1
|
Liu Y, Hossain MM, Li XJ, Konofagou EE. Amplitude-Modulation Frequency Optimization for Enhancing Harmonic Motion Imaging Performance of Breast Tumors in the Clinic. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:169-179. [PMID: 39428259 PMCID: PMC11758706 DOI: 10.1016/j.ultrasmedbio.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/22/2024]
Abstract
OBJECTIVE Elastography images tissue mechanical responses and infers the underlying properties to aid diagnosis and treatment response monitoring. The estimation of absolute or relative tumor properties may vary with dimensions even when the mechanical properties remain constant. Harmonic motion imaging (HMI) uses amplitude-modulated (AM) focused ultrasound to interrogate the targeted tissue's viscoelastic properties. In this study, effects of AM frequencies on HMI were investigated in terms of inclusion relative stiffness and size estimation. METHODS AM frequencies from 200 to 600 Hz in steps of 100 Hz were considered using a 5.3-kPa phantom with cylindrical inclusions (Young's modulus: 22, 31, 44, 56 kPa, and diameter: 4.8, 8.1, 13.6, 19.8 mm) to optimize the performance of HMI in characterizing tumors with the same mechanical properties and of different dimensions. RESULTS Consistent displacement ratios (DRs) (17.5% variation) of the inclusion to background were obtained with 200-Hz AM for breast-tumor-mimicking inclusions albeit a suboptimal inclusion size estimation obtained. 400-Hz was otherwise used for small and low-contrast inclusions (4.8 mm, 22 or 31 kPa). A linear relationship (R2 = 0.9043) was found between the inverse DR at these frequencies and the Young's modulus ratio. 400 Hz obtained the most accurate inclusion size estimation with an overall estimation error on the lateral dimension of 0.5 mm. In vivo imaging of breast cancer patients (n = 5) was performed at 200 or 400 Hz. CONCLUSION The results presented herein indicate that the HMI AM frequency could be optimized adaptively in cases of different applications, i.e., at 200 or 400 Hz, depending on whether aimed for consistent DR measurement for tumor response assessment or tumor margin delineation for surgical planning. HMI may thus be capable of predicting the pathologic endpoint of tumors in response to neoadjuvant chemotherapy (NACT) as early as 3 weeks into treatment.
Collapse
Affiliation(s)
- Yangpei Liu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Md Murad Hossain
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Xiaoyue Judy Li
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
2
|
Richardson JB, Moore CJ, Gallippi CM. Quantitative Viscoelastic Response (QVisR): Direct Estimation of Viscoelasticity With Neural Networks. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:910-923. [PMID: 38781057 PMCID: PMC11299428 DOI: 10.1109/tuffc.2024.3404457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
We present a machine learning method to directly estimate viscoelastic moduli from displacement time-series profiles generated by viscoelastic response (VisR) ultrasound excitations. VisR uses two colocalized acoustic radiation force (ARF) pushes to approximate tissue viscoelastic creep response and tracks displacements on-axis to measure the material relaxation. A fully connected neural network is trained to learn a nonlinear mapping from VisR displacements, the push focal depth, and the measurement axial depth to the material elastic and viscous moduli. In this work, we assess the validity of quantitative VisR (QVisR) in simulated materials, propose a method of domain adaption to phantom VisR displacements, and show in vivo estimates from a clinically acquired dataset.
