1
|
Khetan N, Mertz J. Plane wave compounding with adaptive joint coherence factor weighting. ULTRASONICS 2025; 149:107573. [PMID: 39893756 DOI: 10.1016/j.ultras.2025.107573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/12/2025] [Accepted: 01/12/2025] [Indexed: 02/04/2025]
Abstract
Coherent Plane Wave Compounding (CPWC) is widely used for ultrasound imaging. This technique involves transmitting plane waves into a sample at different transmit angles and recording the resultant backscattered echo at different receive positions. The time-delayed signals from the different combinations of transmit angles and receive positions are then coherently summed to produce a beamformed image. Various techniques have been developed to characterize the quality of CPWC beamforming based on the measured coherence across the transmit or receive apertures. Here, we propose a more granular approach where the signals from every transmit/receive combination are separately evaluated using a quality metric based on their joint spatio-angular coherence. The signals are then individually weighted according to their measured Joint Coherence Factor (JCF) prior to being coherently summed. To facilitate the comparison of JCF beamforming compared to alternative techniques, we further propose a method of image display standardization based on contrast matching. We show results from tissue-mimicking phantoms and human soft-tissue imaging. Fine-grained JCF weighting is found to improve CPWC image quality compared to alternative approaches.
Collapse
Affiliation(s)
- Nikunj Khetan
- Boston University Mechanical Engineering, 110 Cummington Mall, Boston, 02215, MA, USA.
| | - Jerome Mertz
- Boston University Biomedical Engineering, 44 Cummington Mall, Boston, 02215, MA, USA.
| |
Collapse
|
2
|
Syaryadhi M, Nakazawa E, Tagawa N, Yang M. Evaluating a 3D Ultrasound Imaging Resolution of Single Transmitter/Receiver with Coding Mask by Extracting Phase Information. SENSORS (BASEL, SWITZERLAND) 2024; 24:1496. [PMID: 38475032 DOI: 10.3390/s24051496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
We are currently investigating the ultrasound imaging of a sensor that consists of a randomized encoding mask attached to a single lead zirconate titanate (PZT) oscillator for a puncture microscope application. The proposed model was conducted using a finite element method (FEM) simulator. To increase the number of measurements required by a single element system that affects its resolution, the transducer was rotated at different angles. The image was constructed by solving a linear equation of the image model resulting in a poor quality. In a previous work, the phase information was extracted from the echo signal to improve the image quality. This study proposes a strategy by integrating the weighted frequency subbands compound and a super-resolution technique to enhance the resolution in range and lateral direction. The image performance with different methods was also evaluated using the experimental data. The results indicate that better image resolution and speckle suppression were obtained by applying the proposed method.
Collapse
Affiliation(s)
- Mohammad Syaryadhi
- Graduate School of Systems Design, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino 191-0065, Tokyo, Japan
| | - Eiko Nakazawa
- Graduate School of Systems Design, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino 191-0065, Tokyo, Japan
| | - Norio Tagawa
- Graduate School of Systems Design, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino 191-0065, Tokyo, Japan
| | - Ming Yang
- Graduate School of Systems Design, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino 191-0065, Tokyo, Japan
| |
Collapse
|
3
|
Wang Y, Huang L, Wang R, Wei X, Zheng C, Peng H, Luo J. Improved Ultrafast Power Doppler Imaging Using United Spatial-Angular Adaptive Scaling Wiener Postfilter. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1118-1134. [PMID: 37478034 DOI: 10.1109/tuffc.2023.3297571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Ultrafast power Doppler imaging (uPDI) using high-frame-rate plane-wave transmission is a new microvascular imaging modality that offers high Doppler sensitivity. However, due to the unfocused transmission of plane waves, the echo signal is subject to interference from noise and clutter, resulting in a low signal-to-noise ratio (SNR) and poor image quality. Adaptive beamforming techniques are effective in suppressing noise and clutter for improved image quality. In this study, an adaptive beamformer based on a united spatial-angular adaptive scaling Wiener (uSA-ASW) postfilter is proposed to improve the resolution and contrast of uPDI. In the proposed method, the signal power and noise power of the Wiener postfilter are estimated by uniting spatial and angular signals, and a united generalized coherence factor (uGCF) is introduced to dynamically adjust the noise power estimation and enhance the robustness of the method. Simulation and in vivo data were used to verify the effectiveness of the proposed method. The results show that the uSA-ASW can achieve higher resolution and significant improvements in image contrast and background noise suppression compared with conventional delay-and-sum (DAS), coherence factor (CF), spatial-angular CF (SACF), and adaptive scaling Wiener (ASW) postfilter methods. In the simulations, uSA-ASW improves contrast-to-noise ratio (CNR) by 34.7 dB (117.3%) compared with DAS, while reducing background noise power (BNP) by 52 dB (221.4%). The uSA-ASW method provides full-width at half-maximum (FWHM) reductions of [Formula: see text] (59.5%) and [Formula: see text] (56.9%), CNR improvements of 25.6 dB (199.9%) and 42 dB (253%), and BNP reductions of 46.1 dB (319.3%) and 12.9 dB (289.1%) over DAS in the experiments of contrast-free human neonatal brain and contrast-free human liver, respectively. In the contrast-free experiments, uSA-ASW effectively balances the performance of noise and clutter suppression and enhanced microvascular visualization. Overall, the proposed method has the potential to become a reliable microvascular imaging technique for aiding in more accurate diagnosis and detection of vascular-related diseases in clinical contexts.
