1
|
Shi L, Hu J, Tan Z, Tao J, Ding J, Jin Y, Wu Y, Thompson P. MV 2Net: Multi-Variate Multi-View Brain Network Comparison over Uncertain Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; PP:4640-4657. [PMID: 34283716 DOI: 10.1109/tvcg.2021.3098123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Visually identifying effective bio-markers from human brain networks poses non-trivial challenges to the field of data visualization and analysis. Existing methods in the literature and neuroscience practice are generally limited to the study of individual connectivity features in the brain (e.g., the strength of neural connection among brain regions). Pairwise comparisons between contrasting subject groups (e.g., the diseased and the healthy controls) are normally performed. The underlying neuroimaging and brain network construction process is assumed to have 100% fidelity. Yet, real-world user requirements on brain network visual comparison lean against these assumptions. In this work, we present MV^2Net, a visual analytics system that tightly integrates multi-variate multi-view visualization for brain network comparison with an interactive wrangling mechanism to deal with data uncertainty. On the analysis side, the system integrates multiple extraction methods on diffusion and geometric connectivity features of brain networks, an anomaly detection algorithm for data quality assessment, single- and multi-connection feature selection methods for bio-marker detection. On the visualization side, novel designs are introduced which optimize network comparisons among contrasting subject groups and related connectivity features. Our design provides level-of-detail comparisons, from juxtaposed and explicit-coding views for subject group comparisons, to high-order composite view for correlation of network comparisons, and to fiber tract detail view for voxel-level comparisons. The proposed techniques are inspired and evaluated in expert studies, as well as through case analyses on diffusion and geometric bio-markers of certain neurology diseases. Results in these experiments demonstrate the effectiveness and superiority of MV^2Net over state-of-the-art approaches.
Collapse
|
2
|
Palenik J, Spengler T, Hauser H. IsoTrotter: Visually Guided Empirical Modelling of Atmospheric Convection. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:775-784. [PMID: 33079665 DOI: 10.1109/tvcg.2020.3030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Empirical models, fitted to data from observations, are often used in natural sciences to describe physical behaviour and support discoveries. However, with more complex models, the regression of parameters quickly becomes insufficient, requiring a visual parameter space analysis to understand and optimize the models. In this work, we present a design study for building a model describing atmospheric convection. We present a mixed-initiative approach to visually guided modelling, integrating an interactive visual parameter space analysis with partial automatic parameter optimization. Our approach includes a new, semi-automatic technique called IsoTrotting, where we optimize the procedure by navigating along isocontours of the model. We evaluate the model with unique observational data of atmospheric convection based on flight trajectories of paragliders.
Collapse
|
3
|
Visual Analytics for the Representation, Exploration, and Analysis of High-Dimensional, Multi-faceted Medical Data. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1138:137-162. [PMID: 31313263 DOI: 10.1007/978-3-030-14227-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Medicine is among those research fields with a significant impact on humans and their health. Already for decades, medicine has established a tight coupling with the visualization domain, proving the importance of developing visualization techniques, designed exclusively for this research discipline. However, medical data is steadily increasing in complexity with the appearance of heterogeneous, multi-modal, multi-parametric, cohort or population, as well as uncertain data. To deal with this kind of complex data, the field of Visual Analytics has emerged. In this chapter, we discuss the many dimensions and facets of medical data. Based on this classification, we provide a general overview of state-of-the-art visualization systems and solutions dealing with high-dimensional, multi-faceted data. Our particular focus will be on multi-modal, multi-parametric data, on data from cohort or population studies and on uncertain data, especially with respect to Visual Analytics applications for the representation, exploration, and analysis of high-dimensional, multi-faceted medical data.
Collapse
|
4
|
Schultz T, Vilanova A. Diffusion MRI visualization. NMR IN BIOMEDICINE 2019; 32:e3902. [PMID: 29485226 DOI: 10.1002/nbm.3902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/22/2017] [Accepted: 01/04/2018] [Indexed: 06/08/2023]
Abstract
Modern diffusion magnetic resonance imaging (dMRI) acquires intricate volume datasets and biological meaning can only be found in the relationship between its different measurements. Suitable strategies for visualizing these complicated data have been key to interpretation by physicians and neuroscientists, for drawing conclusions on brain connectivity and for quality control. This article provides an overview of visualization solutions that have been proposed to date, ranging from basic grayscale and color encodings to glyph representations and renderings of fiber tractography. A particular focus is on ongoing and possible future developments in dMRI visualization, including comparative, uncertainty, interactive and dense visualizations.