Collapse
|
3
|
Hossain MM, Konofagou EE. Feasibility of Phase Velocity Imaging Using Multi Frequency Oscillation-Shear Wave Elastography. IEEE Trans Biomed Eng 2024; 71:607-620. [PMID: 37647191 PMCID: PMC10873514 DOI: 10.1109/tbme.2023.3309996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
OBJECTIVE To assess viscoelasticity, a pathologically relevant biomarker, shear wave elastography (SWE) generally uses phase velocity (PV) dispersion relationship generated via pulsed acoustic radiation force (ARF) excitation pulse. In this study, a multi-frequency oscillation (MFO)- excitation pulse with higher weight to higher frequencies is proposed to generate PV images via the generation of motion with energy concentrated at the target frequencies in contrast to the broadband frequency motion generated in pulsed SWE (PSWE). METHODS The feasibility of MFO-SWE to generate PV images at 100 to 1000 Hz in steps of 100 Hz was investigated by imaging 6 and 70 kPa inclusions with 6.5 and 10.4 mm diameter and ex vivo bovine liver with and without the presence of an aberration layer and chicken muscle ex vivo, and 4T1 mouse breast tumor, in vivo with comparisons to PSWE. RESULTS MFO-SWE-derived CNR was statistically higher than PSWE for 6 kPa (both with and without aberration) and 70 kPa (with aberration) inclusions and derived SNR of the liver was statistically higher than PSWE at higher frequency (600-1000 Hz). Quantitatively, at 600-1000 Hz, MFO-SWE improved CNR of inclusions (without and with) aberration on an average by (8.2 and 156)% and of the tumor by 122%, respectively, and improved SNR of the liver (without and with) aberration by (20.2 and 51.5)% and of chicken muscle by 72%, respectively compared to the PSWE. CONCLUSIONS AND SIGNIFICANCE These results indicate the advantages of MFO-SWE to improve PV estimation at higher frequencies which could improve viscoelasticity quantification and feature delineation.
Collapse
|
4
|
Liu Y, Saharkhiz N, Hossain MM, Konofagou EE. Optimization of the Tracking Beam Sequence in Harmonic Motion Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:102-116. [PMID: 37917522 PMCID: PMC10871064 DOI: 10.1109/tuffc.2023.3329729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Harmonic motion imaging (HMI) is an ultrasound elastography technique that estimates the viscoelastic properties of tissues by inducing localized oscillatory motion using focused ultrasound (FUS). The resulting displacement, assumed to be inversely proportional to the tissue local stiffness, is estimated using an imaging array based on RF speckle tracking. In conventional HMI, this is accomplished with plane-wave (PW) imaging, which inherently suffers from low lateral resolution. Coherent PW compounding (PWC) leverages spatial and temporal resolution using synthetic focusing in transmit. In this study, we introduced focused imaging with parallel tracking in HMI and compared parallel tracking of various transmit F-numbers (F/2.6, 3, 4, and 5) qualitatively and quantitatively with PW and PWC imaging at various compounded angle ranges (6°, 12°, and 18°). An in silico model of a 56-kPa spherical inclusion (diameter: 3.6 mm) embedded in a 5.3-kPa background and a 5.3-kPa elastic phantom with cylindrical inclusions (Young's moduli: 22-56 kPa, diameters: 2.0-8.6 mm) were imaged to assess different tracking beam sequences. Speckle biasing in displacement estimation associated with parallel tracking was also investigated and concluded to be negligible in HMI. Parallel tracking in receive (Rx) resulted in 2%-7% and 8%-12% increase compared to PW imaging ( ) in HMI contrast and contrast-to-noise ratio in silico and phantoms. Focused imaging with parallel tracking in Rx was concluded to be most robust among PW and PWC imaging for displacement estimation, and its preclinical feasibility was demonstrated in postsurgical human cancerous breast tissue specimens and in vivo murine models of breast cancer.
Collapse
|
5
|
Liu Z, Liu W, Chen Q, Hu Y, Li Y, Zheng X, Fang D, Liu H, Sun C. Real-Time Nondestructive Viscosity Measurement of Soft Tissue Based on Viscoelastic Response Optical Coherence Elastography. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6019. [PMID: 37687714 PMCID: PMC10488803 DOI: 10.3390/ma16176019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Viscoelasticity of the soft tissue is an important mechanical factor for disease diagnosis, biomaterials testing and fabrication. Here, we present a real-time and high-resolution viscoelastic response-optical coherence elastography (VisR-OCE) method based on acoustic radiation force (ARF) excitation and optical coherence tomography (OCT) imaging. The relationship between displacements induced by two sequential ARF loading-unloading and the relaxation time constant of the soft tissue-is established for the Kelvin-Voigt material. Through numerical simulation, the optimal experimental parameters are determined, and the influences of material parameters are evaluated. Virtual experimental results show that there is less than 4% fluctuation in the relaxation time constant values obtained when various Young's modulus and Poisson's ratios were given for simulation. The accuracy of the VisR-OCE method was validated by comparing with the tensile test. The relaxation time constant of phantoms measured by VisR-OCE differs from the tensile test result by about 3%. The proposed VisR-OCE method may provide an effective tool for quick and nondestructive viscosity testing of biological tissues.
