1
|
Lin SC, Li PC. Fourier-Based Fast 3-D Ultrasound Imaging Using Row-Column-Addressed 2-D Arrays. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:85-101. [PMID: 38060356 DOI: 10.1109/tuffc.2023.3340507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
A Fourier-based fast 3-D ultrasound imaging method using row-column-addressed (RCA) 2-D arrays is presented. The row elements in an RCA array are activated sequentially, and all the column elements are used to receive. The obtained dataset is adapted to approximate to that obtained using a fully sampled array after a plane wave at a given incident angle is transmitted. In this way, the fast algorithm in plane-wave Fourier imaging (PWFI) can be applied to the adapted dataset. In addition, synthesizing multiple datasets based on multiple incident angles enables angular compounding, which improves the image quality. The proposed method was validated using computer simulations and physical-phantom experiments. The results show that the spatial resolution and contrast of the proposed method are comparable with those of its PWFI counterpart without requiring a fully sampled (FS) array. Compared with the delay-and-sum (DAS) method using the RCA array, the proposed method provides comparable spatial resolution but lower contrast; however, the computational complexity is significantly reduced from O(N4Nz) to O(WN2Nz log2(N2Nz)) , where N is the number of elements on each side of the RCA array, Nz is the number of voxels in the axial direction in the output image, and W is the number of compounding angles. For example, in the simulated results when the maximum compounding angle M is 5°, at a given point the lateral - 6-dB width provided by the proposed method is 0.241 mm (0.267 mm for DAS), the contrast ratio of a hyperechoic cyst is 8.87 dB (9.10 dB for DAS), the number of real number operations is reduced by a factor of 20.62, and the number of memory accesses is reduced by a factor of 47.21, both compared with DAS. This novel fast algorithm could facilitate the development of compact real-time 3-D imaging systems, especially when the channel count is high and a large field of view (FOV) is required.
Collapse
|
2
|
Herickhoff CD, van Schaijk R. cMUT technology developments. Z Med Phys 2023; 33:256-266. [PMID: 37316428 PMCID: PMC10517396 DOI: 10.1016/j.zemedi.2023.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 06/16/2023]
Abstract
Capacitive micromachined ultrasonic transducer (cMUT) technology has steadily advanced since its advent in the mid-1990's. Though cMUTs have not supplanted piezoelectric transducers for medical ultrasound imaging to date, researchers and engineers are continuing to improve cMUTs and leverage unique cMUT characteristics toward new applications. While not intended to be an exhaustive review of every aspect of cMUT state-of-the-art, this article provides a brief overview of cMUT benefits, challenges, and opportunities, as well as recent progress in cMUT research and translation.
Collapse
Affiliation(s)
- Carl D Herickhoff
- Department of Biomedical Engineering, University of Memphis, TN, USA.
| | | |
Collapse
|
3
|
Campbell NA, MacMullin N, Kiefl R, Nashnoush E, Latham K, Emery CD, Brown JA. A High-Performance 3-D Imaging Technique Using Simultaneous Azimuth and Elevation Compounding. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:3327-3337. [PMID: 36318568 DOI: 10.1109/tuffc.2022.3218732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A new technique for 3-D imaging with a row-column array (RCA) configuration has been developed. The technique requires an electrostrictive piezoelectric for the active substrate. While the top set of electrodes is connected to RF transmit and receive channels for conventional diverging wave imaging (DWI), the orthogonal bottom set of electrodes is connected to independently controlled variable dc bias channels. By implementing modulated bias patterns compounded across multiple pulses, fine delay control across the bottom elements can be achieved simultaneously with imaging with the top set of electrodes. This resulted in a high-quality two-way focus in both azimuth and elevation. A 20-MHz electrostrictive composite substrate was fabricated, and 64 top ×64 bottom electrodes were patterned and connected to custom beamforming and biasing electronics. The point spread functions were generated in all dimensions, and the -6 dB resolution was measured to be 93 [Formula: see text] axially, [Formula: see text] in the azimuth, and 328 [Formula: see text] in the elevation dimension. This was in good agreement with the simulated resolutions of 80, 273, and 280 [Formula: see text], respectively.
Collapse
|
4
|
Chen H, Agrawal S, Osman M, Minotto J, Mirg S, Liu J, Dangi A, Tran Q, Jackson T, Kothapalli SR. A Transparent Ultrasound Array for Real-Time Optical, Ultrasound, and Photoacoustic Imaging. BME FRONTIERS 2022; 2022:9871098. [PMID: 37850172 PMCID: PMC10521654 DOI: 10.34133/2022/9871098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/28/2022] [Indexed: 10/19/2023] Open
Abstract
Objective and Impact Statement. Simultaneous imaging of ultrasound and optical contrasts can help map structural, functional, and molecular biomarkers inside living subjects with high spatial resolution. There is a need to develop a platform to facilitate this multimodal imaging capability to improve diagnostic sensitivity and specificity. Introduction. Currently, combining ultrasound, photoacoustic, and optical imaging modalities is challenging because conventional ultrasound transducer arrays are optically opaque. As a result, complex geometries are used to coalign both optical and ultrasound waves in the same field of view. Methods. One elegant solution is to make the ultrasound transducer transparent to light. Here, we demonstrate a novel transparent ultrasound transducer (TUT) linear array fabricated using a transparent lithium niobate piezoelectric material for real-time multimodal imaging. Results. The TUT-array consists of 64 elements and centered at ~6 MHz frequency. We demonstrate a quad-mode ultrasound, Doppler ultrasound, photoacoustic, and fluorescence imaging in real-time using the TUT-array directly coupled to the tissue mimicking phantoms. Conclusion. The TUT-array successfully showed a multimodal imaging capability and has potential applications in diagnosing cancer, neurological, and vascular diseases, including image-guided endoscopy and wearable imaging.
Collapse
Affiliation(s)
- Haoyang Chen
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sumit Agrawal
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mohamed Osman
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Josiah Minotto
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shubham Mirg
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jinyun Liu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ajay Dangi
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Quyen Tran
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Thomas Jackson
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sri-Rajasekhar Kothapalli
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Penn State Cancer Institute, The Pennsylvania State University, Hershey, PA 17033, USA
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|