1
|
Pandey PK, Gonzalez G, Bjegovic K, Sun L, Chen Y, Xiang L. 3D protoacoustic radiography: A proof of principle study. APPLIED PHYSICS LETTERS 2025; 126:074102. [PMID: 39991118 PMCID: PMC11842120 DOI: 10.1063/5.0239878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/04/2025] [Indexed: 02/25/2025]
Abstract
We propose protoacoustic radiography (PAR), an imaging modality combining proton excitation and acoustic detection for three-dimensional (3D) imaging from a single proton projection. PAR avoids the effect of multiple Coulomb scattering in imaging by detecting ultrasound. Proton-induced acoustic waves propagate spherically, enabling 3D imaging from a single projection. Additionally, the distinctive feature of proton beams-concentrating energy deposition primarily at the Bragg peak-allows for precise depth-selectivity through proton energy tuning. We performed PAR using clinical proton machines, and our results demonstrate the capability of PAR to reconstruct targets at various depths (between ∼20 and 23 cm) with an axial resolution of 1.3 mm by fully leveraging the Bragg peak and by tuning the kinetic energy of the proton beam. PAR offers opportunities for precise structural determination with protons both in biomedicine and nondestructive testing.
Collapse
Affiliation(s)
- Prabodh K Pandey
- Department of Radiological Sciences, University of California, Irvine, California 92697, USA
| | - Gilberto Gonzalez
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Kristina Bjegovic
- Department of Biomedical Engineering, University of California, Irvine, California 92617, USA
| | - Leshan Sun
- Department of Biomedical Engineering, University of California, Irvine, California 92617, USA
| | - Yong Chen
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | |
Collapse
|
2
|
Wang S, Pandey PK, Lee G, van Bergen RJP, Sun L, Xu Y, Xiang L. X-ray-induced acoustic computed tomography: 3D X-ray absorption imaging from a single view. SCIENCE ADVANCES 2024; 10:eads1584. [PMID: 39642225 PMCID: PMC11627201 DOI: 10.1126/sciadv.ads1584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/01/2024] [Indexed: 12/08/2024]
Abstract
Computed tomography (CT) scanners are essential for modern imaging but require around 600 projections from various angles. We present x-ray-induced acoustic computed tomography (XACT), a method that uses radiation-induced acoustic waves for three-dimensional (3D) x-ray imaging. These spherical acoustic waves travel through tissue at 1.5 × 103 meters per second, much slower than x-rays, allowing ultrasound detectors to capture them and generate 3D images without mechanical scanning. We validate this theory by performing 3D numerical reconstructions of a human breast from a single x-ray projection and experimentally determining 3D structures of objects at different depths. Achieving resolutions of 0.4 millimeters in the XZ plane and 3.5 millimeters in the XY plane at a depth of 16 millimeters, XACT demonstrates the ability to produce 3D images from one x-ray projection, reducing radiation exposure and enabling gantry-free imaging. XACT shows great promise for biomedical and nondestructive testing applications, potentially replacing conventional CT.
Collapse
Affiliation(s)
- Siqi Wang
- Department of Biomedical Engineering, University of California, Irvine, Irvine, USA
| | - Prabodh Kumar Pandey
- Department of Radiological Sciences, University of California, Irvine, Irvine, USA
| | - Gerald Lee
- Department of Biomedical Engineering, University of California, Irvine, Irvine, USA
| | | | - Leshan Sun
- Department of Biomedical Engineering, University of California, Irvine, Irvine, USA
| | - Yifei Xu
- Department of Biomedical Engineering, University of California, Irvine, Irvine, USA
| | - Liangzhong) Xiang
- Department of Biomedical Engineering, University of California, Irvine, Irvine, USA
- Department of Radiological Sciences, University of California, Irvine, Irvine, USA
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, USA
| |
Collapse
|
3
|
Wang S, Gonzalez G, Owen DR, Sun L, Liu Y, Zwart T, Chen Y, Xiang L. Toward real-time, volumetric dosimetry for FLASH-capable clinical synchrocyclotrons using protoacoustic imaging. Med Phys 2024; 51:8496-8505. [PMID: 39073707 PMCID: PMC11530303 DOI: 10.1002/mp.17318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Radiation delivery with ultra-high dose rate (FLASH) radiotherapy (RT) holds promise for improving treatment outcomes and reducing side effects but poses challenges in radiation delivery accuracy due to its ultra-high dose rates. This necessitates the development of novel imaging and verification technologies tailored to these conditions. PURPOSE Our study explores the effectiveness of proton-induced acoustic imaging (PAI) in tracking the Bragg peak in three dimensions and in real time during FLASH proton irradiations, offering a method for volumetric beam imaging at both conventional and FLASH dose rates. METHODS We developed a three-dimensional (3D) PAI technique using a 256-element ultrasound detector array for FLASH dose rate proton beams. In the study, we tested protoacoustic signal with a beamline of a FLASH-capable synchrocyclotron, setting the distal 90% of the Bragg peak around 35 mm away from the ultrasound array. This configuration allowed us to assess various total proton radiation doses, maintaining a consistent beam output of 21 pC/pulse. We also explored a spectrum of dose rates, from 15 Gy/s up to a FLASH rate of 48 Gy/s, by administering a set number of pulses. Furthermore, we implemented a three-dot scanning beam approach to observe the distinct movements of individual Bragg peaks using PAI. All these procedures utilized a proton beam energy of 180 MeV to achieve the maximum possible dose rate. RESULTS Our findings indicate a strong linear relationship between protoacoustic signal amplitudes and delivered doses (R2 = 0.9997), with a consistent fit across different dose rates. The technique successfully provided 3D renderings of Bragg peaks at FLASH rates, validated through absolute Gamma index values. CONCLUSIONS The protoacoustic system demonstrates effectiveness in 3D visualization and tracking of the Bragg peak during FLASH proton therapy, representing a notable advancement in proton therapy quality assurance. This method promises enhancements in protoacoustic image guidance and real-time dosimetry, paving the way for more accurate and effective treatments in ultra-high dose rate therapy environments.
