1
|
Manuel TJ, Bancel T, Tiennot T, Didier M, Santin M, Daniel M, Attali D, Tanter M, Lehéricy S, Pyatigorskaya N, Aubry JF. Ultra-short time-echo based ray tracing for transcranial focused ultrasound aberration correction in human calvaria. Phys Med Biol 2025; 70:075006. [PMID: 38776944 DOI: 10.1088/1361-6560/ad4f44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Objective.Magnetic resonance guided transcranial focused ultrasound holds great promises for treating neurological disorders. This technique relies on skull aberration correction which requires computed tomography (CT) scans of the skull of the patients. Recently, ultra-short time-echo (UTE) magnetic resonance (MR) sequences have unleashed the MRI potential to reveal internal bone structures. In this study, we measure the efficacy of transcranial aberration correction using UTE images.Approach.We compare the efficacy of transcranial aberration correction using UTE scans to CT based correction on four skulls and two targets using a clinical device (Exablate Neuro, Insightec, Israel). We also evaluate the performance of a custom ray tracing algorithm using both UTE and CT estimates of acoustic properties and compare these against the performance of the manufacturer's proprietary aberration correction software.Main results.UTE estimated skull maps in Hounsfield units (HU) had a mean absolute error of 242 ± 20 HU (n= 4). The UTE skull maps were sufficiently accurate to improve pressure at the target (no correction: 0.44 ± 0.10, UTE correction: 0.79 ± 0.05, manufacturer CT: 0.80 ± 0.05), pressure confinement ratios (no correction: 0.45 ± 0.10, UTE correction: 0.80 ± 0.05, manufacturer CT: 0.81 ± 0.05), and targeting error (no correction: 1.06 ± 0.42 mm, UTE correction 0.30 ± 0.23 mm, manufacturer CT: 0.32 ± 0.22) (n= 8 for all values). When using CT, our ray tracing algorithm performed slightly better than UTE based correction with pressure at the target (UTE: 0.79 ± 0.05, CT: 0.84 ± 0.04), pressure confinement ratios (UTE: 0.80 ± 0.05, CT: 0.84 ± 0.04), and targeting error (UTE: 0.30 ± 0.23 mm, CT: 0.17 ± 0.15).Significance.These 3D transcranial measurements suggest that UTE sequences could replace CT scans in the case of MR guided focused ultrasound with minimal reduction in performance which will avoid ionizing radiation exposure to the patients and reduce procedure time and cost.
Collapse
Affiliation(s)
- Thomas J Manuel
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR8361, PSL University, Paris, France
| | - Thomas Bancel
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR8361, PSL University, Paris, France
| | - Thomas Tiennot
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR8361, PSL University, Paris, France
| | - Mélanie Didier
- Centre de Neuro-imagerie de Recherche (CENIR), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle (ICM), F-75013 Paris, France
| | - Mathieu Santin
- Centre de Neuro-imagerie de Recherche (CENIR), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle (ICM), F-75013 Paris, France
| | - Maxime Daniel
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR8361, PSL University, Paris, France
| | - David Attali
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR8361, PSL University, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Université Paris Cité, 75014 Paris, France
| | - Mickael Tanter
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR8361, PSL University, Paris, France
| | - Stéphane Lehéricy
- Centre de Neuro-imagerie de Recherche (CENIR), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle (ICM), F-75013 Paris, France
| | - Nadya Pyatigorskaya
- Centre de Neuro-imagerie de Recherche (CENIR), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle (ICM), F-75013 Paris, France
| | - Jean-François Aubry
- Physics for Medicine Paris, Inserm U1273, ESPCI Paris, CNRS UMR8361, PSL University, Paris, France
| |
Collapse
|
2
|
Zadeh AK, Puonti O, Sigurðsson B, Thielscher A, Monchi O, Pichardo S. Enhancing transcranial ultrasound stimulation planning with MRI-derived skull masks: a comparative analysis with CT-based processing. J Neural Eng 2025; 22:016020. [PMID: 39881616 DOI: 10.1088/1741-2552/adab22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/02/2025] [Indexed: 01/31/2025]
Abstract
Objective.Transcranial ultrasound stimulation (TUS) presents challenges in ultrasound wave transmission through the skull, affecting study outcomes due to aberration and attenuation. While planning strategies incorporating 3D computed tomography (CT) scans help mitigate these issues, they expose participants to radiation, which can raise ethical concerns. A solution involves generating skull masks from participants' anatomical magnetic resonance imaging (MRI). This study aims to compare ultrasound field predictions between CT-derived and MRI-derived skull masks in TUS planning.Approach.Five participants with a range of skull density ratios (SDRs: 0.31, 0.42, 0.55, 0.67, and 0.79) were selected, each having both CT and T1/T2-weighted MRI scans. Ultrasound simulations were performed using BabelBrain software with a single-element transducer (diameter = 50 mm,F# = 1) at 250, 500, and 750 kHz frequencies. CT scans were used to generate maps of the skull's acoustic properties. The MRI scans were processed using the Charm segmentation tool from the SimNIBS tool suite using default and custom settings adapted for better skull segmentation. Ultrasound was adjusted to target 30 mm below the skull's surface at 54 electroencephalogram (EEG) locations.Main Results.The custom setting in Charm significantly improved the Dice coefficient between MRI- and CT-derived masks when compared to the default setting (p< 0.001). The maximum pressure error significantly decreased in the custom setting compared to the default setting (p< 0.001). Additionally, the focus location error median across different SDRs averaged 2.32, 1.45, and 1.57 mm in default and 2.08, 1.38, and 1.44 mm in custom conditions for 250 kHz, 500 kHz, and 750 kHz respectively.Significance.MRI-derived skull masks offer satisfactory accuracy at many EEG sites, and using custom settings can further enhance this accuracy. However, significant errors at specific locations highlight the importance of carefully considering stimulation location when choosing between CT- and MRI-derived skull modeling.