Collapse
Affiliation(s)
- Thomas Schultz
- Bonn-Aachen International Center for Information Technology, Bonn, Germany
- Department of Computer Science, University of Bonn, Bonn, Germany
| | - Anna Vilanova
- Department of Electrical Engineering Mathematics and Computer Science (EEMCS), TU Delft, Delft, the Netherlands
| |
Collapse
|
5
|
Liu J, Dwyer T, Marriott K, Millar J, Haworth A. Understanding the Relationship Between Interactive Optimisation and Visual Analytics in the Context of Prostate Brachytherapy. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:319-329. [PMID: 28866546 DOI: 10.1109/tvcg.2017.2744418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The fields of operations research and computer science have long sought to find automatic solver techniques that can find high-quality solutions to difficult real-world optimisation problems. The traditional workflow is to exactly model the problem and then enter this model into a general-purpose "black-box" solver. In practice, however, many problems cannot be solved completely automatically, but require a "human-in-the-loop" to iteratively refine the model and give hints to the solver. In this paper, we explore the parallels between this interactive optimisation workflow and the visual analytics sense-making loop. We assert that interactive optimisation is essentially a visual analytics task and propose a problem-solving loop analogous to the sense-making loop. We explore these ideas through an in-depth analysis of a use-case in prostate brachytherapy, an application where interactive optimisation may be able to provide significant assistance to practitioners in creating prostate cancer treatment plans customised to each patient's tumour characteristics. However, current brachytherapy treatment planning is usually a careful, mostly manual process involving multiple professionals. We developed a prototype interactive optimisation tool for brachytherapy that goes beyond current practice in supporting focal therapy - targeting tumour cells directly rather than simply seeking coverage of the whole prostate gland. We conducted semi-structured interviews, in two stages, with seven radiation oncology professionals in order to establish whether they would prefer to use interactive optimisation for treatment planning and whether such a tool could improve their trust in the novel focal therapy approach and in machine generated solutions to the problem.
Collapse
|
6
|
von Landesberger T, Fellner DW, Ruddle RA. Visualization System Requirements for Data Processing Pipeline Design and Optimization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:2028-2041. [PMID: 28113376 DOI: 10.1109/tvcg.2016.2603178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The rising quantity and complexity of data creates a need to design and optimize data processing pipelines-the set of data processing steps, parameters and algorithms that perform operations on the data. Visualization can support this process but, although there are many examples of systems for visual parameter analysis, there remains a need to systematically assess users' requirements and match those requirements to exemplar visualization methods. This article presents a new characterization of the requirements for pipeline design and optimization. This characterization is based on both a review of the literature and first-hand assessment of eight application case studies. We also match these requirements with exemplar functionality provided by existing visualization tools. Thus, we provide end-users and visualization developers with a way of identifying functionality that addresses data processing problems in an application. We also identify seven future challenges for visualization research that are not met by the capabilities of today's systems.
