10.1002/jbio.202200269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/08/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Recent research pointed out that the degree of inflammation in the adventitia could correlate with the severity of atherosclerotic plaques. Intravascular photoacoustic endoscopy can provide the information of arterial morphology and plaque composition, and even detecting the inflammation. However, most reported work used a noncoaxial configuration for the photoacoustic catheter design, which formed a limited light-sound overlap area for imaging so as to miss the adventitia information. Here we developed a novel 0.9 mm-diameter intravascular photoacoustic catheter with coaxial excitation and detection to resolve the aforementioned issue. A miniature hollow ultrasound transducer with a 0.18 mm-diameter orifice in the center was successfully fabricated. To show the significance and merits of our design, phantom and ex vivo imaging experiments were conducted on both coaxial and noncoaxial catheters for comparison. The results demonstrated that the coaxial catheter exhibited much better photoacoustic/ultrasound imaging performance from the intima to the adventitia.
Collapse
Affiliation(s)
- Riqiang Lin
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qi Zhang
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Shengmiao Lv
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiaming Zhang
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xiatian Wang
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dongliang Shi
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xiaojing Gong
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kwok-Ho Lam
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
- Centre for Medical and Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow, Scotland, UK
| |
Collapse
|
4
|
Fan D, Niu H, Liu K, Sun X, Wang H, Shi K, Mo W, Jian Z, Wen L, Shen M, Zhao T, Fei C, Chen Y. Nb and Mn Co-Modified Na0.5Bi4.5Ti4O15 Bismuth-Layered Ceramics for High-Frequency Transducer Applications. MICROMACHINES 2022; 13:mi13081246. [PMID: 36014168 PMCID: PMC9415184 DOI: 10.3390/mi13081246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022]
Abstract
Lead-free environmentally friendly piezoelectrical materials with enhanced piezoelectric properties are of great significance for high-resolution ultrasound imaging applications. In this paper, Na0.5Bi4.5Ti3.86Mn0.06Nb0.08O15+y (NBT-Nb-Mn) bismuth-layer-structured ceramics were prepared by solid-phase synthesis. The crystallographic structure, micromorphology, and piezoelectrical and electromechanical properties of NBT-Nb-Mn ceramics were examined, showing their enhanced piezoelectricity (d33 = 33 pC/N) and relatively high electromechanical coupling coefficient (kt = 0.4). The purpose of this article is to describe the development of single element ultrasonic transducers based on these piezoelectric ceramics. The as-prepared high-frequency tightly focused transducer (ƒ-number = 1.13) had an electromechanical coupling coefficient of 0.48. The center frequency was determined to be 37.4 MHz and the −6 dB bandwidth to be 47.2%. According to the B-mode imaging experiment of 25 μm tungsten wires, lateral resolution of the transducer was calculated as 56 μm. Additionally, the experimental results were highly correlated to the results simulated by COMSOL software. By scanning a coin, the imaging effect of the transducer was further evaluated, demonstrating the application advantages of the prepared transducer in the field of high-sensitivity ultrasound imaging.
Collapse
Affiliation(s)
- Dongming Fan
- Key Laboratory of Ferro & Piezoelectric Materials and Devices of Hubei Province, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, School of Physics and Electronic Science, Hubei University, Wuhan 430062, China; (D.F.); (H.N.); (K.L.); (H.W.); (W.M.)
| | - Huiyan Niu
- Key Laboratory of Ferro & Piezoelectric Materials and Devices of Hubei Province, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, School of Physics and Electronic Science, Hubei University, Wuhan 430062, China; (D.F.); (H.N.); (K.L.); (H.W.); (W.M.)
| | - Kun Liu
- Key Laboratory of Ferro & Piezoelectric Materials and Devices of Hubei Province, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, School of Physics and Electronic Science, Hubei University, Wuhan 430062, China; (D.F.); (H.N.); (K.L.); (H.W.); (W.M.)