Collapse
Affiliation(s)
- Siqi Wang
- The Department of Biomedical Engineering, University of California, Irvine, California, USA
| | - Gilberto Gonzalez
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Leshan Sun
- The Department of Biomedical Engineering, University of California, Irvine, California, USA
| | - Yan Liu
- Mevion Medical Systems, Littleton, Massachusetts, USA
| | | | - Yong Chen
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Liangzhong Xiang
- The Department of Biomedical Engineering, University of California, Irvine, California, USA
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, California, USA
- Department of Radiological Sciences, University of California, Irvine, California, USA
| |
Collapse
|
4
|
Wang S, Gonzalez G, Sun L, Xu Y, Pandey P, Chen Y, Xiang SL. Real-time tracking of the Bragg peak during proton therapy via 3D protoacoustic Imaging in a clinical scenario. NPJ IMAGING 2024; 2:34. [PMID: 40078731 PMCID: PMC11893450 DOI: 10.1038/s44303-024-00039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/08/2024] [Indexed: 03/14/2025]
Abstract
Proton radiotherapy favored over X-ray photon therapy due to its reduced radiation exposure to surrounding healthy tissues, is highly dependent on the accurate positioning of the Bragg peak. Existing methods like PET and prompt gamma imaging to localize Bragg peak face challenges of low precision and high complexity. Here we introduce a 3D protoacoustic imaging with a 2D matrix array of 256 ultrasound transducers compatible with 256 parallel data acquisition channels provides real-time imaging capability (up to 75 frames per second with 10 averages), achieving high precision (5 mm/5% Gamma index shows accuracy better than 95.73%) at depths of tens of centimeters. We have successfully implemented this method in liver treatment with 5 pencil beam scanning and in prostate cancer treatment on a human torso phantom using a clinical proton machine. This demonstrates its capability to accurately identify the Bragg peak in practical clinical scenarios. It paves the way for adaptive radiotherapy with real-time feedback, potentially revolutionizing radiotherapy by enabling closed-loop treatment for improved patient outcomes.
Collapse
Affiliation(s)
- Siqi Wang
- The Department of Biomedical Engineering, University of California, Irvine, CA 92617 USA
| | - Gilberto Gonzalez
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Leshan Sun
- The Department of Biomedical Engineering, University of California, Irvine, CA 92617 USA
| | - Yifei Xu
- The Department of Biomedical Engineering, University of California, Irvine, CA 92617 USA
| | - Prabodh Pandey
- Department of Radiological Sciences, University of California at Irvine, Irvine, CA 92697 USA
| | - Yong Chen
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Shawn Liangzhong Xiang
- The Department of Biomedical Engineering, University of California, Irvine, CA 92617 USA
- Department of Radiological Sciences, University of California at Irvine, Irvine, CA 92697 USA
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, Irvine, CA 92612 USA
| |
Collapse
|
5
|
Kumar Pandey P, Bjegovic K, Gonzalez G, Wang X, Liu A, Chen Y, Xiang L. Resolution limits for radiation-induced acoustic imaging for in vivoradiation dosimetry. Phys Med Biol 2024; 69:165022. [PMID: 39019059 DOI: 10.1088/1361-6560/ad64b9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/17/2024] [Indexed: 07/19/2024]
Abstract
Objective.Radiation-induced acoustic (RA) computed tomographic (RACT) imaging is being thoroughly explored for radiation dosimetry. It is essential to understand how key machine parameters like beam pulse, size, and energy deposition affect image quality in RACT. We investigate the intricate interplay of these parameters and how these factors influence dose map resolution in RACT.Approach.We first conduct an analytical assessment of time-domain RA signals and their corresponding frequency spectra for certain testcases, and computationally validate these analyses. Subsequently, we simulated a series of x-ray-based RACT (XACT) experiments and compared the simulations with experimental measurements.In-silicoreconstruction studies have also been conducted to demonstrate the resolution limits imposed by the temporal pulse profiles on RACT. XACT experiments were performed using clinical machines and the reconstructions were analyzed for resolution capabilities.Main results.Our paper establishes the theory for predicting the time- and frequency-domain behavior of RA signals. We illustrate that the frequency content of RA signal is not solely dependent on the spatial energy deposition characteristics but also on the temporal features of radiation. The same spatial energy deposition through a Gaussian pulse and a rectangular pulse of equal pulsewidths results in different frequency spectra of the RA signals. RA signals corresponding to the rectangular pulse exhibit more high-frequency content than their Gaussian pulse counterparts and hence provide better resolution in the reconstructions. XACT experiments with ∼3.2 us and ∼4 us rectangular radiation pulses were performed, and the reconstruction results were found to correlate well with thein-silicoresults.Significance.Here, we discuss the inherent resolution limits for RACT-based radiation dosimetric systems. While our study is relevant to the broader community engaged in research on photoacoustics, x-ray-acoustics, and proto/ionoacoustics, it holds particular significance for medical physics researchers aiming to set up RACT for dosimetry and radiography using clinical radiation machines.
