1
|
Huang X, Miao H, Kim H, Townsend A, Champley K, Tringe J, Pascucci V, Bremer PT. Bimodal Visualization of Industrial X-Ray and Neutron Computed Tomography Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:2196-2210. [PMID: 38578849 DOI: 10.1109/tvcg.2024.3382607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Advanced manufacturing creates increasingly complex objects with material compositions that are often difficult to characterize by a single modality. Our collaborating domain scientists are going beyond traditional methods by employing both X-ray and neutron computed tomography to obtain complementary representations expected to better resolve material boundaries. However, the use of two modalities creates its own challenges for visualization, requiring either complex adjustments of bimodal transfer functions or the need for multiple views. Together with experts in nondestructive evaluation, we designed a novel interactive bimodal visualization approach to create a combined view of the co-registered X-ray and neutron acquisitions of industrial objects. Using an automatic topological segmentation of the bivariate histogram of X-ray and neutron values as a starting point, the system provides a simple yet effective interface to easily create, explore, and adjust a bimodal visualization. We propose a widget with simple brushing interactions that enables the user to quickly correct the segmented histogram results. Our semiautomated system enables domain experts to intuitively explore large bimodal datasets without the need for either advanced segmentation algorithms or knowledge of visualization techniques. We demonstrate our approach using synthetic examples, industrial phantom objects created to stress bimodal scanning techniques, and real-world objects, and we discuss expert feedback.
Collapse
|
2
|
He X, Tao Y, Yang S, Dai H, Lin H. voxel2vec: A Natural Language Processing Approach to Learning Distributed Representations for Scientific Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:4296-4311. [PMID: 35797320 DOI: 10.1109/tvcg.2022.3189094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Relationships in scientific data, such as the numerical and spatial distribution relations of features in univariate data, the scalar-value combinations' relations in multivariate data, and the association of volumes in time-varying and ensemble data, are intricate and complex. This paper presents voxel2vec, a novel unsupervised representation learning model, which is used to learn distributed representations of scalar values/scalar-value combinations in a low-dimensional vector space. Its basic assumption is that if two scalar values/scalar-value combinations have similar contexts, they usually have high similarity in terms of features. By representing scalar values/scalar-value combinations as symbols, voxel2vec learns the similarity between them in the context of spatial distribution and then allows us to explore the overall association between volumes by transfer prediction. We demonstrate the usefulness and effectiveness of voxel2vec by comparing it with the isosurface similarity map of univariate data and applying the learned distributed representations to feature classification for multivariate data and to association analysis for time-varying and ensemble data.
Collapse
|
3
|
Toward a taxonomy for 2D non-paired General Line Coordinates: a comprehensive survey. INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS 2022. [DOI: 10.1007/s41060-022-00361-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Bok J, Kim B, Seo J. Augmenting Parallel Coordinates Plots With Color-Coded Stacked Histograms. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:2563-2576. [PMID: 33201820 DOI: 10.1109/tvcg.2020.3038446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We introduce Parallel Histogram Plot (PHP), a technique that overcomes the innate limitations of parallel coordinates plot (PCP) by attaching stacked-bar histograms with discrete color schemes to PCP. The color-coded histograms enable users to see an overview of the whole data without cluttering or scalability issues. Each rectangle in the PHP histograms is color coded according to the data ranking by a selected attribute. This color-coding scheme allows users to visually examine relationships between attributes, even between those that are displayed far apart, without repositioning or reordering axes. We adopt the Visual Information Seeking Mantra so that the polylines of the original PCP can be used to show details of a small number of selected items when the cluttering problem subsides. We also design interactions, such as a focus+context technique, to help users investigate small regions of interest in a space-efficient manner. We provide a real-world example in which PHP is effectively utilized compared with other visualizations, and we perform a controlled user study to evaluate the performance of PHP in helping users estimate the correlation between attributes. The results demonstrate that the performance of PHP was consistent in the estimation of correlations between two attributes regardless of the distance between them.