| | - Xinhao Sun
- School of Microelectronics, Xidian University, Xi’an 740071, China; (X.S.); (K.S.); (C.F.)
| | - Husheng Wang
- Key Laboratory of Ferro & Piezoelectric Materials and Devices of Hubei Province, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, School of Physics and Electronic Science, Hubei University, Wuhan 430062, China; (D.F.); (H.N.); (K.L.); (H.W.); (W.M.)
| | - Kefei Shi
- School of Microelectronics, Xidian University, Xi’an 740071, China; (X.S.); (K.S.); (C.F.)
| | - Wen Mo
- Key Laboratory of Ferro & Piezoelectric Materials and Devices of Hubei Province, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, School of Physics and Electronic Science, Hubei University, Wuhan 430062, China; (D.F.); (H.N.); (K.L.); (H.W.); (W.M.)
| | - Zhishui Jian
- Guangdong JC Technological Innovation Electronics Co., Ltd., Zhaoqing 526000, China; (Z.J.); (L.W.)
| | - Li Wen
- Guangdong JC Technological Innovation Electronics Co., Ltd., Zhaoqing 526000, China; (Z.J.); (L.W.)
| | - Meng Shen
- Key Laboratory of Ferro & Piezoelectric Materials and Devices of Hubei Province, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, School of Physics and Electronic Science, Hubei University, Wuhan 430062, China; (D.F.); (H.N.); (K.L.); (H.W.); (W.M.)
- Correspondence: (M.S.); (T.Z.); (Y.C.)
| | - Tianlong Zhao
- School of Microelectronics, Xidian University, Xi’an 740071, China; (X.S.); (K.S.); (C.F.)
- Correspondence: (M.S.); (T.Z.); (Y.C.)
| | - Chunlong Fei
- School of Microelectronics, Xidian University, Xi’an 740071, China; (X.S.); (K.S.); (C.F.)
| | - Yong Chen
- Key Laboratory of Ferro & Piezoelectric Materials and Devices of Hubei Province, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, School of Physics and Electronic Science, Hubei University, Wuhan 430062, China; (D.F.); (H.N.); (K.L.); (H.W.); (W.M.)
- Correspondence: (M.S.); (T.Z.); (Y.C.)
| |
Collapse
|
5
|
Kim H, Yoo J, Heo D, Seo YS, Lim HG, Kim HH. High-Attenuation Backing Layer for Miniaturized Ultrasound Imaging Transducer. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1960-1969. [PMID: 35377844 DOI: 10.1109/tuffc.2022.3164451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Current miniaturized ultrasound transducers suffer from insufficient attenuation from the backing layer due to their limited thickness. The thickness of the backing layer is one of the critical factors determining the device size and transducer performance for miniaturized transducers inserted and operated in a limited space. Glass bubbles, polyamide resin, and tungsten powder are combined to form a new highly attenuative backing material. It has high attenuation (>160 dB/cm at 5 MHz), which is five times greater than silver-based conductive epoxy commonly used for high-frequency ultrasound transducers, appropriate acoustic impedance (4.6 MRayl), and acceptable damping capability. An intravascular ultrasound (IVUS) transducer constructed with the 170 [Formula: see text] of the proposed backing layer demonstrated that the amplitude of the signal returned from the backing layer was 1.8 times smaller, with ring-down attenuated by 6 dB. Wire-phantom imaging revealed that the axial resolution was 30% better with the suggested backing than silver-based conductive epoxy backing. Because of its excellent attenuation capability even at a limited thickness, simple manufacturing process, and easy customization capability, the suggested highly attenuative backing layer may be used for miniaturized ultrasound transducers.