Collapse
Affiliation(s)
- Ali K Zadeh
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Oula Puonti
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Copenhagen, Denmark
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States of America
| | - Björn Sigurðsson
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Copenhagen, Denmark
- Section for Magnetic Resonance, DTU Health Tech, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Copenhagen, Denmark
- Section for Magnetic Resonance, DTU Health Tech, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Oury Monchi
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Radio-oncology and Nuclear Medicine, Université de Montreal, Montreal, QC, Canada
- Centre de Recherche, Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada
| | - Samuel Pichardo
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Krokhmal A, Simcock IC, Treeby BE, Martin E. A comparative study of experimental and simulated ultrasound beam propagation through cranial bones. Phys Med Biol 2025; 70:025007. [PMID: 39700626 PMCID: PMC11734220 DOI: 10.1088/1361-6560/ada19d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/02/2024] [Accepted: 12/19/2024] [Indexed: 12/21/2024]
Abstract
Objective.Transcranial ultrasound is used in a variety of treatments, including neuromodulation, opening the blood-brain barrier, and high intensity focused ultrasound therapies. To ensure safety and efficacy of these treatments, numerical simulations of the ultrasound field within the brain are used for treatment planning and evaluation. This study investigates the accuracy of numerical modelling of the propagation of focused ultrasound through cranial bones.Approach.Holograms of acoustic fields after propagation through four human skull specimens were measured for frequencies ranging from 270 kHz to 1 MHz, using both quasi-continuous and pulsed modes. The open-source k-Wave toolbox was employed for simulations, using an equivalent-source hologram and a uniform bowl source with parameters that best matched the measured free-field pressure distribution.Main results.The average absolute error in k-Wave simulations with sound speed and density derived from CT scans compared to measurements was 15% for the spatial-peak acoustic pressure amplitude, 2.7 mm for the position of the focus, and 35% for the focal volume. Optimised uniform bowl sources achieved calculation accuracy comparable to that of the hologram sources.Significance.This method is demonstrated as a suitable tool for prediction of focal position, size and overall distribution of transcranial ultrasound fields. The accuracy of the shape and position of the focal region demonstrate the suitability of the sound speed and density mapping used here. However, large errors in pressure amplitude and transmission loss in some individual cases show that alternative methods for mapping individual skull attenuation are needed and the possibility of considerable errors in pressure amplitude should be taken into account when planning focused ultrasound studies or interventions in the human brain, and appropriate safety margins should be used.
Collapse
Affiliation(s)
- Alisa Krokhmal
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Ian C Simcock
- Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, United Kingdom
- UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 3EH, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guildford Street, London WC1N 3EH, United Kingdom
| | - Bradley E Treeby
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Eleanor Martin
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
4
|
Seo H, Han M, Choi JR, Kim S, Park J, Lee EH. Numerical Investigation of Layered Homogeneous Skull Model for Simulations of Transcranial Focused Ultrasound. Neuromodulation 2025; 28:103-114. [PMID: 38691075 DOI: 10.1016/j.neurom.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND AND OBJECTIVES The influence of the intracranial pressure field must be discussed with the development of a single-element transducer for low-intensity transcranial focused ultrasound because the skull plays a significant role in blocking and dispersing ultrasound wave propagation. Ultrasound propagation is mainly affected by the structure and acoustic properties of the skull; thus, we aimed to investigate the impact of simplifying the acoustic properties of the skull on the simulation of the transcranial pressure field to present guidance for efficient skull modeling in full-wave simulations. MATERIALS AND METHODS We constructed a three-dimensional computational model for ultrasound transmission with the same structure but varying acoustic properties of the skull. The structural information and heterogeneous acoustic properties of the skull were acquired from computed tomography images, and we segmented the skull into three layers (3 L), including spongy and compact bones. We then assigned homogeneous acoustic properties to a single layer (1 L) or 3 L of the skull. In addition, we investigated the influence of different types of transducers and different ultrasound frequencies (1.1 MHz, 0.5 MHz, and 0.25 MHz) on the intracranial pressure field to provide a comparison of the heterogenous and homogeneous models. RESULTS We indicated the importance of numerical simulations in estimating the intracranial pressure field of the skull owing to beam distortions. When we simplified the skull model, both the 1 L and 3 L models showed contours of the acoustic focus comparable to those of the heterogeneous model. When we evaluated the peak pressure and volume of the acoustic focus, the 1 L model produced a better estimation of peak pressure with a difference <10%, and the 3 L model is suitable to obtain smaller errors in the volume of the acoustic focus. CONCLUSIONS In conclusion, we examined the possibility of simplification of skull models using 1 L and 3 L homogeneous properties in the numerical simulation for focused ultrasound. The results show that the layered homogeneous model can provide characteristics comparable to those of the acoustic focus in heterogeneous models.