Collapse
|
7
|
Lanzman RS, Wittsack HJ. Diffusion tensor imaging in abdominal organs. NMR IN BIOMEDICINE 2017; 30:e3434. [PMID: 26556181 DOI: 10.1002/nbm.3434] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/18/2015] [Accepted: 09/20/2015] [Indexed: 06/05/2023]
Abstract
Initially, diffusion tensor imaging (DTI) was mainly applied in studies of the human brain to analyse white matter tracts. As DTI is outstanding for the analysis of tissue´s microstructure, the interest in DTI for the assessment of abdominal tissues has increased continuously in recent years. Tissue characteristics of abdominal organs differ substantially from those of the human brain. Further peculiarities such as respiratory motion and heterogenic tissue composition lead to difficult conditions that have to be overcome in DTI measurements. Thus MR measurement parameters have to be adapted for DTI in abdominal organs. This review article provides information on the technical background of DTI with a focus on abdominal imaging, as well as an overview of clinical studies and application of DTI in different abdominal regions. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Rotem Shlomo Lanzman
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University of Dusseldorf, Dusseldorf, Germany
| | - Hans-Jörg Wittsack
- Medical Faculty, Department of Diagnostic and Interventional Radiology, University of Dusseldorf, Dusseldorf, Germany
| |
Collapse
|
8
|
Zhou L, Hansen CD. A Survey of Colormaps in Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2016; 22:2051-69. [PMID: 26513793 PMCID: PMC4959790 DOI: 10.1109/tvcg.2015.2489649] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Colormaps are a vital method for users to gain insights into data in a visualization. With a good choice of colormaps, users are able to acquire information in the data more effectively and efficiently. In this survey, we attempt to provide readers with a comprehensive review of colormap generation techniques and provide readers a taxonomy which is helpful for finding appropriate techniques to use for their data and applications. Specifically, we first briefly introduce the basics of color spaces including color appearance models. In the core of our paper, we survey colormap generation techniques, including the latest advances in the field by grouping these techniques into four classes: procedural methods, user-study based methods, rule-based methods, and data-driven methods; we also include a section on methods that are beyond pure data comprehension purposes. We then classify colormapping techniques into a taxonomy for readers to quickly identify the appropriate techniques they might use. Furthermore, a representative set of visualization techniques that explicitly discuss the use of colormaps is reviewed and classified based on the nature of the data in these applications. Our paper is also intended to be a reference of colormap choices for readers when they are faced with similar data and/or tasks.
Collapse
Affiliation(s)
- Liang Zhou
- Visualisierungsinstitut, Universität Stuttgart (VISUS), Stuttgart, Germany
| | - Charles D. Hansen
- Scientific Computing and Imaging Institute and the School of Computing, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
9
|
Abbasloo A, Wiens V, Hermann M, Schultz T. Visualizing Tensor Normal Distributions at Multiple Levels of Detail. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2016; 22:975-984. [PMID: 26529741 DOI: 10.1109/tvcg.2015.2467031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Despite the widely recognized importance of symmetric second order tensor fields in medicine and engineering, the visualization of data uncertainty in tensor fields is still in its infancy. A recently proposed tensorial normal distribution, involving a fourth order covariance tensor, provides a mathematical description of how different aspects of the tensor field, such as trace, anisotropy, or orientation, vary and covary at each point. However, this wealth of information is far too rich for a human analyst to take in at a single glance, and no suitable visualization tools are available. We propose a novel approach that facilitates visual analysis of tensor covariance at multiple levels of detail. We start with a visual abstraction that uses slice views and direct volume rendering to indicate large-scale changes in the covariance structure, and locations with high overall variance. We then provide tools for interactive exploration, making it possible to drill down into different types of variability, such as in shape or orientation. Finally, we allow the analyst to focus on specific locations of the field, and provide tensor glyph animations and overlays that intuitively depict confidence intervals at those points. Our system is demonstrated by investigating the effects of measurement noise on diffusion tensor MRI, and by analyzing two ensembles of stress tensor fields from solid mechanics.
Collapse
|
10
|
Zhang Q, Alexander M, Ryner L. Multimodality Neurological Data Visualization With Multi-VOI-Based DTI Fiber Dynamic Integration. IEEE J Biomed Health Inform 2016; 20:293-303. [DOI: 10.1109/jbhi.2014.2367026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Zhu L, Guo G. An improved fiber tracking algorithm based on fiber assignment using the continuous tracking algorithm and two-tensor model. Neural Regen Res 2015; 7:1667-74. [PMID: 25657708 PMCID: PMC4308771 DOI: 10.3969/j.issn.1673-5374.2012.21.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 04/23/2012] [Indexed: 11/18/2022] Open
Abstract
This study tested an improved fiber tracking algorithm, which was based on fiber assignment using a continuous tracking algorithm and a two-tensor model. Different models and tracking decisions were used by judging the type of estimation of each voxel. This method should solve the cross-track problem. This study included eight healthy subjects, two axonal injury patients and seven demyelinating disease patients. This new algorithm clearly exhibited a difference in nerve fiber direction between axonal injury and demyelinating disease patients and healthy control subjects. Compared with fiber assignment with a continuous tracking algorithm, our novel method can track more and longer nerve fibers, and also can solve the fiber crossing problem.