Collapse
Affiliation(s)
- Zhixin Liu
- China Automotive Technology and Research Center, Tianjin 300300, China; (Z.L.); (W.L.)
| | - Weidong Liu
- China Automotive Technology and Research Center, Tianjin 300300, China; (Z.L.); (W.L.)
| | - Qi Chen
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China; (Q.C.); (Y.H.); (Y.L.); (X.Z.); (D.F.)
| | - Yongzheng Hu
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China; (Q.C.); (Y.H.); (Y.L.); (X.Z.); (D.F.)
| | - Yurun Li
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China; (Q.C.); (Y.H.); (Y.L.); (X.Z.); (D.F.)
| | - Xiaoya Zheng
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China; (Q.C.); (Y.H.); (Y.L.); (X.Z.); (D.F.)
| | - Dian Fang
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China; (Q.C.); (Y.H.); (Y.L.); (X.Z.); (D.F.)
| | - Hai Liu
- Tianjin Key Laboratory of Power Transmission and Safety Technology for New Energy Vehicles, Tianjin 300130, China;
| | - Cuiru Sun
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China; (Q.C.); (Y.H.); (Y.L.); (X.Z.); (D.F.)
| |
Collapse
|
6
|
Saharkhiz N, Kamimura HAS, Konofagou EE. The impact of amplitude modulation frequency in harmonic motion imaging on inclusion characterization. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1768-1779. [PMID: 37202245 PMCID: PMC10392769 DOI: 10.1016/j.ultrasmedbio.2023.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVE Ultrasound elasticity imaging techniques aim to provide a non-invasive characterization of tissue mechanical properties to detect pathological changes and monitor disease progression. Harmonic motion imaging (HMI) is an ultrasound-based elasticity imaging technique that utilizes an oscillatory acoustic radiation force to induce localized displacements and estimate relative tissue stiffness. Previous studies have applied a low amplitude modulation (AM) frequency of 25 or 50 Hz in HMI to assess the mechanical properties of different tissue types. In this study, we investigate the dependence of AM frequency in HMI and whether the frequency can be adjusted based on the size and mechanical properties of the underlying medium for enhanced image contrast and inclusion detection. METHODS A tissue-mimicking phantom with embedded inclusions at different sizes and stiffnesses was imaged within a range of AM frequencies from 25 to 250 Hz at 25-Hz step size. DISCUSSION The AM frequency at which the maximum contrast and CNR are achieved depends on the size and stiffness of the inclusions. A general trend shows that contrast and CNR peak at higher frequencies for smaller inclusions. In addition, for some inclusions with the same size but different stiffnesses, the optimized AM frequency increases with the stiffness of the inclusion. Nevertheless, there is a shift between the frequencies at which the contrast peaks and those with maximum CNR. Finally, in agreement with the phantom findings, imaging an ex-vivo human specimen with a 2.7-cm breast tumor at a range of AM frequencies showed that the highest contrast and CNR are achieved at the AM frequency of 50 Hz. CONCLUSION These findings indicate that the AM frequency can be optimized in different applications of HMI, especially in the clinic, for improved detection and characterization of tumors with different geometries and mechanical properties.
Collapse
Affiliation(s)
- Niloufar Saharkhiz
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Hermes A S Kamimura
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; Department of Radiology, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
7
|
Li Z, Liu PX, Hou W. Modeling fibrous soft tissue dissection with elastic-plastic deformation for simulation of brain tumor removal. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 232:107420. [PMID: 36854236 DOI: 10.1016/j.cmpb.2023.107420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVE Realistic modeling the dissection of brain tissue is of key importance for simulation of brain tumor removal in virtual neurosurgery systems. However, existing methods are unable to characterize inelastic behaviors of brain tissue, such as plastic deformation and dissection evolution, making it ineffective in simulating brain tumor removal procedures. METHODS In this paper, a model of fibrous soft tissue dissection for the simulation of brain tumor removal is proposed. A dissection variable of representative volume element is used to characterize the dissection state of the fibrous soft tissue. The evolution of dissection with elastic-plastic deformation under the effects of external loads is presented. RESULTS Simulation results show that the proposed model provides realistic, stable and intuitive results in the simulation of fracture in fibrous soft tissues. As the external load increases, the fibrous soft tissue begins to crack, with the cracks growing and multiplying until they eventually merge to form a fracture. The proposed model is incorporated into the simulation of brain tumor removal. CONCLUSIONS The experimental results demonstrate the feasibility of modeling fibrous soft tissue dissection with elastic-plastic deformation. A relative high degree of realistic visual feedback is achieved.