Collapse
Affiliation(s)
- Hyeon Seo
- Department of AI Convergence Engineering, Gyeongsang National University, Jinju, Republic of Korea; Department of Computer Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Mun Han
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Korea
| | - Jong-Ryul Choi
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Korea
| | - Seungmin Kim
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Korea
| | - Juyoung Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Korea; Department of High-Tech Medical Device, College of Future Industry, Gachon University, Seongnam, Korea
| | - Eun-Hee Lee
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Korea.
| |
Collapse
|
5
|
McDannold N, Wen PY, Reardon DA, Fletcher SM, Golby AJ. Cavitation monitoring, treatment strategy, and acoustic simulations of focused ultrasound blood-brain barrier disruption in patients with glioblastoma. J Control Release 2024; 372:194-208. [PMID: 38897294 PMCID: PMC11299340 DOI: 10.1016/j.jconrel.2024.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE We report our experience disrupting the blood-brain barrier (BBB) to improve drug delivery in glioblastoma patients receiving temozolomide chemotherapy. The goals of this retrospective analysis were to compare MRI-based measures of BBB disruption and vascular damage to the exposure levels, acoustic emissions data, and acoustic simulations. We also simulated the cavitation detectors. METHODS Monthly BBB disruption (BBBD) was performed using a 220 kHz hemispherical phased array focused ultrasound system (Exablate Neuro, InSightec) and Definity microbubbles (Lantheus) over 38 sessions in nine patients. Exposure levels were actively controlled via the cavitation dose obtained by monitoring subharmonic acoustic emissions. The acoustic field and sensitivity profile of the cavitation detection system were simulated. Exposure levels and cavitation metrics were compared to the level of BBBD evident in contrast-enhanced MRI and to hypointense regions in T2*-weighted MRI. RESULTS Our treatment strategy evolved from using a relatively high cavitation dose goal to a lower goal and longer sonication duration and ultimately resulted in BBBD across the treatment volume with minimal petechiae. Subsonication-level feedback control of the exposure using acoustic emissions also improved consistency. Simulations of the acoustic field suggest that reflections and standing waves appear when the focus is placed near the skull, but their effects can be mitigated with aberration correction. Simulating the cavitation detectors suggest variations in the sensitivity profile across the treatment volume and between patients. A correlation was observed with the cavitation dose, BBBD and petechial hemorrhage in 8/9 patients, but substantial variability was evident. Analysis of the cavitation spectra found that most bursts did not contain wideband emissions, a signature of inertial cavitation, but biggest contribution to the cavitation dose - the metric used to control the procedure - came from bursts with wideband emissions. CONCLUSION Using a low subharmonic cavitation dose with a longer duration resulted in BBBD with minimal petechiae. The correlation between cavitation dose and outcomes demonstrates the benefits of feedback control based on acoustic emissions, although more work is needed to reduce variability. Acoustic simulations could improve focusing near the skull and inform our analysis of acoustic emissions. Monitoring additional frequency bands and improving the sensitivity of the cavitation detection could provide signatures of microbubble activity associated with BBB disruption that were undetected here and could improve our ability to achieve BBB disruption without vascular damage.
Collapse
Affiliation(s)
- Nathan McDannold
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, United States of America.