Collapse
Affiliation(s)
- Liuhong Zhu
- Department of Radiology, Xiamen Second Hospital, Teaching Hospital of Fujian Medical University, Xiamen 361021, Fujian Province, China
| | - Gang Guo
- Department of Radiology, Xiamen Second Hospital, Teaching Hospital of Fujian Medical University, Xiamen 361021, Fujian Province, China
| |
Collapse
|
12
|
Sedlmair M, Heinzl C, Bruckner S, Piringer H, Möller T. Visual Parameter Space Analysis: A Conceptual Framework. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2014; 20:2161-2170. [PMID: 26356930 DOI: 10.1109/tvcg.2014.2346321] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Various case studies in different application domains have shown the great potential of visual parameter space analysis to support validating and using simulation models. In order to guide and systematize research endeavors in this area, we provide a conceptual framework for visual parameter space analysis problems. The framework is based on our own experience and a structured analysis of the visualization literature. It contains three major components: (1) a data flow model that helps to abstractly describe visual parameter space analysis problems independent of their application domain; (2) a set of four navigation strategies of how parameter space analysis can be supported by visualization tools; and (3) a characterization of six analysis tasks. Based on our framework, we analyze and classify the current body of literature, and identify three open research gaps in visual parameter space analysis. The framework and its discussion are meant to support visualization designers and researchers in characterizing parameter space analysis problems and to guide their design and evaluation processes.
Collapse
|
13
|
|
14
|
Abstract
Scatterplots are commonly used to visualize multidimensional data; however, 2D projections of data offer limited understanding of the high-dimensional interactions between data points. We introduce an interactive 3D extension of scatterplots called the Regression Cube (RC), which augments a 3D scatterplot with three facets on which the correlations between the two variables are revealed by sensitivity lines and sensitivity streamlines. The sensitivity visualization of local regression on the 2D projections provides insights about the shape of the data through its orientation and continuity cues. We also introduce a series of visual operations such as clustering, brushing, and selection supported in RC. By iteratively refining the selection of data points of interest, RC is able to reveal salient local correlation patterns that may otherwise remain hidden with a global analysis. We have demonstrated our system with two examples and a user-oriented evaluation, and we show how RCs enable interactive visual exploration of multidimensional datasets via a variety of classification and information retrieval tasks. A video demo of RC is available.
Collapse
|
15
|
Zhu FP, Wu JS, Song YY, Yao CJ, Zhuang DX, Xu G, Tang WJ, Qin ZY, Mao Y, Zhou LF. Clinical application of motor pathway mapping using diffusion tensor imaging tractography and intraoperative direct subcortical stimulation in cerebral glioma surgery: a prospective cohort study. Neurosurgery 2013; 71:1170-83; discussion 1183-4. [PMID: 22986591 DOI: 10.1227/neu.0b013e318271bc61] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Glioma surgery in eloquent areas remains a challenge because of the risk of postoperative motor deficits. OBJECTIVE To prospectively evaluate the efficiency of using a combination of diffusion tensor imaging (DTI) tractography functional neuronavigation and direct subcortical stimulation (DsCS) to yield a maximally safe resection of cerebral glioma in eloquent areas. METHODS A prospective cohort study was conducted in 58 subjects with an initial diagnosis of primary cerebral glioma within or adjacent to the pyramidal tract (PT). The white matter beneath the resection cavity was stimulated along the PT, which was visualized with DTI tractography. The intercept between the PT border and DsCS site was measured. The sensitivity and specificity of DTI tractography for PT mapping were evaluated. The efficiency of the combined use of both techniques on motor function preservation was assessed. RESULTS Postoperative analysis showed gross total resection in 40 patients (69.0%). Seventeen patients (29.3%) experienced postoperative worsening; 1-month motor deficit was observed in 6 subjects (10.3%). DsCS verified a high concordance rate with DTI tractography for PT mapping. The sensitivity and specificity of DTI were 92.6% and 93.2%, respectively. The intercepts between positive DsCS sites and imaged PTs were 2.0 to 14.7 mm (5.2 ± 2.2 mm). The 6-month Karnofsky performance scale scores in 50 postoperative subjects were significantly increased compared with their preoperative scores. CONCLUSION DTI tractography is effective but not completely reliable in delineating the descending motor pathways. Integration of DTI and DsCS favors patient-specific surgery for cerebral glioma in eloquent areas.