Collapse
|
6
|
Sung JH, Chang JH. Mechanically Rotating Intravascular Ultrasound (IVUS) Transducer: A Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:3907. [PMID: 34198822 PMCID: PMC8201242 DOI: 10.3390/s21113907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/30/2022]
Abstract
Intravascular ultrasound (IVUS) is a valuable imaging modality for the diagnosis of atherosclerosis. It provides useful clinical information, such as lumen size, vessel wall thickness, and plaque composition, by providing a cross-sectional vascular image. For several decades, IVUS has made remarkable progress in improving the accuracy of diagnosing cardiovascular disease that remains the leading cause of death globally. As the quality of IVUS images mainly depends on the performance of the IVUS transducer, various IVUS transducers have been developed. Therefore, in this review, recently developed mechanically rotating IVUS transducers, especially ones exploiting piezoelectric ceramics or single crystals, are discussed. In addition, this review addresses the history and technical challenges in the development of IVUS transducers and the prospects of next-generation IVUS transducers.
Collapse
Affiliation(s)
| | - Jin-Ho Chang
- Department of Information and Communication Engineering, Deagu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea;
| |
Collapse
|
7
|
Peng C, Wu H, Kim S, Dai X, Jiang X. Recent Advances in Transducers for Intravascular Ultrasound (IVUS) Imaging. SENSORS (BASEL, SWITZERLAND) 2021; 21:3540. [PMID: 34069613 PMCID: PMC8160965 DOI: 10.3390/s21103540] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022]
Abstract
As a well-known medical imaging methodology, intravascular ultrasound (IVUS) imaging plays a critical role in diagnosis, treatment guidance and post-treatment assessment of coronary artery diseases. By cannulating a miniature ultrasound transducer mounted catheter into an artery, the vessel lumen opening, vessel wall morphology and other associated blood and vessel properties can be precisely assessed in IVUS imaging. Ultrasound transducer, as the key component of an IVUS system, is critical in determining the IVUS imaging performance. In recent years, a wide range of achievements in ultrasound transducers have been reported for IVUS imaging applications. Herein, a comprehensive review is given on recent advances in ultrasound transducers for IVUS imaging. Firstly, a fundamental understanding of IVUS imaging principle, evaluation parameters and IVUS catheter are summarized. Secondly, three different types of ultrasound transducers (piezoelectric ultrasound transducer, piezoelectric micromachined ultrasound transducer and capacitive micromachined ultrasound transducer) for IVUS imaging are presented. Particularly, the recent advances in piezoelectric ultrasound transducer for IVUS imaging are extensively examined according to their different working mechanisms, configurations and materials adopted. Thirdly, IVUS-based multimodality intravascular imaging of atherosclerotic plaque is discussed. Finally, summary and perspectives on the future studies are highlighted for IVUS imaging applications.
Collapse
Affiliation(s)
- Chang Peng
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA; (C.P.); (H.W.)
| | - Huaiyu Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA; (C.P.); (H.W.)
| | | | - Xuming Dai
- Department of Cardiology, New York-Presbyterian Queens Hospital, Flushing, NY 11355, USA;
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA; (C.P.); (H.W.)
| |
Collapse
|
8
|
Zhang Q, Tan Q, Liu J, Chen W, Huang J, Lei S, Li Y, Long X, Wang C, Xiao Y, Wu D, Zheng H, Ma T. 1.5-Dimensional Circular Array Transducer for In Vivo Endoscopic Ultrasonography. IEEE Trans Biomed Eng 2021; 68:2930-2939. [PMID: 33531295 DOI: 10.1109/tbme.2021.3056140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Traditional endoscopic ultrasonography (EUS), which uses one-dimensional (1-D) curvilinear or radial/circular transducers, cannot achieve dynamic elevational focusing, and the slice thickness is not sufficient. The purpose of this study was to design and fabricate a 1.5-dimensional (1.5-D) circular array transducer to achieve dynamic elevational focusing in EUS in vivo. METHODS An 84 × 5 element 1.5-D circular array transducer was successfully developed and characterized in this study. It was fabricated with PZT-5H 1-3 composite that attained a high-electromechanical coupling factor and low-acoustic impedance. The acoustic field distribution was measured with different transmission modes to validate the 1.5-D elevational beam focusing capability. The imaging performance of the 84 × 5 element 1.5-D circular array transducer was evaluated by two wire phantoms, an agar-based cyst phantom, an ex vivo swine pancreas, and an in vivo rhesus macaque rectum based on multifocal ray-line imaging method with five-row elevational beam steering. RESULTS It was demonstrated that the transducer exhibited a central frequency of 6.47 MHz with an average bandwidth of 50%, a two-way insertion loss of 23 dB, and crosstalk of <-26 dB around the center frequency. CONCLUSION Dynamic elevational focusing and the enhancement of the slice thickness in EUS were obtained with a 1.5-D circular array transducer. SIGNIFICANCE This study promotes the development of multirow and two-dimensional array EUS probes for a more precise clinical diagnosis and treatment.
