1
|
Urban M, Vasconcelos L, Brom K, Dave J, Kijanka P. Shear wave elastography primer for the abdominal radiologist. Abdom Radiol (NY) 2025:10.1007/s00261-025-04806-1. [PMID: 39883164 DOI: 10.1007/s00261-025-04806-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/31/2025]
Abstract
PURPOSE Shear wave elastography (SWE) provides a means for adding information about the mechanical properties of tissues to a diagnostic ultrasound examination. It is important to understand the physics and methods by which the measurements are made to aid interpretation of the results as they relate to disease processes. METHODS The components of how ultrasound is used to generate shear waves and make measurements of the induced motion are reviewed. The physics of shear wave propagation are briefly described for elastic and viscoelastic tissues. Additionally, shear wave propagation in homogeneous and inhomogeneous cases is addressed. RESULTS SWE technology has been implemented by many clinical vendors with different capabilities. Various quality metrics are used to define valid measurements based on aspects of the shear wave signals or wave velocity estimates. CONCLUSION There are many uses for SWE in abdominal imaging, but it is important to understand how the measurements are performed to gauge their utility for diagnosis of different conditions. Continued efforts to make the technology robust in complex clinical situations are ongoing, but many applications actively benefit from added information about tissue mechanical properties for a more holistic view of the patient for diagnosis or assessment of prognosis and treatment management.
Collapse
|
2
|
Huang N, Cao X, Li Z, Wang H, Zhao W, Shi J. Application of mean maximum Young's modulus value as a new parameter for differential diagnosis of prostate diseases. Sci Rep 2025; 15:3832. [PMID: 39885288 PMCID: PMC11782497 DOI: 10.1038/s41598-025-88263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/28/2025] [Indexed: 02/01/2025] Open
Abstract
Transrectal shear wave elastography (T-SWE) can be used non-invasively to diagnose prostate cancer (PCa) and benign prostatic hyperplasia (BPH). The prostate tissue can be viewed as an ellipsoidal sphere with viscoelastic characterization. Linear elastic model has been used to characterize soft tissues, and the simplification of partial characterization provides incomplete information. This retrospective study included 144 suspected prostate disease patients who had completed T-SWE from our hospital. The mean maximum Young's modulus value (m-Emax) of the maximum transverse section of prostate was obtained by calculating the mean of 12 measured maximum Young's modulus value (Emax) in the four quadrants. M-Emax was statistically correlated with and good discriminability for PCa and BPH. There was a nonlinear dose-response relationship between m-Emax and PCa risk, as well as between m-Emax and BPH risk. The relationship between m-Emax and prostate disease was consistent with the nonlinear effect showed by tissues as an elastic model in normal physiological activity areas. When stiffness increasing, the stress-strain relationship was approximates linear. M-Emax can be used as an innovative parameter of Young's modulus value, which represents the stiffness of prostate tissue in T-SWE, and has a good effect in the differential diagnosis of prostate diseases.
Collapse
Affiliation(s)
- Nailei Huang
- Nailei Huang Department of Ultrasound, The First Hospital of Hebei Medical University, Shijiazhuang , 050031, Hebei Province, China
| | - Xinge Cao
- Xinge Cao Department of Ultrasound, The First Hospital of Hebei Medical University, Shijiazhuang , 050031, Hebei Province, China
| | - Zhong Li
- Zhong Li Department of Urology, The First Hospital of Hebei Medical University, Shijiazhuang City, 050031, Hebei Province, China
| | - Haoyu Wang
- Haoyu Wang Department of Ultrasound, The First Hospital of Hebei Medical University, Shijiazhuang City, 050031, Hebei Province, China
| | - Wei Zhao
- Wei Zhao Department of Ultrasound, The First Hospital of Hebei Medical University, 89 Donggang Road, Yuhua District, Shijiazhuang City, 050031, Hebei Province, China.
| | - Jun Shi
- Jun Shi Department of Ultrasound, The First Hospital of Hebei Medical University, Shijiazhuang City, 050031, Hebei Province, China.
