Gao Z, Yu Z, Pang X. A Compact Shape Descriptor for Triangular Surface Meshes.
COMPUTER AIDED DESIGN 2014;
53:62-69. [PMID:
24910467 PMCID:
PMC4041874 DOI:
10.1016/j.cad.2014.03.008]
[Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Three-dimensional shape-based descriptors have been widely used in object recognition and database retrieval. In the current work, we present a novel method called compact Shape-DNA (cShape-DNA) to describe the shape of a triangular surface mesh. While the original Shape-DNA technique provides an effective and isometric-invariant descriptor for surface shapes, the number of eigenvalues used is typically large. To further reduce the space and time consumptions, especially for large-scale database applications, it is of great interest to find a more compact way to describe an arbitrary surface shape. In the present approach, the standard Shape-DNA is first computed from the given mesh and then processed by surface area-based normalization and line subtraction. The proposed cShape-DNA descriptor is composed of some low frequencies of the discrete Fourier transform of the processed Shape-DNA. Several experiments are shown to illustrate the effectiveness and efficiency of the cShape-DNA method on 3D shape analysis, particularly on shape comparison and classification.
Collapse