Collapse
Affiliation(s)
- Prabodh Kumar Pandey
- Department of Radiological Sciences, University of California, Irvine, CA 92697, United States of America
| | - Kristina Bjegovic
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, United States of America
| | - Gilberto Gonzalez
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America
| | - Xinxin Wang
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States of America
| | - An Liu
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States of America
| | - Yong Chen
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America
| | - Liangzhong Xiang
- Department of Radiological Sciences, University of California, Irvine, CA 92697, United States of America
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, United States of America
- Beckman Laser Institute, University of California, Irvine, CA 92612, United States of America
| |
Collapse
|
6
|
van Bergen R, Sun L, Pandey PK, Wang S, Bjegovic K, Gonzalez G, Chen Y, Lopata R, Xiang L. Discrete Wavelet Transformation for the Sensitive Detection of Ultrashort Radiation Pulse with Radiation-induced Acoustics. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2024; 8:76-87. [PMID: 39220226 PMCID: PMC11364354 DOI: 10.1109/trpms.2023.3314339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Radiation-induced acoustics (RIA) shows promise in advancing radiological imaging and radiotherapy dosimetry methods. However, RIA signals often require extensive averaging to achieve reasonable signal-to-noise ratios, which increases patient radiation exposure and limits real-time applications. Therefore, this paper proposes a discrete wavelet transform (DWT) based filtering approach to denoise the RIA signals and avoid extensive averaging. The algorithm was benchmarked against low-pass filters and tested on various types of RIA sources, including low-energy X-rays, high-energy X-rays, and protons. The proposed method significantly reduced the required averages (1000 times less averaging for low-energy X-ray RIA, 32 times less averaging for high-energy X-ray RIA, and 4 times less averaging for proton RIA) and demonstrated robustness in filtering signals from different sources of radiation. The coif5 wavelet in conjunction with the sqtwolog threshold selection algorithm yielded the best results. The proposed DWT filtering method enables high-quality, automated, and robust filtering of RIA signals, with a performance similar to low-pass filtering, aiding in the clinical translation of radiation-based acoustic imaging for radiology and radiation oncology.
Collapse
Affiliation(s)
- Rick van Bergen
- PULS/e lab Eindhoven, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| | - Leshan Sun
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92617
| | - Prabodh Kumar Pandey
- Department of Radiological Sciences, University of California Irvine, Irvine, CA 92617
| | - Siqi Wang
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92617
| | - Kristina Bjegovic
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92617
| | - Gilberto Gonzalez
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Yong Chen
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Richard Lopata
- PULS/e lab Eindhoven, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| | - Liangzhong Xiang
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92617.; Department of Radiological Sciences, University of California Irvine, Irvine, CA 92617.; Beckman Laser Institute Medical Clinic, University of California Irvine, Irvine, CA 92612
| |
Collapse
|
7
|
Yan Y, Xiang S(L. X-ray-induced acoustic computed tomography and its applications in biomedicine. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11510. [PMID: 38144393 PMCID: PMC10740376 DOI: 10.1117/1.jbo.29.s1.s11510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023]
Abstract
Significance X-ray-induced acoustic computed tomography (XACT) offers a promising approach to biomedical imaging, leveraging X-ray absorption contrast. It overcomes the shortages of traditional X-ray, allowing for more advanced medical imaging. Aim The review focuses on the significance and draws onto the potential applications of XACT to demonstrate it as an innovative imaging technique. Approach This review navigates the expanding landscape of XACT imaging within the biomedical sphere. Integral topics addressed encompass the refinement of imaging systems and the advancement in image reconstruction algorithms. The review particularly emphasizes XACT's significant biomedical applications. Results Key uses, such as breast imaging, bone density maps for osteoporosis, and X-ray molecular imaging, are highlighted to demonstrate the capability of XACT. A unique niche for XACT imaging is its application in in vivo dosimetry during radiotherapy, which has been validated on patients. Conclusions Because of its unique property, XACT has great potential in biomedicine and non-destructive testing. We conclude by casting light on potential future avenues in this promising domain.