| | - Patrick Y Wen
- Department of Neuro-oncology, Dana Farber Cancer Institute, Boston, MA, United States of America
| | - David A Reardon
- Department of Neuro-oncology, Dana Farber Cancer Institute, Boston, MA, United States of America
| | - Stecia-Marie Fletcher
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, United States of America
| | - Alexandra J Golby
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, United States of America; Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, United States of America
| |
Collapse
|
6
|
Daneshzand M, Guerin B, Kotlarz P, Chou T, Dougherty DD, Edlow BL, Nummenmaa A. Model-based navigation of transcranial focused ultrasound neuromodulation in humans: Application to targeting the amygdala and thalamus. Brain Stimul 2024; 17:958-969. [PMID: 39094682 PMCID: PMC11367617 DOI: 10.1016/j.brs.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Transcranial focused ultrasound (tFUS) neuromodulation has shown promise in animals but is challenging to translate to humans because of the thicker skull that heavily scatters ultrasound waves. OBJECTIVE We develop and disseminate a model-based navigation (MBN) tool for acoustic dose delivery in the presence of skull aberrations that is easy to use by non-specialists. METHODS We pre-compute acoustic beams for thousands of virtual transducer locations on the scalp of the subject under study. We use the hybrid angular spectrum solver mSOUND, which runs in ∼4 s per solve per CPU yielding pre-computation times under 1 h for scalp meshes with up to 4000 faces and a parallelization factor of 5. We combine this pre-computed set of beam solutions with optical tracking, thus allowing real-time display of the tFUS beam as the operator freely navigates the transducer around the subject' scalp. We assess the impact of MBN versus line-of-sight targeting (LOST) positioning in simulations of 13 subjects. RESULTS Our navigation tool has a display refresh rate of ∼10 Hz. In our simulations, MBN increased the acoustic dose in the thalamus and amygdala by 8-67 % compared to LOST and avoided complete target misses that affected 10-20 % of LOST cases. MBN also yielded a lower variability of the deposited dose across subjects than LOST. CONCLUSIONS MBN may yield greater and more consistent (less variable) ultrasound dose deposition than transducer placement with line-of-sight targeting, and thus could become a helpful tool to improve the efficacy of tFUS neuromodulation.
Collapse
Affiliation(s)
- Mohammad Daneshzand
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Bastien Guerin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Parker Kotlarz
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Tina Chou
- Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA, USA
| | - Darin D Dougherty
- Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA, USA
| | - Brian L Edlow
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Kong D, Liu G, Cheng B, Qi X, Zhu J, He Q, Xing H, Gong Q. A novel transcranial MR Guided focused ultrasound method based on the ultrashort echo time skull acoustic model and phase retrieval techniques. Sci Rep 2024; 14:11876. [PMID: 38789537 PMCID: PMC11636931 DOI: 10.1038/s41598-024-62500-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Transcranial ultrasound stimulation (TUS) has been clinically applied as a neuromodulation tool. Particularly, the phase array ultrasound can be applied in TUS to non-invasively focus on the cortex or deep brain. However, the vital phase distortion of the ultrasound induced by the skull limits its clinical application. In the current study, we aimed to develop a hybrid method that combines the ultrashort echo time (UTE) magnetic resonance imaging (MRI) sequences with the prDeep technique to achieve focusing ventral intermediate thalamic nucleus (VIM). The time-reversal (TR) approach of the UTE numerical acoustic model of the skull combined with the prDeep algorithm was used to reduce the number of iterations. The skull acoustic model simulation therapy process was establish to valid this method's prediction and focus performance, and the classical TR method were considered as the gold standard (GS). Our approach could restore 75% of the GS intensity in 25 iteration steps, with a superior the noise immunity. Our findings demonstrate that the phase aberration caused by the skull can be estimated using phase retrieval techniques to achieve a fast and accurate transcranial focus. The method has excellent adaptability and anti-noise capacity for satisfying complex and changeable scenarios.
Collapse
Affiliation(s)
- Dechen Kong
- College Of Physics, Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Gaojie Liu
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bochao Cheng
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, 610041, China
| | - Xu Qi
- Radiotherapy Physics & Technology Center, Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jiayu Zhu
- Central Research Institute, United Imaging Healthcare Group, Shanghai, China
| | - Qiang He
- Central Research Institute, United Imaging Healthcare Group, Shanghai, China
| | - Haoyang Xing
- College Of Physics, Sichuan University, Chengdu, China.
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China.
- Xiamen West China Hospital, Sichuan University, Xiamen, China.
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
- Xiamen West China Hospital, Sichuan University, Xiamen, China
| |
Collapse
|
8
|
Riis T, Feldman D, Mickey B, Kubanek J. Controlled noninvasive modulation of deep brain regions in humans. COMMUNICATIONS ENGINEERING 2024; 3:13. [PMCID: PMC10956068 DOI: 10.1038/s44172-023-00146-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 11/29/2023] [Indexed: 10/06/2024]
Abstract
Transcranial focused ultrasound provides noninvasive and reversible approaches for precise and personalized manipulations of brain circuits, with the potential to transform our understanding of brain function and treatments of brain dysfunction. However, effective applications in humans have been limited by the human head, which attenuates and distorts ultrasound severely and unpredictably. This has led to uncertain ultrasound intensities delivered into the brain. Here, we address this lingering barrier using a direct measurement approach that can be repeatedly applied to the human brain. The approach uses an ultrasonic scan of the head to measure and compensate for the attenuation of the ultrasound by all obstacles within the ultrasound path. No other imaging modality is required and the method is parameter-free and personalized to each subject. The approach accurately restores operators’ intended intensities inside ex-vivo human skulls. Moreover, the approach is critical for effective modulation of deep brain regions in humans. When applied, the approach modulates fMRI Blood Oxygen Level Dependent (BOLD) activity in disease-relevant deep brain regions. This tool unlocks the potential of emerging approaches based on low-intensity ultrasound for controlled manipulations of neural circuits in humans. Transcranial focused ultrasound has had limited applications in humans due to the unpredictable distortions of ultrasound by the human head. Thomas Riis and colleagues report an approach which enables direct correction for the attenuation of ultrasound by the skull and hair, thus enabling controlled ultrasound therapies in humans.