Collapse
|
4
|
Rostamikhanghahi H, Sakhaei SM. Synthetic Aperture Ultrasound Imaging through Adaptive Integrated Transmitting-Receiving Beamformer. ULTRASONIC IMAGING 2023; 45:101-118. [PMID: 37009752 DOI: 10.1177/01617346231163835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Synthetic aperture (SA) technique is very attractive for ultrafast ultrasound imaging, as the entire medium can be insonified by a single emission. It also permits applying the dynamic focusing as well as adaptive beamforming both in transmission and reception, which results in an enhanced image. In this paper, we firstly show that the problem of designing the transmit and receive beamformers in SA structure can be formulated as a problem of designing a one-way beamformer on a virtual array with a lateral response equal to that of the two-way beamformer on SA. It is also demonstrated that the length of the virtual aperture is increased to the sum of the transmit aperture length and the receive one, which can result in an enhanced resolution. Moreover, a better estimation of the covariance matrix can be obtained which can be utilized for applying adaptive minimum variance (MV) beamforming method on the virtual array, and consequently the resolution and contrast properties would be enhanced. The performance of the new method is compared with other existing MV-based methods and is quantified by some metrics such as the full width at half maximum (FWHM) and generalized contrast to noise ratio (GCNR). Our validations on simulations and experimental data have shown that the new method is capable of obtaining higher GCNR values while retaining or decreasing FWHM values almost all the time. Moreover, for the same subarray length for estimating the covariance matrices, the computational burden of the new method is significantly lower than those of the existing rival methods.
Collapse
Affiliation(s)
- Hasti Rostamikhanghahi
- Department of electrical and computer engineering, Babol Noshirvani University of Technology, Babol, Mazandaran, Iran
| | - Sayed Mahmoud Sakhaei
- Department of electrical and computer engineering, Babol Noshirvani University of Technology, Babol, Mazandaran, Iran
| |
Collapse
|
5
|
Eslami L, Mohammadzadeh Asl B. Adaptive subarray coherence based post-filter using array gain in medical ultrasound imaging. ULTRASONICS 2022; 126:106808. [PMID: 35921724 DOI: 10.1016/j.ultras.2022.106808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
This paper presents an adaptive subarray coherence-based post-filter (ASCBP) applied to the eigenspace-based forward-backward minimum variance (ESB-FBMV) beamformer to simultaneously improve image quality and beamformer robustness. Additionally, the ASCBP can separate close targets. The ASCBP uses an adaptive noise power weight based on the concept of the beamformer's array gain (AG) to suppress the noise adaptively and achieve improved images. Moreover, a square neighborhood average was applied to the ASCBP in order to provide more smoothed square neighborhood ASCBP (SN-ASCBP) values and improve the speckle quality. Through simulations of point phantoms and cyst phantoms and experimental validation, the performance of the proposed methods was compared to that of delay-and-sum (DAS), MV-based beamformers, and subarray coherence-based post-filter (SCBP). The simulated results demonstrated that the ASCBP method improved the full width at half maximum (FWHM) by 57 % and the coherent interference suppression power (CISP) by 52 dB compared to the SCBP post-filter. Considering the experimental results, the SN-ASCBP method presented the best enhancement in terms of generalized contrast to noise ratio (gCNR) and contrast ratio (CR) while the ASCBP showed the best improvement in FWHM among other methods. Furthermore, the proposed methods presented a striking performance in low SNRs. The results of evaluating the different methods under aberration and sound speed error illustrated the better robustness of the proposed methods in comparison with others.
