1
|
Tang S, Weiner B, Taraballi F, Haase C, Stetco E, Mehta SM, Shajudeen P, Hogan M, De Rosa E, Horner PJ, Grande-Allen KJ, Shi Z, Karmonik C, Tasciotti E, Righetti R. Assessment of spinal cord injury using ultrasound elastography in a rabbit model in vivo. Sci Rep 2023; 13:15323. [PMID: 37714920 PMCID: PMC10504274 DOI: 10.1038/s41598-023-41172-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023] Open
Abstract
The effect of the mechanical micro-environment on spinal cord injury (SCI) and treatment effectiveness remains unclear. Currently, there are limited imaging methods that can directly assess the localized mechanical behavior of spinal cords in vivo. In this study, we apply new ultrasound elastography (USE) techniques to assess SCI in vivo at the site of the injury and at the time of one week post injury, in a rabbit animal model. Eleven rabbits underwent laminectomy procedures. Among them, spinal cords of five rabbits were injured during the procedure. The other six rabbits were used as control. Two neurological statuses were achieved: non-paralysis and paralysis. Ultrasound data were collected one week post-surgery and processed to compute strain ratios. Histologic analysis, mechanical testing, magnetic resonance imaging (MRI), computerized tomography and MRI diffusion tensor imaging (DTI) were performed to validate USE results. Strain ratios computed via USE were found to be significantly different in paralyzed versus non-paralyzed rabbits. The myelomalacia histologic score and spinal cord Young's modulus evaluated in selected animals were in good qualitative agreement with USE assessment. It is feasible to use USE to assess changes in the spinal cord of the presented animal model. In the future, with more experimental data available, USE may provide new quantitative tools for improving SCI diagnosis and prognosis.
Collapse
Affiliation(s)
- Songyuan Tang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Bradley Weiner
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Francesca Taraballi
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
- Department of Orthopedics and Sports Medicine, Center for Musculoskeletal Regeneration, Houston Methodist Hospital, Houston, TX, USA
| | - Candice Haase
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
- Department of Orthopedics and Sports Medicine, Center for Musculoskeletal Regeneration, Houston Methodist Hospital, Houston, TX, USA
| | - Eliana Stetco
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
- Department of Orthopedics and Sports Medicine, Center for Musculoskeletal Regeneration, Houston Methodist Hospital, Houston, TX, USA
| | | | - Peer Shajudeen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Matthew Hogan
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Enrica De Rosa
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
- Department of Orthopedics and Sports Medicine, Center for Musculoskeletal Regeneration, Houston Methodist Hospital, Houston, TX, USA
| | - Philip J Horner
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | | | - Zhaoyue Shi
- Translational Imaging Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Christof Karmonik
- Translational Imaging Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Ennio Tasciotti
- Department of Human Sciences and Promotion of Quality of Life, San Raffaele Roma Open University and IRCCS San Raffaele Pisana, 00166, Rome, Italy
| | - Raffaella Righetti
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
2
|
Identification of ultrasound imaging markers to quantify long bone regeneration in a segmental tibial defect sheep model in vivo. Sci Rep 2020; 10:13646. [PMID: 32788593 PMCID: PMC7423946 DOI: 10.1038/s41598-020-70426-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
The healing of large bone defects has been investigated for decades due to its complexity and clinical relevance. Ultrasound (US) methods have shown promise in monitoring bone healing, but no quantitative method to assess regenerated bone morphology in US images has been presented yet. In this study, we investigate new US morphometric parameters to quantify bone regeneration in vivo. A segmental tibial defect was surgically created and stabilized in a sheep animal model. US and computed tomography (CT) imaging data were collected two months post-surgery. New bone was assessed, reconstructed and quantified from the US and CT data using 3 morphometric parameters: the new-bone bulk (NBB), new-bone surface (NBS) and new-bone contact (NBC). The distance (mm) between surface reconstructions from repeated US was \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0.49\pm 0.30$$\end{document}0.49±0.30 and from US and CT was \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0.89\pm 0.49$$\end{document}0.89±0.49. In the mid-shaft of the defected tibia, US measurements of NBB, NBS and NBC were significantly higher than the corresponding CT measurements (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p < 0.001$$\end{document}p<0.001). Based on our results, we conclude that US may complement CT to reconstruct and quantify bone regrowth, especially in its early stages.
Collapse
|