Collapse
Affiliation(s)
- Thomas Riis
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84102 USA
| | - Daniel Feldman
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84102 USA
| | - Brian Mickey
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84102 USA
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84102 USA
| | - Jan Kubanek
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84102 USA
| |
Collapse
|
9
|
Marchant JK, Clinard SR, Odéen H, Parker DL, Christensen DA. The influence of bone model geometries on the determination of skull acoustic properties. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3779. [PMID: 37794748 PMCID: PMC10841890 DOI: 10.1002/cnm.3779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/06/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023]
Abstract
In this study, we investigated the impact of various simulated skull bone geometries on the determination of skull speed of sound and acoustic attenuation values via optimization using transmitted pressure amplitudes beyond the bone. Using the hybrid angular spectrum method (HAS), we simulated ultrasound transmission through four model sets of different geometries involving sandwiched layers of diploë and cortical bone in addition to three models generated from CT images of ex-vivo human skull-bones. We characterized cost-function solution spaces for each model and, using optimization, found that when a model possessed appreciable variations in resolvable layer thickness, the predefined attenuation coefficients could be found with low error (RMSE < 0.01 Np/cm). However, we identified a spatial frequency cutoff in the models' geometry beyond which the accuracy of the property determination begins to fail, depending on the frequency of the ultrasound source. There was a large increase in error of the attenuation coefficients determined by the optimization when the variations in layer thickness were above the identified spatial frequency cutoffs, or when the lateral variations across the model were relatively low in amplitude. For our limited sample of three CT-image derived bone models, the attenuation coefficients were determined successfully. The speed of sound values were determined with low error for all models (including the CT-image derived models) that were tested (RMSE < 0.4 m/s). These results illustrate that it is possible to determine the acoustic properties of two-component models when the internal bone structure is taken into account and the structure satisfies the spatial frequency constraints discussed.
Collapse
Affiliation(s)
- Joshua K. Marchant
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT, USA
| | - Samuel R. Clinard
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Dennis L. Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Douglas A. Christensen
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
10
|
Pichardo S. BabelBrain: An Open-Source Application for Prospective Modeling of Transcranial Focused Ultrasound for Neuromodulation Applications. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:587-599. [PMID: 37155375 DOI: 10.1109/tuffc.2023.3274046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BabelBrain is an open-source standalone graphic-user-interface application designed for studies of neuromodulation using transcranial-focused ultrasound (FUS). It calculates the transmitted acoustic field in the brain tissue, taking into account the distortion effects caused by the skull barrier. The simulation is prepared using scans from magnetic resonance imaging (MRI) and, if available, computed tomography (CT) and zero-echo time MRI scans. It also calculates the thermal effects based on a given ultrasound regime, such as the total duration of exposure, the duty cycle, and acoustic intensity. The tool is designed to work in tandem with neuronavigation and visualization software, such as 3-DSlicer. It uses image processing to prepare domains for ultrasound simulation and uses the BabelViscoFDTD library for transcranial modeling calculations. BabelBrain supports multiple GPU backends, including Metal, OpenCL, and CUDA, and works on all major operating systems including Linux, macOS, and Windows. This tool is particularly optimized for Apple ARM64 systems, which are common in brain imaging research. The article presents the modeling pipeline used in BabelBrain and a numerical study where different methods of acoustic properties mapping were tested to select the best method that can reproduce the transcranial pressure transmission efficiency reported in the literature.
Collapse
|
11
|
Angla C, Larrat B, Gennisson JL, Chatillon S. Transcranial ultrasound simulations: A review. Med Phys 2023; 50:1051-1072. [PMID: 36047387 DOI: 10.1002/mp.15955] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/06/2022] Open
Abstract
Transcranial ultrasound is more and more used for therapy and imaging of the brain. However, the skull is a highly attenuating and aberrating medium, with different structures and acoustic properties among samples and even within a sample. Thus, case-specific simulations are needed to perform transcranial focused ultrasound interventions safely. In this article, we provide a review of the different methods used to model the skull and to simulate ultrasound propagation through it.