Collapse
Affiliation(s)
- Zimeng Li
- School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Peter Xiaoping Liu
- School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China; Department of Systems and Computer Engineering, Carleton University, Ottawa, ON KIS 5B6, Canada.
| | - Wenguo Hou
- School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Hossain MM, Konofagou EE. Imaging of Single Transducer-Harmonic Motion Imaging-Derived Displacements at Several Oscillation Frequencies Simultaneously. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:3099-3115. [PMID: 35635828 PMCID: PMC9865352 DOI: 10.1109/tmi.2022.3178897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mapping of mechanical properties, dependent on the frequency of motion, is relevant in diagnosis, monitoring treatment response, or intra-operative surgical resection planning. While shear wave speeds at different frequencies have been described elsewhere, the effect of frequency on the "on-axis" acoustic radiation force (ARF)-induced displacement has not been previously investigated. Instead of generating single transducer-harmonic motion imaging (ST-HMI)-derived peak-to-peak displacement (P2PD) image at a particular frequency, a novel multi-frequency excitation pulse is proposed to generate P2PD images at 100-1000 Hz simultaneously. The performance of the proposed excitation pulse is compared with the ARFI by imaging 16 different inclusions (Young's moduli of 6, 9, 36, 70 kPa and diameters of 1.6, 2.5, 6.5, and 10.4 mm) embedded in an 18 kPa background. Depending on inclusion size and stiffness, the maximum CNR and contrast were achieved at different frequencies and were always higher than ARFI. The frequency, at which maximum CNR and contrast were achieved, increased with stiffness for fixed inclusion's size and decreased with size for fixed stiffness. In vivo feasibility is tested by imaging a 4T1 breast cancer mouse tumor on Day 6, 12, and 19 post-injection of tumor cells. Similar to phantoms, the CNR of ST-HMI images was higher than ARFI and increased with frequency for the tumor on Day 6. Besides, P2PD at 100-1000 Hz indicated that the tumor became stiffer with respect to the neighboring non-cancerous tissue over time. These results indicate the importance of using a multi-frequency excitation pulse to simultaneously generate displacement at multiple frequencies to better delineate inclusions or tumors.
Collapse
|
9
|
Viscosity Plane-Wave UltraSound (Vi PLUS) in the Evaluation of Thyroid Gland in Healthy Volunteers-A Preliminary Study. Diagnostics (Basel) 2022; 12:diagnostics12102474. [PMID: 36292163 PMCID: PMC9600479 DOI: 10.3390/diagnostics12102474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Viscosity and elasticity represent biomechanical properties of soft tissues that suffer changes during the pathophysiological alterations of the tissue in various conditions. This study aimed to determine average viscosity values for the thyroid gland and to evaluate the potential influences of age, gender and body mass index (BMI), using a recent technique Viscosity Plane-wave UltraSound (Vi PLUS). A total of 85 healthy Caucasian volunteers (56 women and 29 men, median age of 29 years, range 17−81 years) were included in this prospective monocentric study conducted between January 2022 and March 2022. Thyroid viscosity was measured using the SuperSonic MACH 30® Ultrasound system (Aixplorer, SuperSonic Imagine, Aix-en-Provence, France), equipped with a curvilinear C6-IX transducer that allows simultaneous quantification of the viscosity and stiffness. The mean thyroid viscosity measurement value was 2.63 ± 0.47 Pa.s. No statistically significant differences were detected between the left and the right lobes of the thyroid gland. A significant positive correlation was found between thyroid viscosity and elasticity (r = 0.685, p < 0.0001). There was no statistically significant correlation between body mass index (BMI) and thyroid gland viscosity and elasticity values (r = 0.215, p = 0.053; r = 0.106, p = 0.333). No correlation between viscosity and gender was established (p > 0.05). Vi PLUS represents a new and promising ultrasonographic technique that can provide helpful information for evaluating the thyroid parenchyma, similar to elastography. The effect of the potential confounding factors on thyroid viscosity was negligible, except for BMI.