Collapse
Affiliation(s)
- Leila Eslami
- Department of Biomedical Engineering, Tarbiat Modares University, Tehran 14115-111, Iran
| | | |
Collapse
|
6
|
Li X, Wang P, Du T, Li Q, Luo C, Wang C. Dual projection generalized sidelobe canceller based on mixed signal subspace for ultrasound imaging. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:921. [PMID: 36050163 DOI: 10.1121/10.0013412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
In this paper, we propose a dual projection generalized sidelobe canceller (DPGSC) based on mixed subspace (MS) for ultrasound imaging, which aims to improve the speckle signal-noise-ratio (sSNR) and decrease the dark-region artifacts. A mixed signal subspace based on the correlation between the desired steering vector and the eigenvectors is constructed to further optimize the desired steering vector and the final weight vector. The simulated and experimental results show that the proposed method can greatly improve the speckle uniformity. In the geabr_0 experiment, the standard deviation of background and sSNR of MS-DPGSC can be improved by 48.07% and 58.49% more than those of eigenspace-based generalized sidelobe canceller (ESGSC). Furthermore, for a hyperechoic target, the maximal improvement of contrast ratio is 95.29%. In terms of anechoic cyst, the contrast-to-noise ratio of MS-DPGSC is increased by 123.08% than that of ESGSC. The rat mammary tumor experimental data show that the proposed method has better comprehensive imaging effect than traditional generalized sidelobe cancellers and ESGSCs.
Collapse
Affiliation(s)
- Xitao Li
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044, China
| | - Ping Wang
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044, China
| | - Tingting Du
- State Grid Rizhao Electric Power Corporation, Limited, Rizhao, 276800, China
| | - Qianwen Li
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044, China
| | - Ciyong Luo
- State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044, China
| | - Chaolong Wang
- Chongqing Dodem Communications Technology Corporation, Limited, Chongqing, 404300, China
| |
Collapse
|
7
|
Wang Y, Wang Y, Liu M, Lan Z, Zheng C, Peng H. Minimum variance beamforming combined with covariance matrix-based adaptive weighting for medical ultrasound imaging. Biomed Eng Online 2022; 21:40. [PMID: 35717330 PMCID: PMC9206759 DOI: 10.1186/s12938-022-01007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The minimum variance (MV) beamformer can significantly improve the image resolution in ultrasound imaging, but it has limited performance in noise reduction. We recently proposed the covariance matrix-based statistical beamforming (CMSB) for medical ultrasound imaging to reduce sidelobes and incoherent clutter. METHODS In this paper, we aim to improve the imaging performance of the MV beamformer by introducing a new pixel-based adaptive weighting approach based on CMSB, which is named as covariance matrix-based adaptive weighting (CMSAW). The proposed CMSAW estimates the mean-to-standard-deviation ratio (MSR) of a modified covariance matrix reconstructed by adaptive spatial smoothing, rotary averaging, and diagonal reducing. Moreover, adaptive diagonal reducing based on the aperture coherence is introduced in CMSAW to enhance the performance in speckle preservation. RESULTS The proposed CMSAW-weighted MV (CMSAW-MV) was validated through simulation, phantom experiments, and in vivo studies. The phantom experimental results show that CMSAW-MV obtains resolution improvement of 21.3% and simultaneously achieves average improvements of 96.4% and 71.8% in average contrast and generalized contrast-to-noise ratio (gCNR) for anechoic cyst, respectively, compared with MV. in vivo studies indicate that CMSAW-MV improves the noise reduction performance of MV beamformer. CONCLUSION Simulation, experimental, and in vivo results all show that CMSAW-MV can improve resolution and suppress sidelobes and incoherent clutter and noise. These results demonstrate the effectiveness of CMSAW in improving the imaging performance of MV beamformer. Moreover, the proposed CMSAW with a computational complexity of [Formula: see text] has the potential to be implemented in real time using the graphics processing unit.
Collapse
Affiliation(s)
- Yuanguo Wang
- School of Mechanical Engineering, Hefei University of Technology, 230009, Hefei, China
| | - Yadan Wang
- School of Mechanical Engineering, Hefei University of Technology, 230009, Hefei, China
| | - Mingzhou Liu
- School of Mechanical Engineering, Hefei University of Technology, 230009, Hefei, China
| | - Zhengfeng Lan
- Department of Biomedical Engineering, Hefei University of Technology, 230009, Hefei, China
| | - Chichao Zheng
- Department of Biomedical Engineering, Hefei University of Technology, 230009, Hefei, China
| | - Hu Peng
- Department of Biomedical Engineering, Hefei University of Technology, 230009, Hefei, China. .,Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Hefei University of Technology, 230009, Hefei, China.