Collapse
Affiliation(s)
| | - Benoit Larrat
- Université Paris Saclay, CNRS, CEA, DRF/JOLIOT/NEUROSPIN/BAOBAB, Gif-sur-Yvette, France
| | | | | |
Collapse
|
12
|
Chen M, Peng C, Wu H, Huang CC, Kim T, Traylor Z, Muller M, Chhatbar PY, Nam CS, Feng W, Jiang X. Numerical and experimental evaluation of low-intensity transcranial focused ultrasound wave propagation using human skulls for brain neuromodulation. Med Phys 2023; 50:38-49. [PMID: 36342303 PMCID: PMC10099743 DOI: 10.1002/mp.16090] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Low-intensity transcranial focused ultrasound (tFUS) has gained considerable attention as a promising noninvasive neuromodulatory technique for human brains. However, the complex morphology of the skull hinders scholars from precisely predicting the acoustic energy transmitted and the region of the brain impacted during the sonication. This is due to the fact that different ultrasound frequencies and skull morphology variations greatly affect wave propagation through the skull. PURPOSE Although the acoustic properties of human skull have been studied for tFUS applications, such as tumor ablation using a multielement phased array, there is no consensus about how to choose a single-element focused ultrasound (FUS) transducer with a suitable frequency for neuromodulation. There are interests in exploring the magnitude and dimension of tFUS beam through human parietal bone for modulating specific brain lobes. Herein, we aim to investigate the wave propagation of tFUS on human skulls to understand and address the concerns above. METHODS Both experimental measurements and numerical modeling were conducted to investigate the transmission efficiency and beam pattern of tFUS on five human skulls (C3 and C4 regions) using single-element FUS transducers with six different frequencies (150-1500 kHz). The degassed skull was placed in a water tank, and a calibrated hydrophone was utilized to measure acoustic pressure past it. The cranial computed tomography scan data of each skull were obtained to derive a high-resolution acoustic model (grid point spacing: 0.25 mm) in simulations. Meanwhile, we modified the power-law exponent of acoustic attenuation coefficient to validate numerical modeling and enabled it to be served as a prediction tool, based on the experimental measurements. RESULTS The transmission efficiency and -6 dB beamwidth were evaluated and compared for various frequencies. An exponential decrease in transmission efficiency and a logarithmic decrease of -6 dB beamwidth with an increase in ultrasound frequency were observed. It is found that a >750 kHz ultrasound leads to a relatively lower tFUS transmission efficiency (<5%), whereas a <350 kHz ultrasound contributes to a relatively broader beamwidth (>5 mm). Based on these observations, we further analyzed the dependence of tFUS wave propagation on FUS transducer aperture size. CONCLUSIONS We successfully studied tFUS wave propagation through human skulls at different frequencies experimentally and numerically. The findings have important implications to predict tFUS wave propagation for ultrasound neuromodulation in clinical applications, and guide researchers to develop advanced ultrasound transducers as neural interfaces.
Collapse
Affiliation(s)
- Mengyue Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Chang Peng
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA.,School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Huaiyu Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Chih-Chung Huang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA.,Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Taewon Kim
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Zachary Traylor
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Marie Muller
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Pratik Y Chhatbar
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Chang S Nam
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
13
|
Mohammadjavadi M, Ash RT, Li N, Gaur P, Kubanek J, Saenz Y, Glover GH, Popelka GR, Norcia AM, Pauly KB. Transcranial ultrasound neuromodulation of the thalamic visual pathway in a large animal model and the dose-response relationship with MR-ARFI. Sci Rep 2022; 12:19588. [PMID: 36379960 PMCID: PMC9666449 DOI: 10.1038/s41598-022-20554-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Neuromodulation of deep brain structures via transcranial ultrasound stimulation (TUS) is a promising, but still elusive approach to non-invasive treatment of brain disorders. The purpose of this study was to confirm that MR-guided TUS of the lateral geniculate nucleus (LGN) can modulate visual evoked potentials (VEPs) in the intact large animal; and to study the impact on cortical brain oscillations. The LGN on one side was identified with T2-weighted MRI in sheep (all male, n = 9). MR acoustic radiation force imaging (MR-ARFI) was used to confirm localization of the targeted area in the brain. Electroencephalographic (EEG) signals were recorded, and the visual evoked potential (VEP) peak-to-peak amplitude (N70 and P100) was calculated for each trial. Time-frequency spectral analysis was performed to elucidate the effect of TUS on cortical brain dynamics. The VEP peak-to-peak amplitude was reversibly suppressed relative to baseline during TUS. Dynamic spectral analysis demonstrated a change in cortical oscillations when TUS is paired with visual sensory input. Sonication-associated microscopic displacements, as measured by MR-ARFI, correlated with the TUS-mediated suppression of visual evoked activity. TUS non-invasively delivered to LGN can neuromodulate visual activity and oscillatory dynamics in large mammalian brains.