| |
Collapse
|
3
|
Abadi E, Barufaldi B, Lago M, Badal A, Mello-Thoms C, Bottenus N, Wangerin KA, Goldburgh M, Tarbox L, Beaucage-Gauvreau E, Frangi AF, Maidment A, Kinahan PE, Bosmans H, Samei E. Toward widespread use of virtual trials in medical imaging innovation and regulatory science. Med Phys 2024; 51:9394-9404. [PMID: 39369717 PMCID: PMC11659034 DOI: 10.1002/mp.17442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024] Open
Abstract
The rapid advancement in the field of medical imaging presents a challenge in keeping up to date with the necessary objective evaluations and optimizations for safe and effective use in clinical settings. These evaluations are traditionally done using clinical imaging trials, which while effective, pose several limitations including high costs, ethical considerations for repetitive experiments, time constraints, and lack of ground truth. To tackle these issues, virtual trials (aka in silico trials) have emerged as a promising alternative, using computational models of human subjects and imaging devices, and observer models/analysis to carry out experiments. To facilitate the widespread use of virtual trials within the medical imaging research community, a major need is to establish a common consensus framework that all can use. Based on the ongoing efforts of an AAPM Task Group (TG387), this article provides a comprehensive overview of the requirements for establishing virtual imaging trial frameworks, paving the way toward their widespread use within the medical imaging research community. These requirements include credibility, reproducibility, and accessibility. Credibility assessment involves verification, validation, uncertainty quantification, and sensitivity analysis, ensuring the accuracy and realism of computational models. A proper credibility assessment requires a clear context of use and the questions that the study is intended to objectively answer. For reproducibility and accessibility, this article highlights the need for detailed documentation, user-friendly software packages, and standard input/output formats. Challenges in data and software sharing, including proprietary data and inconsistent file formats, are discussed. Recommended solutions to enhance accessibility include containerized environments and data-sharing hubs, along with following standards such as CDISC (Clinical Data Interchange Standards Consortium). By addressing challenges associated with credibility, reproducibility, and accessibility, virtual imaging trials can be positioned as a powerful and inclusive resource, advancing medical imaging innovation and regulatory science.
Collapse
Affiliation(s)
- Ehsan Abadi
- Center for Virtual Imaging Trials, Carl E. Ravin Advanced Imaging Laboratories, Departments of Radiology and Electrical & Computer Engineering, Medical Physics Graduate Program, Duke University, Durham, North Carolina, USA
| | - Bruno Barufaldi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Miguel Lago
- Division of Imaging, Diagnostics and Software Reliability, OSEL, CDRH, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Andreu Badal
- Division of Imaging, Diagnostics and Software Reliability, OSEL, CDRH, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | | | - Nick Bottenus
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | - Kristen A. Wangerin
- Research and Development, Pharmaceutical Diagnostics, GE HealthCare, Marlborough, Massachusetts, USA
| | | | - Lawrence Tarbox
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Erica Beaucage-Gauvreau
- Institute of Physics-based Modeling for in silico Health (iSi Health), KU Leuven, Leuven, Belgium
| | - Alejandro F. Frangi
- Christabel Pankhurst Institute, Division of Informatics, Imaging and Data Sciences, Department of Computer Science, University of Manchester, Manchester, UK
- Alan Turing Institute, British Library, London, UK
| | - Andrew Maidment
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul E. Kinahan
- Departments of Radiology, Bioengineering, and Physics, University of Washington, Seattle, Washington, USA
| | - Hilde Bosmans
- Departments of Radiology and Medical Radiation Physics, KU Leuven, Leuven, Belgium
| | - Ehsan Samei
- Center for Virtual Imaging Trials, Carl E. Ravin Advanced Imaging Laboratories, Departments of Radiology and Electrical & Computer Engineering, Medical Physics Graduate Program, Duke University, Durham, North Carolina, USA
| |
Collapse
|
4
|
Chen X, Li X, Turco S, van Sloun RJG, Mischi M. Ultrasound Viscoelastography by Acoustic Radiation Force: A State-of-the-Art Review. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:536-557. [PMID: 38526897 DOI: 10.1109/tuffc.2024.3381529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Ultrasound elastography (USE) is a promising tool for tissue characterization as several diseases result in alterations of tissue structure and composition, which manifest as changes in tissue mechanical properties. By imaging the tissue response to an applied mechanical excitation, USE mimics the manual palpation performed by clinicians to sense the tissue elasticity for diagnostic purposes. Next to elasticity, viscosity has recently been investigated as an additional, relevant, diagnostic biomarker. Moreover, since biological tissues are inherently viscoelastic, accounting for viscosity in the tissue characterization process enhances the accuracy of the elasticity estimation. Recently, methods exploiting different acquisition and processing techniques have been proposed to perform ultrasound viscoelastography. After introducing the physics describing viscoelasticity, a comprehensive overview of the currently available USE acquisition techniques is provided, followed by a structured review of the existing viscoelasticity estimators classified according to the employed processing technique. These estimators are further reviewed from a clinical usage perspective, and current outstanding challenges are discussed.