Collapse
|
10
|
Li N, Gaur P, Quah K, Pauly KB. Improving in situ acoustic intensity estimates using MR acoustic radiation force imaging in combination with multifrequency MR elastography. Magn Reson Med 2022; 88:1673-1689. [PMID: 35762849 PMCID: PMC9439407 DOI: 10.1002/mrm.29309] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE Magnetic resonance acoustic radiation force imaging (MR-ARFI) enables focal spot localization during nonablative transcranial ultrasound therapies. As the acoustic radiation force is proportional to the applied acoustic intensity, measured MR-ARFI displacements could potentially be used to estimate the acoustic intensity at the target. However, variable brain stiffness is an obstacle. The goal of this study was to develop and assess a method to accurately estimate the acoustic intensity at the focus using MR-ARFI displacements in combination with viscoelastic properties obtained with multifrequency MR elastography (MRE). METHODS Phantoms with a range of viscoelastic properties were fabricated, and MR-ARFI displacements were acquired within each phantom using multiple acoustic intensities. Voigt model parameters were estimated for each phantom based on storage and loss moduli measured using multifrequency MRE, and these were used to predict the relationship between acoustic intensity and measured displacement. RESULTS Using assumed viscoelastic properties, MR-ARFI displacements alone could not accurately estimate acoustic intensity across phantoms. For example, acoustic intensities were underestimated in phantoms stiffer than the assumed stiffness and overestimated in phantoms softer than the assumed stiffness. This error was greatly reduced using individualized viscoelasticity measurements obtained from MRE. CONCLUSION We demonstrated that viscoelasticity information from MRE could be used in combination with MR-ARFI displacements to obtain more accurate estimates of acoustic intensity. Additionally, Voigt model viscosity parameters were found to be predictive of the relaxation rate of each phantom's time-varying displacement response, which could be used to optimize patient-specific MR-ARFI pulse sequences.
Collapse
Affiliation(s)
- Ningrui Li
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Pooja Gaur
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Kristin Quah
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
11
|
Shear-Wave Elastography and Viscosity PLUS for the Assessment of Peripheric Muscles in Healthy Subjects: A Pre- and Post-Contraction Study. Diagnostics (Basel) 2022; 12:diagnostics12092138. [PMID: 36140536 PMCID: PMC9497738 DOI: 10.3390/diagnostics12092138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 12/31/2022] Open
Abstract
Viscosity is a novel parameter, recently introduced in the use of elastographic techniques, correlating to shear-wave dispersion. The purpose of this study was to provide normal reference viscosity values for the peripheral muscles in healthy volunteers. This prospective study included 38 subjects who underwent US examinations between November 2021 and January 2022. Measurements were taken on the calf and the deltoid muscles in both pre- and post-contraction states. The age range was 21–29 years, with a median of 26 years. The SWE and ViPLUS values in the deltoid muscles were significantly higher than in the soleus muscles in both pre- and post-contraction sets (p = 0.002). There were statistically significant differences between the pre- and post-contraction values for both the SWE and ViPLUS values in the subgroup analysis. The ICC estimates and the 95% confidence intervals were based on a mean rating (k = 2), an absolute agreement, and a two-way random-effects model, demonstrating excellent agreement between the measurements taken by the two examiners.