Collapse
Affiliation(s)
| | - Ryan T Ash
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Ningrui Li
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Pooja Gaur
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Jan Kubanek
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, Utah, USA
| | - Yamil Saenz
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Gary H Glover
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Gerald R Popelka
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Otolaryngology, Stanford University, Stanford, CA, USA
| | | | - Kim Butts Pauly
- Department of Radiology, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
14
|
Aubry JF, Bates O, Boehm C, Butts Pauly K, Christensen D, Cueto C, Gélat P, Guasch L, Jaros J, Jing Y, Jones R, Li N, Marty P, Montanaro H, Neufeld E, Pichardo S, Pinton G, Pulkkinen A, Stanziola A, Thielscher A, Treeby B, van 't Wout E. Benchmark problems for transcranial ultrasound simulation: Intercomparison of compressional wave models. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:1003. [PMID: 36050189 DOI: 10.5281/zenodo.6020543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Computational models of acoustic wave propagation are frequently used in transcranial ultrasound therapy, for example, to calculate the intracranial pressure field or to calculate phase delays to correct for skull distortions. To allow intercomparison between the different modeling tools and techniques used by the community, an international working group was convened to formulate a set of numerical benchmarks. Here, these benchmarks are presented, along with intercomparison results. Nine different benchmarks of increasing geometric complexity are defined. These include a single-layer planar bone immersed in water, a multi-layer bone, and a whole skull. Two transducer configurations are considered (a focused bowl and a plane piston operating at 500 kHz), giving a total of 18 permutations of the benchmarks. Eleven different modeling tools are used to compute the benchmark results. The models span a wide range of numerical techniques, including the finite-difference time-domain method, angular spectrum method, pseudospectral method, boundary-element method, and spectral-element method. Good agreement is found between the models, particularly for the position, size, and magnitude of the acoustic focus within the skull. When comparing results for each model with every other model in a cross-comparison, the median values for each benchmark for the difference in focal pressure and position are less than 10% and 1 mm, respectively. The benchmark definitions, model results, and intercomparison codes are freely available to facilitate further comparisons.
Collapse
Affiliation(s)
- Jean-Francois Aubry
- Physics for Medicine Paris, National Institute of Health and Medical Research (INSERM) U1273, ESPCI Paris, Paris Sciences and Lettres University, French National Centre for Scientific Research (CNRS) UMR 8063, Paris, France
| | - Oscar Bates
- Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Christian Boehm
- Institute of Geophysics, Swiss Federal Institute of Technology (ETH) Zürich, Sonneggstrasse 5, 8092 Zürich, Switzerland
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, Stanford, California 94305, USA
| | - Douglas Christensen
- Department of Biomedical Engineering and Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Carlos Cueto
- Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Pierre Gélat
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London NW3 2PF, United Kingdom
| | - Lluis Guasch
- Earth Science and Engineering Department, Imperial College London, London, United Kingdom
| | - Jiri Jaros
- Centre of Excellence IT4Innovations, Faculty of Information Technology, Brno University of Technology, Bozetechova 2, Brno 612 00, Czech Republic
| | - Yun Jing
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Rebecca Jones
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA and North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Ningrui Li
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - Patrick Marty
- Institute of Geophysics, Swiss Federal Institute of Technology (ETH) Zürich, Sonneggstrasse 5, 8092 Zürich, Switzerland
| | - Hazael Montanaro
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
| | - Samuel Pichardo
- Radiology and Clinical Neurosciences Departments, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gianmarco Pinton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA and North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Aki Pulkkinen
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
| | - Antonio Stanziola
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | - Bradley Treeby
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Elwin van 't Wout
- Institute for Mathematical and Computational Engineering, School of Engineering and Faculty of Mathematics, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
15
|
Aubry JF, Bates O, Boehm C, Butts Pauly K, Christensen D, Cueto C, Gélat P, Guasch L, Jaros J, Jing Y, Jones R, Li N, Marty P, Montanaro H, Neufeld E, Pichardo S, Pinton G, Pulkkinen A, Stanziola A, Thielscher A, Treeby B, van 't Wout E. Benchmark problems for transcranial ultrasound simulation: Intercomparison of compressional wave models. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:1003. [PMID: 36050189 PMCID: PMC9553291 DOI: 10.1121/10.0013426] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Computational models of acoustic wave propagation are frequently used in transcranial ultrasound therapy, for example, to calculate the intracranial pressure field or to calculate phase delays to correct for skull distortions. To allow intercomparison between the different modeling tools and techniques used by the community, an international working group was convened to formulate a set of numerical benchmarks. Here, these benchmarks are presented, along with intercomparison results. Nine different benchmarks of increasing geometric complexity are defined. These include a single-layer planar bone immersed in water, a multi-layer bone, and a whole skull. Two transducer configurations are considered (a focused bowl and a plane piston operating at 500 kHz), giving a total of 18 permutations of the benchmarks. Eleven different modeling tools are used to compute the benchmark results. The models span a wide range of numerical techniques, including the finite-difference time-domain method, angular spectrum method, pseudospectral method, boundary-element method, and spectral-element method. Good agreement is found between the models, particularly for the position, size, and magnitude of the acoustic focus within the skull. When comparing results for each model with every other model in a cross-comparison, the median values for each benchmark for the difference in focal pressure and position are less than 10% and 1 mm, respectively. The benchmark definitions, model results, and intercomparison codes are freely available to facilitate further comparisons.