Collapse
|
5
|
Hossain MM, Konofagou EE. Feasibility of Phase Velocity Imaging Using Multi Frequency Oscillation-Shear Wave Elastography. IEEE Trans Biomed Eng 2024; 71:607-620. [PMID: 37647191 PMCID: PMC10873514 DOI: 10.1109/tbme.2023.3309996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
OBJECTIVE To assess viscoelasticity, a pathologically relevant biomarker, shear wave elastography (SWE) generally uses phase velocity (PV) dispersion relationship generated via pulsed acoustic radiation force (ARF) excitation pulse. In this study, a multi-frequency oscillation (MFO)- excitation pulse with higher weight to higher frequencies is proposed to generate PV images via the generation of motion with energy concentrated at the target frequencies in contrast to the broadband frequency motion generated in pulsed SWE (PSWE). METHODS The feasibility of MFO-SWE to generate PV images at 100 to 1000 Hz in steps of 100 Hz was investigated by imaging 6 and 70 kPa inclusions with 6.5 and 10.4 mm diameter and ex vivo bovine liver with and without the presence of an aberration layer and chicken muscle ex vivo, and 4T1 mouse breast tumor, in vivo with comparisons to PSWE. RESULTS MFO-SWE-derived CNR was statistically higher than PSWE for 6 kPa (both with and without aberration) and 70 kPa (with aberration) inclusions and derived SNR of the liver was statistically higher than PSWE at higher frequency (600-1000 Hz). Quantitatively, at 600-1000 Hz, MFO-SWE improved CNR of inclusions (without and with) aberration on an average by (8.2 and 156)% and of the tumor by 122%, respectively, and improved SNR of the liver (without and with) aberration by (20.2 and 51.5)% and of chicken muscle by 72%, respectively compared to the PSWE. CONCLUSIONS AND SIGNIFICANCE These results indicate the advantages of MFO-SWE to improve PV estimation at higher frequencies which could improve viscoelasticity quantification and feature delineation.
Collapse
|
6
|
Seliverstova E, Caenen A, Bézy S, Nooijens S, Voigt JU, D'hooge J. Comparing Myocardial Shear Wave Propagation Velocity Estimation Methods Based on Tissue Displacement, Velocity and Acceleration Data. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:2207-2216. [PMID: 35963827 DOI: 10.1016/j.ultrasmedbio.2022.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/25/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Shear wave elastography (SWE) is a promising technique used to assess cardiac function through the evaluation of cardiac stiffness non-invasively. However, in the literature, SWE varies in terms of tissue motion data (displacement, velocity or acceleration); method used to characterize mechanical wave propagation (time domain [TD] vs. frequency domain [FD]); and the metric reported (wave speed [WS], shear or Young's modulus). This variety of reported methodologies complicates comparison of reported findings and sheds doubt on which methodology better approximates the true myocardial properties. We therefore conducted a simulation study to investigate the accuracy of various SWE data analysis approaches while varying cardiac geometry and stiffness. Lower WS values were obtained by the TD method compared with the FD method. Acceleration-based WS estimates in the TD were systematically larger than those based on velocity (∼10% difference). These observations were confirmed by TD analysis of 32 in vivo SWE mechanical wave measurements. In vivo data quality is typically too low for accurate FD analysis. Therefore, our study suggests using acceleration-based TD analysis for in vivo SWE to minimize underestimation of the true WS and, thus, to maximize the sensitivity of SWE to detect stiffness changes resulting from pathology.