| |
Collapse
|
8
|
Liu Y, Sun K, Yang T, Zhang J, Ta D, Li D. A Robust Lamb Wave Imaging Approach to Plate-Like Structural Health Monitoring of Materials With Transducer Array Position Errors. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2162-2177. [PMID: 35446764 DOI: 10.1109/tuffc.2022.3169221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The Lamb-wave-based damage imaging via beamforming techniques, which can visualize the location of damage in the structure intuitively, is one of the most promising methods in the field of structural health monitoring (SHM). However, transducer array position errors are inevitable in practical application, which may lead to serious degradation in imaging performance. In this study, it is shown that the uncertainty of the steering vectors led by the imprecise position of transducers in an array can be suppressed by the doubly constrained robust Capon beamformer (DCRCB). After the unwanted side lobes are restrained by the DCRCB-based coherence factor (CF) weighting, an effective adaptive beamforming damage imaging method robust to transducer position errors is proposed. The numerical simulation and imaging experiment of damage on an aluminum plate are carried out to verify the effectiveness of the proposed algorithm. The results show that the proposed Lamb wave damage imaging method performs better than the reported beamforming ones in literature in terms of resolution, contrast, and robustness to transducer position errors.
Collapse
|
9
|
Li X, Wang P, Li Q, Du T, Luo C. Application of condition coherence factor based on truncated composite method in ultrasound imaging. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Yan X, Qi Y, Wang Y, Wang Y. Regional-Lag Signed Delay Multiply and Sum Beamforming in Ultrafast Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:580-591. [PMID: 34767507 DOI: 10.1109/tuffc.2021.3127878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ultrafast ultrasound imaging provides very high frame rates but provides poor imaging quality due to unfocused beams. The delay multiply and sum (DMAS) beamformer has been used to improve ultrafast ultrasound imaging contrast but is always accompanied by oversuppression, which produces low-quality speckle images and degrades the contrast performance. A smaller maximum lag in the signed DMAS (sDMAS) contributes better speckle preservation but lower resolution for hyperechoic scatters. To overcome this tradeoff, a regional-lag signed delay multiply and sum (rsDMAS) beamformer is proposed in this article. Innovatively, a region discrimination tool realized by the generalized coherence factor (GCF) is used to limit the maximum lag for spatial coherence estimation. Subaperture coherence smoothing estimates the short-lag coherence instead of multiplication in pairs, thereby reducing calculation complexity and smoothing the speckle texture. Normalization and sign correction are also introduced to achieve better beamforming output. The simulated, phantom, and in vivo data are adopted to evaluate the effectiveness of the proposed beamformer. Numerical results show that the proposed method achieves improvements of the contrast ratio (CR) by 9%, contrast-to-noise ratio (CNR) by 41%, speckle signal-to-noise ratio (sSNR) by 41%, and generalized contrast-to-noise ratio (gCNR) by 0.0004 compared with DMAS (in simulation). Resolution experiments show that the proposed method obtains a loss of 0.07 mm in the full width at half maximum (FWHM) and the same separability of close point scatters as DMAS. These findings indicate that the proposed method achieves higher contrast performance at less obvious sacrifice of the lateral resolution than DMAS.
Collapse
|
11
|
Lan Z, Zheng C, Peng H, Qiao H. Adaptive scaled coherence factor for ultrasound pixel-based beamforming. ULTRASONICS 2022; 119:106608. [PMID: 34793999 DOI: 10.1016/j.ultras.2021.106608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Synthetic aperture (SA) ultrasound imaging can obtain images with high-resolution owing to its ability to dynamically focus in both directions. The signal-to-noise ratio (SNR) of SA imaging is poor because the pulse energy using one array element is quite low. Thus, the SA method with bidirectional pixel-based focusing (SA-BiPBF) was previously proposed as a solution to this challenge. However, using the nonadaptive delay-and-sum (DAS) beamforming still limits its imaging performance. This study proposes an adaptive scaled coherence factor (AscCF) for SA-BiPBF to further boost the image quality. The AscCF exploits generalized coherence factor (GCF) to measure the signal coherence to adaptively adapt the parameters in SNR estimation rather than fixed ones. Comparisons were made with several other weighting techniques by performing simulations and experiments for performance evaluation. Results confirm that AscCF applied to SA-BiPBF offers a good image contrast while reservation of the speckle pattern. AscCF achieves maximal improvements of contrast ratio (CR) by 48.5% and 47.76 % compared with scaled coherence factor (scCF), respectively in simulation and experiment. Simultaneously, the maximum of improvements in speckle signal-to-noise ratio (sSNR) of AscCF are 11.28 % and 20.01 % upon scCF in simulation and experiment, respectively. From the in vivo result, it also appears a potential for AscCF to act in clinical situations to better detect lesion and retain speckle pattern.
Collapse
Affiliation(s)
- Zhengfeng Lan
- Department of Biomedical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chichao Zheng
- Department of Biomedical Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Hu Peng
- Department of Biomedical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Heyuan Qiao
- Department of Biomedical Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|