1
|
Ghosh A, Thittai AK. Advanced synthetic aperture technique to enhance image quality in ultrasound elastography: A novel strategy. ULTRASONICS 2025; 148:107535. [PMID: 39647215 DOI: 10.1016/j.ultras.2024.107535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/10/2024]
Abstract
Quasi-static elastography (QSE) is a well-established technique used in medical imaging, where ultrasound data is collected both, before and after applying a slight compression on a tissue. This data is then analyzed to create image frames that reveal the stiffness parameter of the underlying tissue medium. Previous studies have focused on assessing how the Conventional Focused Beam (CFB) transmit method impacts the ultrasound elastography image quality. Recent studies have also shown an interest in synthetic aperture techniques like the Diverging Beam Synthetic Aperture Technique (DBSAT), due to its potential to enhance ultrasound image quality. However, its application in elastography has received limited attention. This paper introduces a new strategy of averaging low-resolution elastogram frames (LREA), obtained from DBSAT transmit method to improve the quality of elastography images. The CFB technique involves scanning the tissue line by line. In contrast, DBSAT is a synthetic aperture method that generates multiple low-resolution elastogram frames before combining them together to create a single high-quality image. In this research paper all the experimental studies were conducted on an agar-gelatin phantom, demonstrating the effectiveness of estimating elastograms from the low-resolution frame data of DBSAT transmit scheme and then summing them together to produce an elastogram with enhanced image quality. The results show a maximum improvement of 8 dB in the image quality metric of signal-to-noise ratio (SNR) as well as a 7 dB improvement in contrast-to-noise ratio (CNR) when comparing elastography images obtained by the proposed LREA method and the elastography images obtained by regular processing of the RF data acquired using the different methods of CFB and DBSAT.
Collapse
Affiliation(s)
- Arpan Ghosh
- Biomedical Ultrasound Laboratory, Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Arun K Thittai
- Biomedical Ultrasound Laboratory, Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
2
|
Khan MHR, Righetti R. A Novel Poroelastography Method for High-Quality Estimation of Lateral Strain, Solid Stress, and Fluid Pressure In Vivo. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:232-243. [PMID: 39102319 DOI: 10.1109/tmi.2024.3438564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Assessment of mechanical and transport properties of tissues using ultrasound elasticity imaging requires accurate estimations of the spatiotemporal distribution of volumetric strain. Due to physical constraints such as pitch limitation and the lack of phase information in the lateral direction, the quality of lateral strain estimation is typically significantly lower than the quality of axial strain estimation. In this paper, a novel lateral strain estimation technique based on the physics of compressible porous media is developed, tested and validated. This technique is referred to as "Poroelastography-based Ultrasound Lateral Strain Estimation" (PULSE). PULSE differs from previously proposed lateral strain estimators as it uses the underlying physics of internal fluid flow within a local region of the tissue as theoretical foundation. PULSE establishes a relation between spatiotemporal changes in the axial strains and corresponding spatiotemporal changes in the lateral strains, effectively allowing assessment of lateral strains with comparable quality of axial strain estimators. We demonstrate that PULSE can also be used to accurately track compression-induced solid stresses and fluid pressure in cancers using ultrasound poroelastography (USPE). In this study, we report the theoretical formulation for PULSE and validation using finite element (FE) and ultrasound simulations. PULSE-generated results exhibit less than 5% percentage relative error (PRE) and greater than 90% structural similarity index (SSIM) compared to ground truth simulations. Experimental results are included to qualitatively assess the performance of PULSE in vivo. The proposed method can be used to overcome the inherent limitations of non-axial strain imaging and improve clinical translatability of USPE.