Collapse
|
12
|
Hossain MM, Gallippi CM. Quantitative Estimation of Mechanical Anisotropy Using Acoustic Radiation Force (ARF)-Induced Peak Displacements (PD): In Silico and Experimental Demonstration. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1468-1481. [PMID: 34995184 PMCID: PMC9208382 DOI: 10.1109/tmi.2022.3141084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Elastic degree of anisotropy (DoA) is a diagnostically relevant biomarker in muscle, kidney, breast, and other organs. Previously, elastic DoA was qualitatively assessed as the ratio of peak displacements (PD) achieved with the long-axis of a spatially asymmetric Acoustic Radiation Force Impulse (ARFI) excitation point spread function (PSF) aligned along versus across the axis of symmetry (AoS) in transversely isotropic materials. However, to better enable longitudinal and cross-sectional analyses, a quantitative measure of elastic DoA is desirable. In this study, qualitative ARFI PD ratios are converted to quantitative DoA, measured as the ratio of longitudinal over transverse shear elastic moduli, using a model empirically derived from Field II and finite element method (FEM) simulations. In silico, the median absolute percent error (MAPE) in ARFI-derived shear moduli ratio (SMR) was 1.75%, and predicted SMRs were robust to variations in transverse shear modulus, Young's moduli ratio, speed of sound, attenuation, density, and ARFI excitation PSF dimension. Further, ARFI-derived SMRs distinguished two materials when the true SMRs of the compared materials differed by as little as 10%. Experimentally, ARFI-derived SMRs linearly correlated with the corresponding ratios measured by Shear Wave Elasticity Imaging (SWEI) in excised pig skeletal muscle ( [Formula: see text], MAPE = 13%) and in pig kidney, in vivo ( [Formula: see text], MAPE = 5.3%). These results demonstrate the feasibility of using the ARFI PD to quantify elastic DoA in biological tissues.
Collapse
|
13
|
Goswami S, Ahmed R, Feng F, Khan S, Doyley MM, McAleavey SA. Imaging the Local Nonlinear Viscoelastic Properties of Soft Tissues: Initial Validation and Expected Benefits. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:975-987. [PMID: 34986096 PMCID: PMC9815723 DOI: 10.1109/tuffc.2021.3140203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Imaging tissue mechanical properties has shown promise in noninvasive assessment of numerous pathologies. Researchers have successfully measured many linear tissue mechanical properties in laboratory and clinical settings. Currently, multiple complex mechanical effects such as frequency-dependence, anisotropy, and nonlinearity are being investigated separately. However, a concurrent assessment of these complex effects may enable more complete characterization of tissue biomechanics and offer improved diagnostic sensitivity. In this work, we report for the first time a method to map the frequency-dependent nonlinear parameters of soft tissues on a local scale. We recently developed a nonlinear elastography model that combines strain measurements from arbitrary tissue compression with radiation-force-based broadband shear wave speed (WS) measurements. Here, we extended this model to incorporate local measurements of frequency-dependent shear modulus. This combined approach provides a local frequency-dependent nonlinear parameter that can be obtained with arbitrary, clinically realizable tissue compression. Initial assessments using simulations and phantoms validate the accuracy of this approach. We also observed improved contrast in nonlinearity parameter at higher frequencies. Results from ex-vivo liver experiments show 32, 25, 34, and 38 dB higher contrast in elastograms than traditional linear elasticity, elastic nonlinearity, viscosity, and strain imaging methods, respectively. A lesion, artificially created by injection of glutaraldehyde into a liver specimen, showed a 59% increase in the frequency-dependent nonlinear parameter and a 17% increase in contrast ratio.
Collapse
|
14
|
Poul SS, Ormachea J, Hollenbach SJ, Parker KJ. Validations of the microchannel flow model for characterizing vascularized tissues. FLUIDS 2021; 5. [PMID: 34707336 PMCID: PMC8547714 DOI: 10.3390/fluids5040228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The microchannel flow model postulates that stress-strain behavior in soft tissues is influenced by the time constants of fluid-filled vessels related to Poiseuille’s law. A consequence of this framework is that changes in fluid viscosity and changes in vessel diameter (through vasoconstriction) have a measurable effect on tissue stiffness. These influences are examined through the theory of the microchannel flow model. Then, the effects of viscosity and vasoconstriction are demonstrated in gelatin phantoms and in perfused tissues, respectively. We find good agreement between theory and experiments using both a simple model made from gelatin and from living, perfused, placental tissue ex vivo.