Collapse
Affiliation(s)
- Yuchen Yan
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California, United States
| | - Shawn (Liangzhong) Xiang
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California, United States
- University of California, Irvine, Department of Radiological Sciences, Irvine, California, United States
- University of California, Irvine, Beckman Laser Institute & Medical Clinic, Irvine, California, United States
| |
Collapse
|
8
|
Jiang Z, Wang S, Xu Y, Sun L, Gonzalez G, Chen Y, Wu QJ, Xiang L, Ren L. Radiation-induced acoustic signal denoising using a supervised deep learning framework for imaging and therapy monitoring. Phys Med Biol 2023; 68:10.1088/1361-6560/ad0283. [PMID: 37820684 PMCID: PMC11000456 DOI: 10.1088/1361-6560/ad0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Radiation-induced acoustic (RA) imaging is a promising technique for visualizing the invisible radiation energy deposition in tissues, enabling new imaging modalities and real-time therapy monitoring. However, RA imaging signal often suffers from poor signal-to-noise ratios (SNRs), thus requiring measuring hundreds or even thousands of frames for averaging to achieve satisfactory quality. This repetitive measurement increases ionizing radiation dose and degrades the temporal resolution of RA imaging, limiting its clinical utility. In this study, we developed a general deep inception convolutional neural network (GDI-CNN) to denoise RA signals to substantially reduce the number of frames needed for averaging. The network employs convolutions with multiple dilations in each inception block, allowing it to encode and decode signal features with varying temporal characteristics. This design generalizes GDI-CNN to denoise acoustic signals resulting from different radiation sources. The performance of the proposed method was evaluated using experimental data of x-ray-induced acoustic, protoacoustic, and electroacoustic signals both qualitatively and quantitatively. Results demonstrated the effectiveness of GDI-CNN: it achieved x-ray-induced acoustic image quality comparable to 750-frame-averaged results using only 10-frame-averaged measurements, reducing the imaging dose of x-ray-acoustic computed tomography (XACT) by 98.7%; it realized proton range accuracy parallel to 1500-frame-averaged results using only 20-frame-averaged measurements, improving the range verification frequency in proton therapy from 0.5 to 37.5 Hz; it reached electroacoustic image quality comparable to 750-frame-averaged results using only a single frame signal, increasing the electric field monitoring frequency from 1 fps to 1k fps. Compared to lowpass filter-based denoising, the proposed method demonstrated considerably lower mean-squared-errors, higher peak-SNR, and higher structural similarities with respect to the corresponding high-frame-averaged measurements. The proposed deep learning-based denoising framework is a generalized method for few-frame-averaged acoustic signal denoising, which significantly improves the RA imaging's clinical utilities for low-dose imaging and real-time therapy monitoring.
Collapse
Affiliation(s)
- Zhuoran Jiang
- Medical Physics Graduate Program, Duke University, Durham, NC 27705, United States of America
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, United States of America
- Contributed equally
| | - Siqi Wang
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, United States of America
- Contributed equally
| | - Yifei Xu
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, United States of America
| | - Leshan Sun
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, United States of America
| | - Gilberto Gonzalez
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America
| | - Yong Chen
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America
| | - Q Jackie Wu
- Medical Physics Graduate Program, Duke University, Durham, NC 27705, United States of America
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Liangzhong Xiang
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, United States of America
- Department of Radiological Sciences, University of California, Irvine, CA 92697, United States of America
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, CA 92612, United States of America
| | - Lei Ren
- Department of Radiation Oncology, University of Maryland, Baltimore, MD 21201, United States of America
| |
Collapse
|
9
|
Sun L, Gonzalez G, Pandey PK, Wang S, Kim K, Limoli C, Chen Y, Xiang L. Towards quantitative in vivo dosimetry using x-ray acoustic computed tomography. Med Phys 2023; 50:6894-6907. [PMID: 37203253 PMCID: PMC10656364 DOI: 10.1002/mp.16476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 04/05/2023] [Accepted: 04/30/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Radiation dosimetry is essential for radiation therapy (RT) to ensure that radiation dose is accurately delivered to the tumor. Despite its wide use in clinical intervention, the delivered radiation dose can only be planned and verified via simulation. This makes precision radiotherapy challenging while in-line verification of the delivered dose is still absent in the clinic. X-ray-induced acoustic computed tomography (XACT) has recently been proposed as an imaging tool for in vivo dosimetry. PURPOSE Most of the XACT studies