Collapse
|
3
|
Ashikuzzaman M, Tehrani AKZ, Rivaz H. Exploiting Mechanics-Based Priors for Lateral Displacement Estimation in Ultrasound Elastography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:3307-3322. [PMID: 37267132 DOI: 10.1109/tmi.2023.3282542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Tracking the displacement between the pre- and post-deformed radio-frequency (RF) frames is a pivotal step of ultrasound elastography, which depicts tissue mechanical properties to identify pathologies. Due to ultrasound's poor ability to capture information pertaining to the lateral direction, the existing displacement estimation techniques fail to generate an accurate lateral displacement or strain map. The attempts made in the literature to mitigate this well-known issue suffer from one of the following limitations: 1) Sampling size is substantially increased, rendering the method computationally and memory expensive. 2) The lateral displacement estimation entirely depends on the axial one, ignoring data fidelity and creating large errors. This paper proposes exploiting the effective Poisson's ratio (EPR)-based mechanical correspondence between the axial and lateral strains along with the RF data fidelity and displacement continuity to improve the lateral displacement and strain estimation accuracies. We call our techniques MechSOUL (Mechanically-constrained Second-Order Ultrasound eLastography) and L1 -MechSOUL ( L1 -norm-based MechSOUL), which optimize L2 - and L1 -norm-based penalty functions, respectively. Extensive validation experiments with simulated, phantom, and in vivo datasets demonstrate that MechSOUL and L1 -MechSOUL's lateral strain and EPR estimation abilities are substantially superior to those of the recently-published elastography techniques. We have published the MATLAB codes of MechSOUL and L1 -MechSOUL at https://code.sonography.ai.
Collapse
|
4
|
Tehrani AKZ, Ashikuzzaman M, Rivaz H. Lateral Strain Imaging Using Self-Supervised and Physically Inspired Constraints in Unsupervised Regularized Elastography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:1462-1471. [PMID: 37015465 DOI: 10.1109/tmi.2022.3230635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Convolutional Neural Networks (CNN) have shown promising results for displacement estimation in UltraSound Elastography (USE). Many modifications have been proposed to improve the displacement estimation of CNNs for USE in the axial direction. However, the lateral strain, which is essential in several downstream tasks such as the inverse problem of elasticity imaging, remains a challenge. The lateral strain estimation is complicated since the motion and the sampling frequency in this direction are substantially lower than the axial one, and a lack of carrier signal in this direction. In computer vision applications, the axial and the lateral motions are independent. In contrast, the tissue motion pattern in USE is governed by laws of physics which link the axial and lateral displacements. In this paper, inspired by Hooke's law, we, first propose Physically Inspired ConsTraint for Unsupervised Regularized Elastography (PICTURE), where we impose a constraint on the Effective Poisson's ratio (EPR) to improve the lateral strain estimation. In the next step, we propose self-supervised PICTURE (sPICTURE) to further enhance the strain image estimation. Extensive experiments on simulation, experimental phantom and in vivo data demonstrate that the proposed methods estimate accurate axial and lateral strain maps.
Collapse
|
5
|
Rostamikhanghahi H, Sakhaei SM. Synthetic Aperture Ultrasound Imaging through Adaptive Integrated Transmitting-Receiving Beamformer. ULTRASONIC IMAGING 2023; 45:101-118. [PMID: 37009752 DOI: 10.1177/01617346231163835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Synthetic aperture (SA) technique is very attractive for ultrafast ultrasound imaging, as the entire medium can be insonified by a single emission. It also permits applying the dynamic focusing as well as adaptive beamforming both in transmission and reception, which results in an enhanced image. In this paper, we firstly show that the problem of designing the transmit and receive beamformers in SA structure can be formulated as a problem of designing a one-way beamformer on a virtual array with a lateral response equal to that of the two-way beamformer on SA. It is also demonstrated that the length of the virtual aperture is increased to the sum of the transmit aperture length and the receive one, which can result in an enhanced resolution. Moreover, a better estimation of the covariance matrix can be obtained which can be utilized for applying adaptive minimum variance (MV) beamforming method on the virtual array, and consequently the resolution and contrast properties would be enhanced. The performance of the new method is compared with other existing MV-based methods and is quantified by some metrics such as the full width at half maximum (FWHM) and generalized contrast to noise ratio (GCNR). Our validations on simulations and experimental data have shown that the new method is capable of obtaining higher GCNR values while retaining or decreasing FWHM values almost all the time. Moreover, for the same subarray length for estimating the covariance matrices, the computational burden of the new method is significantly lower than those of the existing rival methods.