Collapse
|
5
|
Zhou L, Fan M, Hansen C, Johnson CR, Weiskopf D. A Review of Three-Dimensional Medical Image Visualization. HEALTH DATA SCIENCE 2022; 2022:9840519. [PMID: 38487486 PMCID: PMC10880180 DOI: 10.34133/2022/9840519] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/17/2022] [Indexed: 03/17/2024]
Abstract
Importance. Medical images are essential for modern medicine and an important research subject in visualization. However, medical experts are often not aware of the many advanced three-dimensional (3D) medical image visualization techniques that could increase their capabilities in data analysis and assist the decision-making process for specific medical problems. Our paper provides a review of 3D visualization techniques for medical images, intending to bridge the gap between medical experts and visualization researchers.Highlights. Fundamental visualization techniques are revisited for various medical imaging modalities, from computational tomography to diffusion tensor imaging, featuring techniques that enhance spatial perception, which is critical for medical practices. The state-of-the-art of medical visualization is reviewed based on a procedure-oriented classification of medical problems for studies of individuals and populations. This paper summarizes free software tools for different modalities of medical images designed for various purposes, including visualization, analysis, and segmentation, and it provides respective Internet links.Conclusions. Visualization techniques are a useful tool for medical experts to tackle specific medical problems in their daily work. Our review provides a quick reference to such techniques given the medical problem and modalities of associated medical images. We summarize fundamental techniques and readily available visualization tools to help medical experts to better understand and utilize medical imaging data. This paper could contribute to the joint effort of the medical and visualization communities to advance precision medicine.
Collapse
Affiliation(s)
- Liang Zhou
- National Institute of Health Data Science, Peking University, Beijing, China
| | - Mengjie Fan
- National Institute of Health Data Science, Peking University, Beijing, China
| | - Charles Hansen
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, USA
| | - Chris R. Johnson
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, USA
| | - Daniel Weiskopf
- Visualization Research Center (VISUS), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
6
|
Srabanti S, Tran M, Achim V, Fuller D, Canahuate G, Miranda F, Marai G. A Tale of Two Centers: Visual Exploration of Health Disparities in Cancer Care. IEEE PACIFIC VISUALIZATION SYMPOSIUM : [PROCEEDINGS]. IEEE PACIFIC VISUALISATION SYMPOSIUM 2022; 2022:101-110. [PMID: 35928055 PMCID: PMC9344952 DOI: 10.1109/pacificvis53943.2022.00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The annual incidence of head and neck cancers (HNC) worldwide is more than 550,000 cases, with around 300,000 deaths each year. However, the incidence rates and disease-characteristics of HNC differ between treatment centers and different populations, due to undetermined reasons, which may or not include socioeconomic factors. The multi-faceted and multi-variate nature of the data in the context of the emerging field of health disparities research makes automated analysis impractical. Hence, we present a visual analysis approach to explore the health disparities in the data of HNC patients from two different cohorts at two cancer care centers. Our approach integrates data from multiple sources, including census data and city data, with custom visual encodings and with a nearest neighbor approach. Our design, created in collaboration with oncology experts, makes it possible to analyze the patients' demographic, disease characteristics, treatments and outcomes, and to make significant comparisons of these two cohorts and of individual patients. We evaluate this approach through two case studies performed with domain experts. The results demonstrate that this visual analysis approach successfully accomplishes the goal of comparing two cohorts in terms of different significant factors, and can provide insights into the main source of health disparities between the two centers.
Collapse
|
7
|
Interactive Geological Data Visualization in an Immersive Environment. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2022. [DOI: 10.3390/ijgi11030176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Underground flow paths (UFP) often play an important role in the illustration of geological data by geologists, especially in illustrating geological data and revealing stratigraphic structures, which can help domain experts in their exploration of petroleum information. In this paper, we present a new immersive visualization tool to help domain experts better illustrate stratigraphic data. We use a visualization method based on bit-array-based 3-D texture to represent stratigraphic data. Our visualization tool has three major advantages: it allows for flexible interaction at the immersive device, it enables domain experts to obtain their desired UFP structure through the execution of quadratic surface queries, and supports different stratigraphic display modes, as well as switching and integration geological information flexibly. Feedback from domain experts has shown that our tool can contribute more for domain experts in the scientific exploration of stratigraphic data, compared to the existing UFP visualization tools in the field. Thus, experts in geology can have a more comprehensive understanding and more effective illustration of the structure and distribution of UFPs.