Collapse
|
9
|
Lv R, Maehara A, Matsumura M, Wang L, Wang Q, Zhang C, Guo X, Samady H, Giddens DP, Zheng J, Mintz GS, Tang D. Using optical coherence tomography and intravascular ultrasound imaging to quantify coronary plaque cap thickness and vulnerability: a pilot study. Biomed Eng Online 2020; 19:90. [PMID: 33256759 PMCID: PMC7706023 DOI: 10.1186/s12938-020-00832-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/17/2020] [Indexed: 11/11/2022] Open
Abstract
Background Detecting coronary vulnerable plaques in vivo and assessing their vulnerability have been great challenges for clinicians and the research community. Intravascular ultrasound (IVUS) is commonly used in clinical practice for diagnosis and treatment decisions. However, due to IVUS limited resolution (about 150–200 µm), it is not sufficient to detect vulnerable plaques with a threshold cap thickness of 65 µm. Optical Coherence Tomography (OCT) has a resolution of 15–20 µm and can measure fibrous cap thickness more accurately. The aim of this study was to use OCT as the benchmark to obtain patient-specific coronary plaque cap thickness and evaluate the differences between OCT and IVUS fibrous cap quantifications. A cap index with integer values 0–4 was also introduced as a quantitative measure of plaque vulnerability to study plaque vulnerability. Methods Data from 10 patients (mean age: 70.4; m: 6; f: 4) with coronary heart disease who underwent IVUS, OCT, and angiography were collected at Cardiovascular Research Foundation (CRF) using approved protocol with informed consent obtained. 348 slices with lipid core and fibrous caps were selected for study. Convolutional Neural Network (CNN)-based and expert-based data segmentation were performed using established methods previously published. Cap thickness data were extracted to quantify differences between IVUS and OCT measurements. Results For the 348 slices analyzed, the mean value difference between OCT and IVUS cap thickness measurements was 1.83% (p = 0.031). However, mean value of point-to-point differences was 35.76%. Comparing minimum cap thickness for each plaque, the mean value of the 20 plaque IVUS-OCT differences was 44.46%, ranging from 2.36% to 91.15%. For cap index values assigned to the 348 slices, the disagreement between OCT and IVUS assignments was 25%. However, for the OCT cap index = 2 and 3 groups, the disagreement rates were 91% and 80%, respectively. Furthermore, the observation of cap index changes from baseline to follow-up indicated that IVUS results differed from OCT by 80%. Conclusions These preliminary results demonstrated that there were significant differences between IVUS and OCT plaque cap thickness measurements. Large-scale patient studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Rui Lv
- School of Biological Science and Medical Engineering, Southeast University, #2 SiPailou, Nanjing, China
| | - Akiko Maehara
- The Cardiovascular Research Foundation, Columbia University, New York, USA
| | - Mitsuaki Matsumura
- The Cardiovascular Research Foundation, Columbia University, New York, USA
| | - Liang Wang
- School of Biological Science and Medical Engineering, Southeast University, #2 SiPailou, Nanjing, China
| | - Qingyu Wang
- School of Biological Science and Medical Engineering, Southeast University, #2 SiPailou, Nanjing, China
| | - Caining Zhang
- School of Biological Science and Medical Engineering, Southeast University, #2 SiPailou, Nanjing, China
| | - Xiaoya Guo
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Habib Samady
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Don P Giddens
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Gary S Mintz
- The Cardiovascular Research Foundation, Columbia University, New York, USA
| | - Dalin Tang
- School of Biological Science and Medical Engineering, Southeast University, #2 SiPailou, Nanjing, China. .,Mathematical Sciences Department, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA.