Collapse
Affiliation(s)
- Feng-Ping Zhu
- Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zijta FM, Lakeman MME, Froeling M, van der Paardt MP, Borstlap CSV, Bipat S, Montauban van Swijndregt AD, Strijkers GJ, Roovers JP, Nederveen AJ, Stoker J. Evaluation of the female pelvic floor in pelvic organ prolapse using 3.0-Tesla diffusion tensor imaging and fibre tractography. Eur Radiol 2012; 22:2806-13. [PMID: 22797954 PMCID: PMC3486990 DOI: 10.1007/s00330-012-2548-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 04/19/2012] [Accepted: 05/11/2012] [Indexed: 12/25/2022]
Abstract
Objectives To prospectively explore the clinical application of diffusion tensor imaging (DTI) and fibre tractography in evaluating the pelvic floor. Methods Ten patients with pelvic organ prolapse, ten with pelvic floor symptoms and ten asymptomatic women were included. A two-dimensional (2D) spin-echo (SE) echo-planar imaging (EPI) sequence of the pelvic floor was acquired. Offline fibre tractography and morphological analysis of pelvic magnetic resonance imaging (MRI) were performed. Inter-rater agreement for quality assessment of fibre tracking results was evaluated using weighted kappa (κ). From agreed tracking results, eigen values (λ1, λ2, λ3), mean diffusivity (MD) and fractional anisotropy (FA) were calculated. MD and FA values were compared using ANOVA. Inter-rater reliability of DTI parameters was interpreted using the intra-class correlation coefficient (ICC). Results Substantial inter-rater agreement was found (κ = 0.71 [95% CI 0.63–0.78]). Four anatomical structures were reliably identified. Substantial inter-rater agreement was found for MD and FA (ICC 0.60–0.91). No significant differences between groups were observed for anal sphincter, perineal body and puboperineal muscle. A significant difference in FA was found for internal obturator muscle between the prolapse group and the asymptomatic group (0.27 ± 0.05 vs 0.22 ± 0.03; P = 0.015). Conclusion DTI with fibre tractography permits identification of part of the clinically relevant pelvic structures. Overall, no significant differences in DTI parameters were found between groups. Key Points • Diffusion tensor MRI offers new insights into female pelvic floor problems. • DTI allows 3D visualisation and quantification of female pelvic floor anatomy. • DTI parameters from pelvic floor structures can be reliably determined. • No significant differences in DTI parameters between groups with/without prolapse.
Collapse
Affiliation(s)
- F M Zijta
- Department of Radiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zijta FM, Froeling M, van der Paardt MP, Lakeman MME, Bipat S, van Swijndregt ADM, Strijkers GJ, Nederveen AJ, Stoker J. Feasibility of diffusion tensor imaging (DTI) with fibre tractography of the normal female pelvic floor. Eur Radiol 2011; 21:1243-9. [PMID: 21197534 PMCID: PMC3088829 DOI: 10.1007/s00330-010-2044-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/18/2010] [Accepted: 11/03/2010] [Indexed: 01/08/2023]
Abstract
Objectives To prospectively determine the feasibility of diffusion tensor imaging (DTI) with fibre tractography as a tool for the three-dimensional (3D) visualisation of normal pelvic floor anatomy. Methods Five young female nulliparous subjects (mean age 28 ± 3 years) underwent DTI at 3.0T. Two-dimensional diffusion-weighted axial spin-echo echo-planar (SP-EPI) pulse sequence of the pelvic floor was performed, with additional T2-TSE multiplanar sequences for anatomical reference. Fibre tractography for visualisation of predefined pelvic floor and pelvic wall muscles was performed offline by two observers, applying a consensus method. Three eigenvalues (λ1, λ2, λ3), fractional anisotropy (FA) and mean diffusivity (MD) were calculated from the fibre trajectories. Results In all subjects fibre tractography resulted in a satisfactory anatomical representation of the pubovisceral muscle, perineal body, anal - and urethral sphincter complex and internal obturator muscle. Mean FA values ranged from 0.23 ± 0.02 to 0.30 ± 0.04, MD values from 1.30 ± 0.08 to 1.73 ± 0.12 × 10−³ mm²/s. Muscular structures in the superficial layer of the pelvic floor could not be satisfactorily identified. Conclusions This study demonstrates the feasibility of visualising the complex three-dimensional pelvic floor architecture using 3T-DTI with fibre tractography. DTI of the deep female pelvic floor may provide new insights into pelvic floor disorders.
Collapse
Affiliation(s)
- F M Zijta
- Department of Radiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|