focus on localizing the radiation beam. However, it has not been studied for its potential for quantitative dosimetry. The aim of this study was to investigate the feasibility of using XACT for quantitative in vivo dose reconstruction during radiotherapy. METHODS Varian Eclipse system was used to generate simulated uniform and wedged 3D radiation field with a size of 4 cm× $ \times \ $ 4 cm. In order to use XACT for quantitative dosimetry measurements, we have deconvoluted the effects of both the x-ray pulse shape and the finite frequency response of the ultrasound detector. We developed a model-based image reconstruction algorithm to quantify radiation dose in vivo using XACT imaging, and universal back-projection (UBP) reconstruction is used as comparison. The reconstructed dose was calibrated before comparing it to the percent depth dose (PDD) profile. Structural similarity index matrix (SSIM) and root mean squared error (RMSE) are used for numeric evaluation. Experimental signals were acquired from 4 cm× $ \times \ $ 4 cm radiation field created by Linear Accelerator (LINAC) at depths of 6, 8, and 10 cm beneath the water surface. The acquired signals were processed before reconstruction to achieve accurate results. RESULTS Applying model-based reconstruction algorithm with non-negative constraints successfully reconstructed accurate radiation dose in 3D simulation study. The reconstructed dose matches well with the PDD profile after calibration in experiments. The SSIMs between the model-based reconstructions and initial doses are over 85%, and the RMSEs of model-based reconstructions are eight times lower than the UBP reconstructions. We have also shown that XACT images can be displayed as pseudo-color maps of acoustic intensity, which correspond to different radiation doses in the clinic. CONCLUSION Our results show that the XACT imaging by model-based reconstruction algorithm is considerably more accurate than the dose reconstructed by UBP algorithm. With proper calibration, XACT is potentially applicable to the clinic for quantitative in vivo dosimetry across a wide range of radiation modalities. In addition, XACT's capability of real-time, volumetric dose imaging seems well-suited for the emerging field of ultrahigh dose rate "FLASH" radiotherapy.
Collapse
Affiliation(s)
- Leshan Sun
- Department of Biomedical Engineering, University of California, Irvine, California, USA
| | - Gilberto Gonzalez
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Prabodh Kumar Pandey
- Department of Radiological Sciences, University of California at Irvine, Irvine, California, USA
| | - Siqi Wang
- Department of Biomedical Engineering, University of California, Irvine, California, USA
| | - Kaitlyn Kim
- Department of Biomedical Engineering, University of California, Irvine, California, USA
| | - Charles Limoli
- Department of Radiation Oncology, University of California Irvine, Medical Sciences I, Irvine, California, USA
| | - Yong Chen
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Liangzhong Xiang
- Department of Biomedical Engineering, University of California, Irvine, California, USA
- Department of Radiological Sciences, University of California at Irvine, Irvine, California, USA
- Beckman Laser Institute, University of California at Irvine, Irvine, California, USA
| |
Collapse
|
10
|
Gonzalez G, Prather K, Pandey PK, Sun L, Caron J, Wang S, Ahmad S, Xiang L, Chen Y. Single-Pulse X-ray Acoustic Computed Tomographic Imaging for Precision Radiation Therapy. Adv Radiat Oncol 2023; 8:101239. [PMID: 37334315 PMCID: PMC10276220 DOI: 10.1016/j.adro.2023.101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/29/2023] [Indexed: 06/20/2023] Open
Abstract
Purpose High-precision radiation therapy is crucial for cancer treatment. Currently, the delivered dose can only be verified via simulations with phantoms, and an in-tumor, online dose verification is still unavailable. An innovative detection method called x-ray-induced acoustic computed tomography (XACT) has recently shown the potential for imaging the delivered radiation dose within the tumor. Prior XACT imaging systems have required tens to hundreds of signal averages to achieve high-quality dose images within the patient, which reduces its real-time capability. Here, we demonstrate that XACT dose images can be reproduced from a single x-ray pulse (4 µs) with sub-mGy sensitivity from a clinical linear accelerator. Methods and Materials By immersing an acoustic transducer in a homogeneous medium, it is possible to detect pressure waves generated by the pulsed radiation from a clinical linear accelerator. After rotating the collimator, signals of different angles are obtained to perform a tomographic reconstruction of the dose field. Using 2-stage amplification with further bandpass filtering increases the signal-to-noise ratio (SNR). Results Acoustic peak SNR and voltage values were recorded for singular and dual-amplifying stages. The SNR for single-pulse mode was able to satisfy the Rose criterion, and the collected signals were able to reconstruct 2-dimensional images from the 2 homogeneous media. Conclusions By overcoming the low SNR and requirement of signal averaging, single-pulse XACT imaging holds great potential for personalized dose monitoring from each individual pulse during radiation therapy.