Collapse
Affiliation(s)
| | - Annette Caenen
- Katholieke Universiteit Leuven, UZ Herestraat 49-Box 7003, Leuven 3000, Belgium; Ghent University, Ghent, Belgium
| | - Stephanie Bézy
- Katholieke Universiteit Leuven, UZ Herestraat 49-Box 7003, Leuven 3000, Belgium
| | - Sjoerd Nooijens
- Katholieke Universiteit Leuven, UZ Herestraat 49-Box 7003, Leuven 3000, Belgium
| | - Jens-Uwe Voigt
- Katholieke Universiteit Leuven, UZ Herestraat 49-Box 7003, Leuven 3000, Belgium
| | - Jan D'hooge
- Katholieke Universiteit Leuven, UZ Herestraat 49-Box 7003, Leuven 3000, Belgium
| |
Collapse
|
7
|
Yazdani L, Bhatt M, Rafati I, Tang A, Cloutier G. The Revisited Frequency-Shift Method for Shear Wave Attenuation Computation and Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2061-2074. [PMID: 35404815 DOI: 10.1109/tuffc.2022.3166448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ultrasound (US) shear wave (SW) elastography has been widely studied and implemented on clinical systems to assess the elasticity of living organs. Imaging of SW attenuation reflecting viscous properties of tissues has received less attention. A revisited frequency shift (R-FS) method is proposed to improve the robustness of SW attenuation imaging. Performances are compared with the FS method that we originally proposed and with the two-point frequency shift (2P-FS) and attenuation measuring US SW elastography (AMUSE) methods. In the proposed R-FS method, the shape parameter of the gamma distribution fitting SW spectra is assumed to vary with distance, in contrast to FS. Second, an adaptive random sample consensus (A-RANSAC) line fitting method is used to prevent outlier attenuation values in the presence of noise. Validation was made on ten simulated phantoms with two viscosities (0.5 and 2 Pa [Formula: see text]) and different noise levels (15 to -5 dB), two experimental homogeneous gel phantoms, and six in vivo liver acquisitions on awake ducks (including three normal and three fatty duck livers). According to the conducted experiments, R-FS revealed mean reductions in coefficients of variation (CV) of 62.6% on simulations, 62.5% with phantoms, and 62.3% in vivo compared with FS. Corresponding reductions compared with 2P-FS were 45.4%, 77.1%, and 62.0%, respectively. Reductions in normalized root-mean-square errors for simulations were 63.9% and 48.7% with respect to FS and 2P-FS, respectively.
Collapse
|
8
|
Caenen A, Pernot M, Nightingale KR, Voigt JU, Vos HJ, Segers P, D'hooge J. Assessing cardiac stiffness using ultrasound shear wave elastography. Phys Med Biol 2021; 67. [PMID: 34874312 DOI: 10.1088/1361-6560/ac404d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/06/2021] [Indexed: 11/11/2022]
Abstract
Shear wave elastography offers a new dimension to echocardiography: it measures myocardial stiffness. Therefore, it could provide additional insights into the pathophysiology of cardiac diseases affecting myocardial stiffness and potentially improve diagnosis or guide patient treatment. The technique detects fast mechanical waves on the heart wall with high frame rate echography, and converts their propagation velocity into a stiffness value. A proper interpretation of shear wave data is required as the shear wave interacts with the intrinsic, yet dynamically changing geometrical and material characteristics of the heart under pressure. This dramatically alters the wave physics of the propagating wave, demanding adapted processing methods compared to other shear wave elastography applications as breast tumor and liver stiffness staging. Furthermore, several advanced analysis methods have been proposed to extract supplementary material features such as viscosity and anisotropy, potentially offering additional diagnostic value. This review explains the general mechanical concepts underlying cardiac shear wave elastography and provides an overview of the preclinical and clinical studies within the field. We also identify the mechanical and technical challenges ahead to make shear wave elastography a valuable tool for clinical practice.