Collapse
Affiliation(s)
- Sedigheh S. Poul
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Juvenal Ormachea
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Stefanie J. Hollenbach
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY 14623, USA
| | - Kevin J. Parker
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627, USA
- Correspondence:
| |
Collapse
|
15
|
Hossain MM, Saharkhiz N, Konofagou EE. Feasibility of Harmonic Motion Imaging Using a Single Transducer: In Vivo Imaging of Breast Cancer in a Mouse Model and Human Subjects. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1390-1404. [PMID: 33523806 PMCID: PMC8136334 DOI: 10.1109/tmi.2021.3055779] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Harmonic motion imaging (HMI) interrogates the mechanical properties of tissues by simultaneously generating and tracking harmonic oscillation using focused ultrasound and imaging transducers, respectively. Instead of using two transducers, the objective of this work is to develop a single transducer HMI (ST-HMI) to both generate and track harmonic motion at "on-axis" to the force for facilitating data acquisition. In ST-HMI, the amplitude-modulated force was generated by modulating excitation pulse duration and tracking of motion was performed by transmitting tracking pulses interleaved between excitation pulses. The feasibility of ST-HMI was performed by imaging two elastic phantoms with three inclusions (N = 6) and comparing it with acoustic radiation force impulse (ARFI) imaging, in vivo longitudinal monitoring of 4T1, orthotropic breast cancer mice (N = 4), and patients (N = 3) with breast masses in vivo. Six inclusions with Young's moduli of 8, 10, 15, 20, 40, and 60 kPa were embedded in a 5 kPa background. The ST-HMI-derived peak-to-peak displacement (P2PD) successfully detected all inclusions with [Formula: see text] of the linear regression between the P2PD ratio of background to inclusion versus Young's moduli ratio of inclusion to background. The contrasts of 10 and 15 kPa inclusions were higher in ST-HMI than ARFI-derived images. In the mouse study, the median P2PD ratio of tumor to non-cancerous tissues was 3.0, 5.1, 6.1, and 7.7 at 1, 2, 3, and 4 weeks post-injection of the tumor cells, respectively. In the clinical study, ST-HMI detected breast masses including fibroadenoma, pseudo angiomatous stromal hyperplasia, and invasive ductal carcinoma with a P2PD ratio of 1.37, 1.61, and 1.78, respectively. These results indicate that ST-HMI can assess the mechanical properties of tissues via generation and tracking of harmonic motion "on-axis" to the ARF. This study is the first step towards translating ST-HMI in clinics.
Collapse
|
16
|
Wu H, Hossain MM, Kim H, Gallippi CM, Jiang X. A 1.5-D Array for Acoustic Radiation Force (ARF)-Induced Peak Displacement-Based Tissue Anisotropy Assessment With a Row-Column Excitation Method. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1278-1287. [PMID: 33044921 PMCID: PMC8080255 DOI: 10.1109/tuffc.2020.3030040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Many biological tissues, including muscle or kidney, are mechanically anisotropic, and the degree of anisotropy (DoA) in mechanical properties is diagnostically relevant. DoA can be assessed either using the ratio of shear wave velocities (SWVs) or acoustic radio forced impulse (ARFI)-induced peak displacements (PD) measured longitudinal over transverse orientations. Whether using SWV or PD as a basis, DoA expressed as the ratio of values requires 90° transducer rotation when a linear array is employed. This large rotation angle is prone to misalignment errors. One solution is the use of a fully sampled matrix array for electronic rotation of point spread function (PSF). However, the challenges of matrix array are its high fabrication cost and complicated fabrication procedures. The cheaper and simpler alternative of matrix array is the use of a row-column array. A 3×64 elements 1.5-D array with a row-column excitation mode is proposed to assess DoA in mechanical properties using the PD ratio. Different numbers of elements in elevational and lateral directions were selected to have orthogonal ARFI excitation beams without rotating the transducer. A custom-designed flex circuit was used to fabricate the array with a simpler electrode connection than a fully sampled matrix array. The performance of the array was evaluated in Field II simulation and experiment. The output pressure was 0.57-MPa output under a 40- [Formula: see text] excitation with a -6-dB point spread dimension of 14×4 mm2 in orthogonal directions. The PD was measured to be [Formula: see text] in an isotropic elastic phantom with Young's modulus of 5.4 kPa. These results suggest that the array is capable of assessing DoA using PD ratio without physical rotation of the transducer. The array has the potential to reduce the misalignment errors for DoA assessment.