Collapse
Affiliation(s)
- Gilberto Gonzalez
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kiana Prather
- University of Oklahoma College of Medicine, Oklahoma City, Oklahoma
| | - Prabodh Kumar Pandey
- Department of Radiological Sciences, University of California, Irvine, California
| | - Leshan Sun
- Department of Biomedical Engineering, University of California, Irvine, California
| | - Joseph Caron
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Siqi Wang
- Department of Biomedical Engineering, University of California, Irvine, California
| | - Salahuddin Ahmad
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Liangzhong Xiang
- Department of Radiological Sciences, University of California, Irvine, California
- Department of Biomedical Engineering, University of California, Irvine, California
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, California
| | - Yong Chen
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
11
|
Li X, Li C, Zhang W, Wang Y, Qian P, Huang H. Inflammation and aging: signaling pathways and intervention therapies. Signal Transduct Target Ther 2023; 8:239. [PMID: 37291105 PMCID: PMC10248351 DOI: 10.1038/s41392-023-01502-8] [Citation(s) in RCA: 376] [Impact Index Per Article: 188.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/26/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Aging is characterized by systemic chronic inflammation, which is accompanied by cellular senescence, immunosenescence, organ dysfunction, and age-related diseases. Given the multidimensional complexity of aging, there is an urgent need for a systematic organization of inflammaging through dimensionality reduction. Factors secreted by senescent cells, known as the senescence-associated secretory phenotype (SASP), promote chronic inflammation and can induce senescence in normal cells. At the same time, chronic inflammation accelerates the senescence of immune cells, resulting in weakened immune function and an inability to clear senescent cells and inflammatory factors, which creates a vicious cycle of inflammation and senescence. Persistently elevated inflammation levels in organs such as the bone marrow, liver, and lungs cannot be eliminated in time, leading to organ damage and aging-related diseases. Therefore, inflammation has been recognized as an endogenous factor in aging, and the elimination of inflammation could be a potential strategy for anti-aging. Here we discuss inflammaging at the molecular, cellular, organ, and disease levels, and review current aging models, the implications of cutting-edge single cell technologies, as well as anti-aging strategies. Since preventing and alleviating aging-related diseases and improving the overall quality of life are the ultimate goals of aging research, our review highlights the critical features and potential mechanisms of inflammation and aging, along with the latest developments and future directions in aging research, providing a theoretical foundation for novel and practical anti-aging strategies.
Collapse
Affiliation(s)
- Xia Li
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China
| | - Chentao Li
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Wanying Zhang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Yanan Wang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Pengxu Qian
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China.
| |
Collapse
|
12
|
Pandey PK, Wang S, Sun L, Xing L, Xiang L. Model-Based 3-D X-Ray Induced Acoustic Computerized Tomography. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2023; 7:532-543. [PMID: 38046375 PMCID: PMC10691826 DOI: 10.1109/trpms.2023.3238017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
X-ray-induced acoustic (XA) computerized tomography (XACT) is an evolving imaging technique that aims to reconstruct the X-ray energy deposition from XA measurements. Main challenges in XACT are the poor signal-to-noise ratio and limited field-of-view, which cause artifacts in the images. We demonstrate the efficacy of model-based (MB) algorithms for three-dimensional XACT and compare with the traditional algorithms. The MB algorithm is based on iterative, matrix-free approach for regularized-least-squares minimization corresponding to XACT. The matrix-free-LSQR (MF-LSQR) and the non-iterative model-backprojection (MBP) reconstructions were evaluated and compared with universal backprojection (UBP), time-reversal (TR) and fast-Fourier transform (FFT)-based reconstructions for numerical and experimental XACT datasets. The results demonstrate the capability of MF-LSQR algorithm to reduce noisy artifacts thus yielding better reconstructions. MBP and MF-LSQR algorithms perform particularly well with the experimental XACT dataset, where noise in signals significantly affects the reconstruction of the target in UBP and FFT-based reconstructions. The TR reconstruction for experimental XACT are comparable to MF-LSQR, but takes thrice as much time and filters the frequency components greater than maximum frequency supported by the grid, resulting loss of resolution. The MB algorithms are able to overcome the challenges in XACT and hence are vital for the clinical translation of XACT.