Collapse
Affiliation(s)
- Jean-Francois Aubry
- Physics for Medicine Paris, National Institute of Health and Medical Research (INSERM) U1273, ESPCI Paris, Paris Sciences and Lettres University, French National Centre for Scientific Research (CNRS) UMR 8063, Paris, France
| | - Oscar Bates
- Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Christian Boehm
- Institute of Geophysics, Swiss Federal Institute of Technology (ETH) Zürich, Sonneggstrasse 5, 8092 Zürich, Switzerland
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, Stanford, California 94305, USA
| | - Douglas Christensen
- Department of Biomedical Engineering and Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Carlos Cueto
- Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Pierre Gélat
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London NW3 2PF, United Kingdom
| | - Lluis Guasch
- Earth Science and Engineering Department, Imperial College London, London, United Kingdom
| | - Jiri Jaros
- Centre of Excellence IT4Innovations, Faculty of Information Technology, Brno University of Technology, Bozetechova 2, Brno 612 00, Czech Republic
| | - Yun Jing
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Rebecca Jones
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA and North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Ningrui Li
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - Patrick Marty
- Institute of Geophysics, Swiss Federal Institute of Technology (ETH) Zürich, Sonneggstrasse 5, 8092 Zürich, Switzerland
| | - Hazael Montanaro
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
| | - Samuel Pichardo
- Radiology and Clinical Neurosciences Departments, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gianmarco Pinton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA and North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Aki Pulkkinen
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
| | - Antonio Stanziola
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | - Bradley Treeby
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Elwin van 't Wout
- Institute for Mathematical and Computational Engineering, School of Engineering and Faculty of Mathematics, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
16
|
Xu R, O'Reilly MA. Establishing density-dependent longitudinal sound speed in the vertebral lamina. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:1516. [PMID: 35364923 DOI: 10.1121/10.0009316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Focused ultrasound treatments of the spinal cord may be facilitated using a phased array transducer and beamforming to correct spine-induced focal aberrations. Simulations can non-invasively calculate aberration corrections using x-ray computed tomography (CT) data that are correlated to density (ρ) and longitudinal sound speed (cL). We aimed to optimize vertebral lamina-specific cL(ρ) functions at a physiological temperature (37 °C) to maximize time domain simulation accuracy. Odd-numbered ex vivo human thoracic vertebrae were imaged with a clinical CT-scanner (0.511 × 0.511 × 0.5 mm), then sonicated with a transducer (514 kHz) focused on the canal via the vertebral lamina. Vertebra-induced signal time shifts were extracted from pressure waveforms recorded within the canals. Measurements were repeated 5× per vertebra, with 2.5 mm vertical vertebra shifts between measurements. Linear functions relating cL with CT-derived density were optimized. The optimized function was cL(ρ)=0.35(ρ-ρw)+ cL,w m/s, where w denotes water, giving the tested laminae a mean bulk density of 1600 ± 30 kg/m3 and a mean bulk cL of 1670 ± 60 m/s. The optimized lamina cL(ρ) function was accurate to λ/16 when implemented in a multi-layered ray acoustics model. This modelling accuracy will improve trans-spine ultrasound beamforming.
Collapse
Affiliation(s)
- Rui Xu
- Department of Medical Biophysics, University of Toronto, 101 College Street, Suite 15-701, Toronto, Ontario, M5G 1L7, Canada
| | - Meaghan A O'Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| |
Collapse
|
17
|
Riis TS, Webb TD, Kubanek J. Acoustic properties across the human skull. ULTRASONICS 2022; 119:106591. [PMID: 34717144 PMCID: PMC8642838 DOI: 10.1016/j.ultras.2021.106591] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/05/2021] [Accepted: 09/16/2021] [Indexed: 05/11/2023]
Abstract
Transcranial ultrasound is emerging as a noninvasive tool for targeted treatments of brain disorders. Transcranial ultrasound has been used for remotely mediated surgeries, transient opening of the blood-brain barrier, local drug delivery, and neuromodulation. However, all applications have been limited by the severe attenuation and phase distortion of ultrasound by the skull. Here, we characterized the dependence of the aberrations on specific anatomical segments of the skull. In particular, we measured ultrasound propagation properties throughout the perimeter of intact human skulls at 500 kHz. We found that the parietal bone provides substantially higher transmission (average pressure transmission 31 ± 7%) and smaller phase distortion (242 ± 44 degrees) than frontal (13 ± 2%, 425 ± 47 degrees) and occipital bone regions (16 ± 4%, 416 ± 35 degrees). In addition, we found that across skull regions, transmission strongly anti-correlated (R=-0.79) and phase distortion correlated (R=0.85) with skull thickness. This information guides the design, positioning, and skull correction functionality of next-generation devices for effective, safe, and reproducible transcranial focused ultrasound therapies.
Collapse
Affiliation(s)
- Thomas S Riis
- Department of Biomedical Engineering, University of Utah, Salt Lake City, 84112, UT, United States.
| | - Taylor D Webb
- Department of Biomedical Engineering, University of Utah, Salt Lake City, 84112, UT, United States.
| | - Jan Kubanek
- Department of Biomedical Engineering, University of Utah, Salt Lake City, 84112, UT, United States.
| |
Collapse
|