Collapse
Affiliation(s)
- Hasti Rostamikhanghahi
- Department of electrical and computer engineering, Babol Noshirvani University of Technology, Babol, Mazandaran, Iran
| | - Sayed Mahmoud Sakhaei
- Department of electrical and computer engineering, Babol Noshirvani University of Technology, Babol, Mazandaran, Iran
| |
Collapse
|
6
|
Wang Y, Wei X, Pan Z, Huang L, He Q, Luo J. Influence of key parameters on motion artifacts in lateral strain estimation with spatial angular compounding. ULTRASONICS 2022; 125:106799. [PMID: 35797866 DOI: 10.1016/j.ultras.2022.106799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Strain imaging can reveal the changes in tissue mechanical properties related to pathological alterations by estimating tissue strains in the lateral and axial directions of ultrasound imaging. The estimation performance in the lateral direction is usually worse than that in the axial direction. Spatial angular compounding (SAC) has been demonstrated to improve the quality of lateral estimation by deriving the lateral displacements using axial displacements obtained from multi-angle transmissions. However, motion and deformation of tissues during multiple transmissions may cause motion artifacts, and thus deteriorate the quality of strain estimation. These artifacts can be reduced by choosing appropriate imaging parameters. However, few studies have been conducted to evaluate the influences of key parameters in strain estimation, such as the pulse repetition frequency (PRF), the number of steering angles (NSA), and the maximum steering angles (MSA), in terms of performance optimization. Therefore, this study aims to investigate the effects of these parameters through simulations and phantom experiments. The performance of strain estimation is evaluated by measuring the root-mean-square error (RMSE) and the standard deviation (SD) in the simulations and phantom experiments, respectively. The contrast-to-noise ratio (CNR) of strain images is calculated in both the simulations and phantom experiments. The results show that motion artifacts in strain estimation can be reduced by increasing the PRF to 1 kHz. When the PRF reaches 1 kHz, further increase of the PRF shows little obvious improvement in strain estimation. An increase in the NSA can cause larger motion artifacts and deteriorate the quality of strain images, and the improvement of strain estimation is limited when the NSA is increased from 3 to 7. An NSA of 3 is thus recommended to balance the influences of motion artifacts and the improvement for strain estimation. The MSA has little influence on the motion artifacts, while increased MSA can achieve improved lateral estimation performance at the cost of a smaller imaging region. In light of the lateral strain estimation performance and imaging region, an MSA of 15° is recommended. The influences of these key parameters obtained from this study may provide insights for parameter optimization in strain estimation with SAC to minimize the effects of motion artifacts.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xingyue Wei
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zonghui Pan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lijie Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qiong He
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Jianwen Luo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Wang Y, Xie X, He Q, Liao H, Zhang H, Luo J. Hadamard-Encoded Synthetic Transmit Aperture Imaging for Improved Lateral Motion Estimation in Ultrasound Elastography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1204-1218. [PMID: 35100113 DOI: 10.1109/tuffc.2022.3148332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lateral motion estimation has been a challenge in ultrasound elastography mainly due to the low resolution, low sampling frequency, and lack of phase information in the lateral direction. Synthetic transmit aperture (STA) can achieve high resolution due to two-way focusing and can beamform high-density image lines for improved lateral motion estimation with the disadvantages of low signal-to-noise ratio (SNR) and limited penetration depth. In this study, Hadamard-encoded STA (Hadamard-STA) is proposed for the improvement of lateral motion estimation in elastography, and it is compared with STA and conventional focused wave (CFW) imaging. Simulations, phantom, and in vivo experiments were conducted to make the comparison. The normalized root mean square error (NRMSE) and the contrast-to-noise ratio (CNR) were calculated as the evaluation criteria in the simulations. The results show that, at a noise level of -10 dB and an applied strain of -1% (compression), Hadamard-STA decreases the NRMSEs of lateral displacements by 46.92% and 35.35%, decreases the NRMSEs of lateral strains by 52.34% and 39.75%, and increases the CNRs by 9.70 and 9.75 dB compared with STA and CFW, respectively. In the phantom experiments performed on a heterogeneous tissue-mimicking phantom, the sum of squared differences (SSD) between the reference and the motion-compensated RF data, and the CNR were calculated as the evaluation criteria. At an applied strain of -1.80%, Hadamard-STA is found to decrease the SSDs by 20.91% and 30.99% and increase the CNRs by 14.15 and 24.66 dB compared with STA and CFW, respectively. In the experiments performed on a breast phantom, Hadamard-STA achieves better visualization of the breast inclusion with a clearer boundary between the inclusion and the background than STA and CFW. The in vivo experiments were performed on a patient with a breast tumor, and the tumor could also be better visualized with a more homogeneous background in the strain image obtained by Hadamard-STA than by STA and CFW. These results demonstrate that Hadamard-STA achieves a substantial improvement in lateral motion estimation and maybe a competitive method for quasi-static elastography.
Collapse
|