Collapse
Affiliation(s)
- Prabodh Kumar Pandey
- Department of Radiological Sciences, University of California, Irvine, CA, 92697, USA
| | - Siqi Wang
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA
| | - Leshan Sun
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA
| | - Lei Xing
- Department of Radiological Sciences, University of California, Irvine, CA, 92697, USA.; Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA.; Beckman Laser Institute, University of California, Irvine, CA 92612, USA
| | - Liangzhong Xiang
- Division of Medical Physics, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA,94305, USA
| |
Collapse
|
13
|
Zheng L, Xu C, Wang T, Cheng Y, Christy YB, Li H, Cheng J, Peng G, Guo Q. Low energy X-ray dosimeter based on LYSO:Ce fluorescent powder. APPLIED OPTICS 2023; 62:2734-2739. [PMID: 37133113 DOI: 10.1364/ao.486050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cerium-doped lutetium yttrium orthosilicate (LYSO:Ce) powder has been synthesized by the co-precipitation method. The influence of the Ce3+ doping concentration on the lattice structure and luminescence characteristics of LYSO:Ce powder was investigated by X-ray diffraction (XRD) and photoluminescence (PL). The XRD measurement indicates that the lattice structure of LYSO:Ce powder was not changed by doping ions. PL results show that LYSO:Ce powder has better luminescence performance when the Ce doping concentration is 0.3 mol%. In addition, the fluorescence lifetime of the samples was measured, and the results show that LYSO:Ce has a short decay time. The radiation dosimeter was prepared by LYSO:Ce powder with a Ce doping concentration of 0.3 mol%. Radioluminescence properties of the radiation dosimeter also were studied under X-ray irradiation at doses from 0.03 to 0.76 Gy, with dose rate from 0.09 to 2.284 Gy/min. The results show that the dosimeter has a certain linear relationship response and stability. The radiation responses of the dosimeter at different energies were obtained under X-ray irradiation with X-ray tube voltages ranging from 20 to 80 kV. The results show that the dosimeter has a certain linear relationship response in the low energy range of radiotherapy. These results indicate the potential application of LYSO:Ce powder dosimeters in remote radiotherapy and online radiation monitoring.
Collapse
|
14
|
Chen F, Sun M, Chen R, Li C, Shi J. Absolute Grüneisen parameter measurement in deep tissue based on X-ray-induced acoustic computed tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:1205-1215. [PMID: 36950240 PMCID: PMC10026575 DOI: 10.1364/boe.483490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The Grüneisen parameter is a primary parameter of the initial sound pressure signal in the photoacoustic effect, which can provide unique biological information and is related to the temperature change information of an object. The accurate measurement of this parameter is of great significance in biomedical research. Combining X-ray-induced acoustic tomography and conventional X-ray computed tomography, we proposed a method to obtain the absolute Grüneisen parameter. The theory development, numerical simulation, and biomedical application scenarios are discussed. The results reveal that our method not only can determine the Grüneisen parameter but can also obtain the body internal temperature distribution, presenting its potential in the diagnosis of a broad range of diseases.
Collapse
Affiliation(s)
- Feng Chen
- Zhejiang Lab, Hangzhou 311121, China
| | | | | | - Chiye Li
- Zhejiang Lab, Hangzhou 311121, China
| | | |
Collapse
|
15
|
Li Y, Samant P, Cochran C, zhao Y, Keyak JH, Hu X, Yu A, Xiang L. The feasibility study of XACT imaging for characterizing osteoporosis. Med Phys 2022; 49:7694-7702. [PMID: 35962866 PMCID: PMC10567061 DOI: 10.1002/mp.15906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/08/2022] [Accepted: 07/21/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Osteoporosis is a progressive bone disease that is characterized by a decrease in bone mass and the deterioration in bone microarchitecture, which might be related to age and space travel. An unmet need exists for the development of novel imaging technologies to characterize osteoporosis. PURPOSE The purpose of our study is to investigate the feasibility of X-ray-induced acoustic computed tomography (XACT) imaging for osteoporosis detection. METHODS An in-house simulation workflow was developed to assess the ability of XACT for osteoporosis detection. To evaluate this simulation workflow, a three-dimensional digital bone phantom for XACT imaging was created by a series of two-dimensional micro-computed tomography (micro-CT) slices of normal and osteoporotic bones in mice. In XACT imaging, the initial acoustic pressure rise caused by the X-ray induce acoustic (XA) effect is proportional to bone density. First, region growing was deployed for image segmentation of different materials inside the bone. Then k-wave simulations were deployed to model XA wave propagation, attenuation, and detection. Finally, the time-varying pressure signals detected at each transducer location were used to reconstruct the XACT image with a time-reversal reconstruction algorithm. RESULTS Through the simulated XACT images, cortical porosity has been calculated, and XA signal spectra slopes have been analyzed for the detection of osteoporosis. The results have demonstrated that osteoporotic bones have lower bone mineral density and higher spectra slopes. These findings from XACT images were in good agreement with porosity calculation from micro-CT images. CONCLUSION This work explores the feasibility of using XACT imaging as a new imaging tool for Osteoporosis detection. Considering that acoustic signals are generated by X-ray absorption, XACT imaging can be combined with traditional X-ray imaging that holds potential for clinical management of osteoporosis and other bone diseases.