Collapse
Affiliation(s)
- Huaiyu Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Md Murad Hossain
- Department of Biomedical Engineering, University of North Carolina (UNC) at Chapel Hill, Chapel Hill, NC 27599 USA, and North Carolina State University (NCSU), Raleigh, NC 27695 USA. He is now with the Department of Biomedical Engineering, Columbia University, New York, NY 10027 USA
| | - Howuk Kim
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Caterina M. Gallippi
- Joint Department of Biomedical Engineering, University of North Carolina (UNC) at Chapel Hill, Chapel Hill, NC 27599 USA, and North Carolina State University (NCSU), Raleigh, NC 27695 USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
17
|
Hossain MM, Gallippi CM. Electronic Point Spread Function Rotation Using a Three-Row Transducer for ARFI-Based Elastic Anisotropy Assessment: In Silico and Experimental Demonstration. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:632-646. [PMID: 32833634 PMCID: PMC7987224 DOI: 10.1109/tuffc.2020.3019002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Degree of anisotropy (DoA) of mechanical properties has been assessed as the ratio of acoustic radiation force impulse (ARFI)-induced peak displacements (PDs) achieved using spatially asymmetric point spread functions (PSFs) that are rotated 90° to each other. Such PSF rotation has been achieved by manually rotating a linear array transducer, but manual rotation is cumbersome and prone to misalignment errors and higher variability in measurements. The purpose of this work is to evaluate the feasibility of electronic PSF rotation using a three-row transducer, which will reduce variability in DoA assessment. A Siemens 9L4, with 3×192 elements, was simulated in Field II to generate spatially asymmetric ARFI PSFs that were electronically rotated 63° from each other. Then, using the finite element method (FEM), PD due to the ARFI excitation PSFs in 42 elastic, incompressible, transversely isotropic (TI) materials with shear moduli ratios of 1.0-6.0 were modeled. Finally, the ratio of PDs achieved using the two rotated PSFs was evaluated to assess elastic DoA. DoA increased with increasing shear moduli ratios and distinguished materials with 17% or greater difference in shear moduli ratios (Wilcoxon, ). Experimentally, the ratio of PDs achieved using ARFI PSF rotated 63° from each other distinguished the biceps femoris muscle from two pigs, which had median shear moduli ratios of 4.25 and 3.15 as assessed by shear wave elasticity imaging (SWEI). These results suggest that ARFI-based DoA assessment can be achieved without manual transducer rotation using a three-row transducer capable of electronically rotating PSFs by 63°. It is expected that electronic PSF rotation will facilitate data acquisitions and improve the reproducibility of elastic anisotropy assessments.
Collapse
|
18
|
Bastijns S, De Cock AM, Vandewoude M, Perkisas S. Usability and Pitfalls of Shear-Wave Elastography for Evaluation of Muscle Quality and Its Potential in Assessing Sarcopenia: A Review. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2891-2907. [PMID: 32843232 DOI: 10.1016/j.ultrasmedbio.2020.06.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 05/08/2023]
Abstract
Sarcopenia is age-related progressive and generalized loss of skeletal muscle mass and strength. Its prevalence is rising, which poses a burden for society because it increases disability and dependency and therefore raises health care costs. Muscle mass quality, however-an essential part of sarcopenia-is not easily diagnosable yet. Recent interest has risen for ultrasonographic evaluation of muscle. This review introduces muscle elastography as a possible, easy and cheap tool to evaluate qualitative muscle parameters. Basic principles of muscle elastography are described, as well as different elastography techniques and some technical considerations. Furthermore, a proposal for practical guidelines is offered and factors influencing muscle stiffness are highlighted.
Collapse
Affiliation(s)
- Sophie Bastijns
- Department of Medicine, University of Antwerp, Antwerp, Belgium; Ziekenhuisnetwerk Antwerpen, Antwerp, Belgium.
| | - Anne-Marie De Cock
- Department of Medicine, University of Antwerp, Antwerp, Belgium; Ziekenhuisnetwerk Antwerpen, Antwerp, Belgium
| | - Maurits Vandewoude
- Department of Medicine, University of Antwerp, Antwerp, Belgium; Ziekenhuisnetwerk Antwerpen, Antwerp, Belgium; Belgian Ageing Muscle Society, Liege, Belgium
| | - Stany Perkisas
- Department of Medicine, University of Antwerp, Antwerp, Belgium; Ziekenhuisnetwerk Antwerpen, Antwerp, Belgium; Belgian Ageing Muscle Society, Liege, Belgium
| |
Collapse
|