Collapse
Affiliation(s)
- Annette Caenen
- Institute for Biomedical Engineering and Technology, Ghent University, Ghent, BELGIUM
| | - Mathieu Pernot
- INSERM U979 "Physics for medicine", ESPCI Paris, PSL Research University, CNRS UMR 7587, Institut Langevin, Paris, FRANCE
| | - Kathryn R Nightingale
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, UNITED STATES
| | - Jens-Uwe Voigt
- Department of Cardiovascular Sciences, KU Leuven, Leuven, BELGIUM
| | - Hendrik J Vos
- Department of Biomedical Engineering, Erasmus MC, Rotterdam, Zuid-Holland, NETHERLANDS
| | - Patrick Segers
- Institute of Biomedical Engineering and Technology, Universiteit Gent, Gent, BELGIUM
| | - Jan D'hooge
- Department of Cardiovascular Sciences, KU Leuven, Leuven, BELGIUM
| |
Collapse
|
9
|
Sarvazyan AP, Rudenko OV, Fatemi M. Acoustic Radiation Force: A Review of Four Mechanisms for Biomedical Applications. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:3261-3269. [PMID: 34520353 DOI: 10.1109/tuffc.2021.3112505] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Radiation force is a universal phenomenon in any wave motion where the wave energy produces a static or transient force on the propagation medium. The theory of acoustic radiation force (ARF) dates back to the early 19th century. In recent years, there has been an increasing interest in the biomedical applications of ARF. Following a brief history of ARF, this article describes a concise theory of ARF under four physical mechanisms of radiation force generation in tissue-like media. These mechanisms are primarily based on the dissipation of acoustic energy of propagating waves, the reflection of the incident wave, gradients of the compressional wave speeds, and the spatial variations of energy density in standing acoustic waves. Examples describing some of the practical applications of ARF under each mechanism are presented. This article concludes with a discussion on selected ideas for potential future applications of ARF in biomedicine.
Collapse
|
10
|
Wiseman LM, Urban MW, McGough RJ. A parametric evaluation of shear wave speeds estimated with time-of-flight calculations in viscoelastic media. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:1349. [PMID: 33003848 PMCID: PMC7482672 DOI: 10.1121/10.0001813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 07/30/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Shear wave elasticity imaging (SWEI) uses an acoustic radiation force to generate shear waves, and then soft tissue mechanical properties are obtained by analyzing the shear wave data. In SWEI, the shear wave speed is often estimated with time-of-flight (TOF) calculations. To characterize the errors produced by TOF calculations, three-dimensional (3D) simulated shear waves are described by time-domain Green's functions for a Kelvin-Voigt model evaluated for multiple combinations of the shear elasticity and the shear viscosity. Estimated shear wave speeds are obtained from cross correlations and time-to-peak (TTP) calculations applied to shear wave particle velocities and shear wave particle displacements. The results obtained from these 3D shear wave simulations indicate that TTP calculations applied to shear wave particle displacements yield effective estimates of the shear wave speed if noise is absent, but cross correlations applied to shear wave particle displacements are more robust when the effects of noise and shear viscosity are included. The results also show that shear wave speeds estimated with TTP methods and cross correlations using shear wave particle velocities are more sensitive to increases in shear viscosity and noise, which suggests that superior estimates of the shear wave speed are obtained from noiseless or noisy shear wave particle displacements.