Collapse
Affiliation(s)
- Yizhou Li
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- School of Electrical and Computer Engineering, The University of Oklahoma, Norman, Oklahoma, USA
- Department of Orthopedics, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Pratik Samant
- School of Electrical and Computer Engineering, The University of Oklahoma, Norman, Oklahoma, USA
- Department of Oncology, University of Oxford, Oxford, UK
| | - Christian Cochran
- School of Electrical and Computer Engineering, The University of Oklahoma, Norman, Oklahoma, USA
| | - Yue zhao
- School of Electrical and Computer Engineering, The University of Oklahoma, Norman, Oklahoma, USA
| | - Joyce H. Keyak
- Department of Radiological Sciences, University of California, Irvine, Irvine, California, USA
| | - Xiang Hu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Liangzhong Xiang
- School of Electrical and Computer Engineering, The University of Oklahoma, Norman, Oklahoma, USA
- Department of Radiological Sciences, University of California, Irvine, Irvine, California, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
16
|
Pandey PK, Aggrawal HO, Wang S, Kim K, Liu A, Xiang L. Ring artifacts removal in X-ray-induced acoustic computed tomography. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2022; 15:2250017. [PMID: 38645738 PMCID: PMC11031265 DOI: 10.1142/s1793545822500171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
X-ray-induced acoustic computed tomography (XACT) is a hybrid imaging modality for detecting X-ray absorption distribution via ultrasound emission. It facilitates imaging from a single projection X-ray illumination, thus reducing the radiation exposure and improving imaging speed. Nonuniform detector response caused by the interference between multichannel data acquisition for ring array transducers and amplifier systems yields ring artifacts in the reconstructed XACT images, which compromises the image quality. We propose model-based algorithms for ring artifacts corrected XACT imaging and demonstrate their efficacy on numerical and experimental measurements. The corrected reconstructions indicate significantly reduced ring artifacts as compared to their conventional counterparts.
Collapse
Affiliation(s)
- Prabodh Kumar Pandey
- Department of Radiological Sciences, University of California, Irvine, CA 92697, USA
| | - Hari Om Aggrawal
- Institute of Mathematics and Image Computing, University of Lübeck, Germany
- Independent Technical Consultant, India
| | - Siqi Wang
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA
| | - Kaitlyn Kim
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA
| | - An Liu
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte CA 91010, USA
| | - Liangzhong Xiang
- Department of Radiological Sciences, University of California, Irvine, CA 92697, USA
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA
- Beckman Laser Institute, University of California, Irvine, CA 92612, USA
| |
Collapse
|
17
|
Acoustic Dual-Function Communication and Echo-Location in Inaudible Band. SENSORS 2022; 22:s22031284. [PMID: 35162029 PMCID: PMC8840713 DOI: 10.3390/s22031284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 01/01/2023]
Abstract
Acoustic communications are experiencing renewed interest as alternative solutions to traditional RF communications, not only in RF-denied environments (such as underwater) but also in areas where the electromagnetic (EM) spectrum is heavily shared among several wireless systems. By introducing additional dedicated channels, independent from the EM ones, acoustic systems can be used to ensure the continuity of some critical services such as communication, localization, detection, and sensing. In this paper, we design and implement a novel acoustic system that uses only low-cost off-the-shelf hardware and the transmission of a single, suitably designed signal in the inaudible band (18–22 kHz) to perform integrated sensing (ranging) and communication. The experimental testbed consists of a common home speaker transmitting acoustic signals to a smartphone, which receives them through the integrated microphone, and of an additional receiver exploiting the same signals to estimate distance information from a physical obstacle in the environment. The performance of the proposed dual-function system in terms of noise, data rate, and accuracy in distance estimation is experimentally evaluated in a real operational environment.
Collapse
|
18
|
Wang S, Ivanov V, Pandey PK, Xiang L. X-ray-induced acoustic computed tomography (XACT) imaging with single-shot nanosecond x-ray. APPLIED PHYSICS LETTERS 2021; 119:183702. [PMID: 34776515 PMCID: PMC8566011 DOI: 10.1063/5.0071911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/12/2021] [Indexed: 05/20/2023]
Abstract
X-ray-induced acoustic computed tomography (XACT) has emerged as a promising imaging modality with broad applications in both biomedicine and nondestructive testing. The previous XACT imaging systems require thousands of averages to achieve reasonable images. Here, we report the experimental demonstration of single-shot XACT imaging of a metal object using a single-shot 50 ns x-ray pulse. A two-stage dedicated amplification and a 128-channel parallel data acquisition configuration were introduced for XACT imaging to enable sufficient acoustic signal amplification and maintain an overall low noise level for single-shot XACT imaging. Details of the system design are presented; the improved signal-to-noise ratio (>23 dB) and image reconstruction have been demonstrated with a ring ultrasound transducer array imaging system. The study paves the way for realizing real-time XACT imaging and its potential applications in image-guided intervention.
Collapse
Affiliation(s)
- Siqi Wang
- The Department of Biomedical Engineering, University of California, Irvine, California 92617, USA
| | | | - Prabodh Kumar Pandey
- The Department of Radiological Sciences, University of California, Irvine, California 92617, USA
| | | |
Collapse
|