| |
Collapse
|
10
|
Sung JH, Jeong EY, Jeong JS. Intravascular Ultrasound Transducer by Using Polarization Inversion Technique for Tissue Harmonic Imaging: Modeling and Experiments. IEEE Trans Biomed Eng 2020; 67:3380-3391. [PMID: 32286955 DOI: 10.1109/tbme.2020.2986284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Intravascular ultrasound (IVUS) tissue harmonic imaging (THI) is a useful vessel imaging technique that can provide deep penetration depth as well as high spatial and contrast resolution. Typically, a high-frequency IVUS transducer for THI requires a broad bandwidth or dual-frequency bandwidth. However, it is very difficult to make an IVUS transducer with a frequency bandwidth covering from the fundamental frequency to the second harmonic or a dual-peak at the desired frequency. To solve this problem, in this study, we applied the polarization inversion technique (PIT) to the IVUS transducer for THI. The PIT makes it relatively easy to design IVUS transducers with suitable frequency characteristics for THI depending on the inversion ratio of the piezoelectric layer and specifications of the passive materials. In this study, two types of IVUS transducers based on the PIT were developed for THI. One is a front-side inversion layer (FSIL) transducer with a broad bandwidth, and the other is a back-side inversion layer (BSIL) transducer with a dual-frequency bandwidth. These transducers were designed using finite element analysis (FEA)-based simulation, and the prototype transducers were fabricated. Subsequently, the performance was evaluated by not only electrical impedance and pulse-echo response tests but also B-mode imaging tests with a 25 μm tungsten wire and tissue-mimicking gelatin phantoms. The FEA simulation and experimental results show that the proposed scheme can successfully implement the tissue harmonic IVUS image, and thus it can be one of the promising techniques for developing IVUS transducers for THI.
Collapse
|
11
|
Zhang Q, Li Y, Liu J, Huang J, Tan Q, Wang C, Xiao Y, Zheng H, Ma T. A PMN-PT Composite-Based Circular Array for Endoscopic Ultrasonic Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:2354-2362. [PMID: 32746191 DOI: 10.1109/tuffc.2020.3005029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Endoscopic ultrasound (EUS), an interventional imaging technology, utilizes a circular array to delineate the cross-sectional morphology of internal organs through the gastrointestinal (GI) track. However, the performance of conventional EUS transducers has scope for improvement because of the ordinary piezoelectric parameters of Pb(Zr, Ti) [Formula: see text] (PZT) bulk ceramic as well as its inferior mechanical flexibility which can cause material cracks during the circular shaping process. To achieve both prominent imaging capabilities and high device reliability, a 128-element 6.8-MHz circular array transducer is developed using a Pb(Mg [Formula: see text]Nb [Formula: see text]) [Formula: see text]-PbTiO3 (PMN-PT) 1-3 composite with a coefficient of high electromechanical coupling ( [Formula: see text]) and good mechanical flexibility. The characterization results exhibit a large average bandwidth of 58%, a high average sensitivity of 100 mVpp, and a crosstalk of less than -37 dB near the center frequency. Imaging performance of the PMN-PT composite-based array transducer is evaluated by a wire phantom, an anechoic cyst phantom, and an ex-vivo swine intestine. This work demonstrates the superior performance of the crucial ultrasonic device based on an advanced PMN-PT composite material and may lead to the development of next-generation biomedical ultrasonic devices for clinical diagnosis and treatment.
Collapse
|