Collapse
Affiliation(s)
- Luke M Wiseman
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Matthew W Urban
- Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Robert J McGough
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
11
|
Wiseman LM, Urban MW, McGough RJ. A parametric evaluation of shear wave speeds estimated with time-of-flight calculations in viscoelastic media. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:1349. [PMID: 33003848 PMCID: PMC7482672 DOI: 10.1121/10.0001813#suppl] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 07/30/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Shear wave elasticity imaging (SWEI) uses an acoustic radiation force to generate shear waves, and then soft tissue mechanical properties are obtained by analyzing the shear wave data. In SWEI, the shear wave speed is often estimated with time-of-flight (TOF) calculations. To characterize the errors produced by TOF calculations, three-dimensional (3D) simulated shear waves are described by time-domain Green's functions for a Kelvin-Voigt model evaluated for multiple combinations of the shear elasticity and the shear viscosity. Estimated shear wave speeds are obtained from cross correlations and time-to-peak (TTP) calculations applied to shear wave particle velocities and shear wave particle displacements. The results obtained from these 3D shear wave simulations indicate that TTP calculations applied to shear wave particle displacements yield effective estimates of the shear wave speed if noise is absent, but cross correlations applied to shear wave particle displacements are more robust when the effects of noise and shear viscosity are included. The results also show that shear wave speeds estimated with TTP methods and cross correlations using shear wave particle velocities are more sensitive to increases in shear viscosity and noise, which suggests that superior estimates of the shear wave speed are obtained from noiseless or noisy shear wave particle displacements.
Collapse
Affiliation(s)
- Luke M Wiseman
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Matthew W Urban
- Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Robert J McGough
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
12
|
Rus G, Faris IH, Torres J, Callejas A, Melchor J. Why Are Viscosity and Nonlinearity Bound to Make an Impact in Clinical Elastographic Diagnosis? SENSORS (BASEL, SWITZERLAND) 2020; 20:E2379. [PMID: 32331295 PMCID: PMC7219338 DOI: 10.3390/s20082379] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/24/2022]
Abstract
The adoption of multiscale approaches by the biomechanical community has caused a major improvement in quality in the mechanical characterization of soft tissues. The recent developments in elastography techniques are enabling in vivo and non-invasive quantification of tissues' mechanical properties. Elastic changes in a tissue are associated with a broad spectrum of pathologies, which stems from the tissue microstructure, histology and biochemistry. This knowledge is combined with research evidence to provide a powerful diagnostic range of highly prevalent pathologies, from birth and labor disorders (prematurity, induction failures, etc.), to solid tumors (e.g., prostate, cervix, breast, melanoma) and liver fibrosis, just to name a few. This review aims to elucidate the potential of viscous and nonlinear elastic parameters as conceivable diagnostic mechanical biomarkers. First, by providing an insight into the classic role of soft tissue microstructure in linear elasticity; secondly, by understanding how viscosity and nonlinearity could enhance the current diagnosis in elastography; and finally, by compounding preliminary investigations of those elastography parameters within different technologies. In conclusion, evidence of the diagnostic capability of elastic parameters beyond linear stiffness is gaining momentum as a result of the technological and imaging developments in the field of biomechanics.
Collapse
Affiliation(s)
- Guillermo Rus
- Ultrasonics Group (TEP-959), Department of Structural Mechanics, University of Granada, 18071 Granada, Spain; (G.R.); (I.H.F.); (A.C.)
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain;
- Excellence Research Unit “ModelingNature” MNat UCE.PP2017.03, University of Granada, 18071 Granada, Spain
| | - Inas H. Faris
- Ultrasonics Group (TEP-959), Department of Structural Mechanics, University of Granada, 18071 Granada, Spain; (G.R.); (I.H.F.); (A.C.)
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain;
| | - Jorge Torres
- Ultrasonics Group (TEP-959), Department of Structural Mechanics, University of Granada, 18071 Granada, Spain; (G.R.); (I.H.F.); (A.C.)
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain;
| | - Antonio Callejas
- Ultrasonics Group (TEP-959), Department of Structural Mechanics, University of Granada, 18071 Granada, Spain; (G.R.); (I.H.F.); (A.C.)
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain;
| | - Juan Melchor
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain;
- Excellence Research Unit “ModelingNature” MNat UCE.PP2017.03, University of Granada, 18071 Granada, Spain
- Department of Statistics and Operations Research, University of Granada, 18071 Granada, Spain
| |
Collapse
|