Collapse
|
8
|
He X, Tao Y, Yang S, Chen C, Lin H. ScalarGCN: scalar-value association analysis of volumes based on graph convolutional network. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-021-00779-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
|
10
|
Tao J, Imre M, Wang C, Chawla NV, Guo H, Sever G, Kim SH. Exploring Time-Varying Multivariate Volume Data Using Matrix of Isosurface Similarity Maps. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:1236-1245. [PMID: 30130208 DOI: 10.1109/tvcg.2018.2864808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present a novel visual representation and interface named the matrix of isosurface similarity maps (MISM) for effective exploration of large time-varying multivariate volumetric data sets. MISM synthesizes three types of similarity maps (i.e., self, temporal, and variable similarity maps) to capture the essential relationships among isosurfaces of different variables and time steps. Additionally, it serves as the main visual mapping and navigation tool for examining the vast number of isosurfaces and exploring the underlying time-varying multivariate data set. We present temporal clustering, variable grouping, and interactive filtering to reduce the huge exploration space of MISM. In conjunction with the isovalue and isosurface views, MISM allows users to identify important isosurfaces or isosurface pairs and compare them over space, time, and value range. More importantly, we introduce path recommendation that suggests, animates, and compares traversal paths for effectively exploring MISM under varied criteria and at different levels-of-detail. A silhouette-based method is applied to render multiple surfaces of interest in a visually succinct manner. We demonstrate the effectiveness of our approach with case studies of several time-varying multivariate data sets and an ensemble data set, and evaluate our work with two domain experts.
Collapse
|
11
|
Association Rules-Based Multivariate Analysis and Visualization of Spatiotemporal Climate Data. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2018. [DOI: 10.3390/ijgi7070266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Nguyen H, Rosen P. DSPCP: A Data Scalable Approach for Identifying Relationships in Parallel Coordinates. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:1301-1315. [PMID: 28166499 DOI: 10.1109/tvcg.2017.2661309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Parallel coordinates plots (PCPs) are a well-studied technique for exploring multi-attribute datasets. In many situations, users find them a flexible method to analyze and interact with data. Unfortunately, using PCPs becomes challenging as the number of data items grows large or multiple trends within the data mix in the visualization. The resulting overdraw can obscure important features. A number of modifications to PCPs have been proposed, including using color, opacity, smooth curves, frequency, density, and animation to mitigate this problem. However, these modified PCPs tend to have their own limitations in the kinds of relationships they emphasize. We propose a new data scalable design for representing and exploring data relationships in PCPs. The approach exploits the point/line duality property of PCPs and a local linear assumption of data to extract and represent relationship summarizations. This approach simultaneously shows relationships in the data and the consistency of those relationships. Our approach supports various visualization tasks, including mixed linear and nonlinear pattern identification, noise detection, and outlier detection, all in large data. We demonstrate these tasks on multiple synthetic and real-world datasets.
Collapse
|
13
|
Kawamura T, Idomura Y, Miyamura H, Takemiya H. Algebraic design of multi-dimensional transfer function using transfer function synthesizer. J Vis (Tokyo) 2016. [DOI: 10.1007/s12650-016-0387-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Liu X, Shen HW. Association Analysis for Visual Exploration of Multivariate Scientific Data Sets. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2016; 22:955-964. [PMID: 26529739 DOI: 10.1109/tvcg.2015.2467431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The heterogeneity and complexity of multivariate characteristics poses a unique challenge to visual exploration of multivariate scientific data sets, as it requires investigating the usually hidden associations between different variables and specific scalar values to understand the data's multi-faceted properties. In this paper, we present a novel association analysis method that guides visual exploration of scalar-level associations in the multivariate context. We model the directional interactions between scalars of different variables as information flows based on association rules. We introduce the concepts of informativeness and uniqueness to describe how information flows between scalars of different variables and how they are associated with each other in the multivariate domain. Based on scalar-level associations represented by a probabilistic association graph, we propose the Multi-Scalar Informativeness-Uniqueness (MSIU) algorithm to evaluate the informativeness and uniqueness of scalars. We present an exploration framework with multiple interactive views to explore the scalars of interest with confident associations in the multivariate spatial domain, and provide guidelines for visual exploration using our framework. We demonstrate the effectiveness and usefulness of our approach through case studies using three representative multivariate scientific data sets.
Collapse
|
15
|
Hong F, Lai C, Guo H, Shen E, Yuan X, Li S. FLDA: Latent Dirichlet Allocation Based Unsteady Flow Analysis. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2014; 20:2545-2554. [PMID: 26356968 DOI: 10.1109/tvcg.2014.2346416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this paper, we present a novel feature extraction approach called FLDA for unsteady flow fields based on Latent Dirichlet allocation (LDA) model. Analogous to topic modeling in text analysis, in our approach, pathlines and features in a given flow field are defined as documents and words respectively. Flow topics are then extracted based on Latent Dirichlet allocation. Different from other feature extraction methods, our approach clusters pathlines with probabilistic assignment, and aggregates features to meaningful topics at the same time. We build a prototype system to support exploration of unsteady flow field with our proposed LDA-based method. Interactive techniques are also developed to explore the extracted topics and to gain insight from the data. We conduct case studies to demonstrate the effectiveness of our proposed approach.
Collapse
|