1
|
Hong J, Hnatyshyn R, Santos EAD, Maciejewski R, Isenberg T. A Survey of Designs for Combined 2D+3D Visual Representations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:2888-2902. [PMID: 38648152 DOI: 10.1109/tvcg.2024.3388516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We examine visual representations of data that make use of combinations of both 2D and 3D data mappings. Combining 2D and 3D representations is a common technique that allows viewers to understand multiple facets of the data with which they are interacting. While 3D representations focus on the spatial character of the data or the dedicated 3D data mapping, 2D representations often show abstract data properties and take advantage of the unique benefits of mapping to a plane. Many systems have used unique combinations of both types of data mappings effectively. Yet there are no systematic reviews of the methods in linking 2D and 3D representations. We systematically survey the relationships between 2D and 3D visual representations in major visualization publications-IEEE VIS, IEEE TVCG, and EuroVis-from 2012 to 2022. We closely examined 105 articles where 2D and 3D representations are connected visually, interactively, or through animation. These approaches are designed based on their visual environment, the relationships between their visual representations, and their possible layouts. Through our analysis, we introduce a design space as well as provide design guidelines for effectively linking 2D and 3D visual representations.
Collapse
|
2
|
Sawada S, Itoh T, Misaka T, Obayashi S, Czauderna T, Stephens K. Streamline pair selection for comparative flow field visualization. Vis Comput Ind Biomed Art 2020; 3:20. [PMID: 32851564 PMCID: PMC7450024 DOI: 10.1186/s42492-020-00056-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/28/2020] [Indexed: 11/10/2022] Open
Abstract
Fluid dynamics simulation is often repeated under varying conditions. This leads to a generation of large amounts of results, which are difficult to compare. To compare results under different conditions, it is effective to overlap the streamlines generated from each condition in a single three-dimensional space. Streamline is a curved line, which represents a wind flow. This paper presents a technique to automatically select and visualize important streamlines that are suitable for the comparison of the simulation results. Additionally, we present an implementation to observe the flow fields in virtual reality spaces.
Collapse
Affiliation(s)
- Shoko Sawada
- Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 1128610, Japan.
| | - Takayuki Itoh
- Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 1128610, Japan.
| | - Takashi Misaka
- Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 9808577, Japan
| | - Shigeru Obayashi
- Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 9808577, Japan
| | - Tobias Czauderna
- Monash University, Wellington Road, Clayton, Victoria, Australia
| | | |
Collapse
|
3
|
Guo H, He W, Seo S, Shen HW, Constantinescu EM, Liu C, Peterka T. Extreme-Scale Stochastic Particle Tracing for Uncertain Unsteady Flow Visualization and Analysis. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2019; 25:2710-2724. [PMID: 30047883 DOI: 10.1109/tvcg.2018.2856772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present an efficient and scalable solution to estimate uncertain transport behaviors-stochastic flow maps (SFMs)-for visualizing and analyzing uncertain unsteady flows. Computing flow maps from uncertain flow fields is extremely expensive because it requires many Monte Carlo runs to trace densely seeded particles in the flow. We reduce the computational cost by decoupling the time dependencies in SFMs so that we can process shorter sub time intervals independently and then compose them together for longer time periods. Adaptive refinement is also used to reduce the number of runs for each location. We parallelize over tasks-packets of particles in our design-to achieve high efficiency in MPI/thread hybrid programming. Such a task model also enables CPU/GPU coprocessing. We show the scalability on two supercomputers, Mira (up to 256K Blue Gene/Q cores) and Titan (up to 128K Opteron cores and 8K GPUs), that can trace billions of particles in seconds.
Collapse
|
4
|
Wang J, Hazarika S, Li C, Shen HW. Visualization and Visual Analysis of Ensemble Data: A Survey. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2019; 25:2853-2872. [PMID: 29994615 DOI: 10.1109/tvcg.2018.2853721] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Over the last decade, ensemble visualization has witnessed a significant development due to the wide availability of ensemble data, and the increasing visualization needs from a variety of disciplines. From the data analysis point of view, it can be observed that many ensemble visualization works focus on the same facet of ensemble data, use similar data aggregation or uncertainty modeling methods. However, the lack of reflections on those essential commonalities and a systematic overview of those works prevents visualization researchers from effectively identifying new or unsolved problems and planning for further developments. In this paper, we take a holistic perspective and provide a survey of ensemble visualization. Specifically, we study ensemble visualization works in the recent decade, and categorize them from two perspectives: (1) their proposed visualization techniques; and (2) their involved analytic tasks. For the first perspective, we focus on elaborating how conventional visualization techniques (e.g., surface, volume visualization techniques) have been adapted to ensemble data; for the second perspective, we emphasize how analytic tasks (e.g., comparison, clustering) have been performed differently for ensemble data. From the study of ensemble visualization literature, we have also identified several research trends, as well as some future research opportunities.
Collapse
|
5
|
Rautenhaus M, Bottinger M, Siemen S, Hoffman R, Kirby RM, Mirzargar M, Rober N, Westermann R. Visualization in Meteorology-A Survey of Techniques and Tools for Data Analysis Tasks. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:3268-3296. [PMID: 29990196 DOI: 10.1109/tvcg.2017.2779501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This article surveys the history and current state of the art of visualization in meteorology, focusing on visualization techniques and tools used for meteorological data analysis. We examine characteristics of meteorological data and analysis tasks, describe the development of computer graphics methods for visualization in meteorology from the 1960s to today, and visit the state of the art of visualization techniques and tools in operational weather forecasting and atmospheric research. We approach the topic from both the visualization and the meteorological side, showing visualization techniques commonly used in meteorological practice, and surveying recent studies in visualization research aimed at meteorological applications. Our overview covers visualization techniques from the fields of display design, 3D visualization, flow dynamics, feature-based visualization, comparative visualization and data fusion, uncertainty and ensemble visualization, interactive visual analysis, efficient rendering, and scalability and reproducibility. We discuss demands and challenges for visualization research targeting meteorological data analysis, highlighting aspects in demonstration of benefit, interactive visual analysis, seamless visualization, ensemble visualization, 3D visualization, and technical issues.
Collapse
|
6
|
Zhang W, Wang Y, Zeng Q, Wang Y, Chen G, Niu T, Tu C, Chen Y. Visual analysis of haze evolution and correlation in Beijing. J Vis (Tokyo) 2018. [DOI: 10.1007/s12650-018-0516-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
A survey of parallel particle tracing algorithms in flow visualization. J Vis (Tokyo) 2018. [DOI: 10.1007/s12650-017-0470-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Zhang J, Guo H, Hong F, Yuan X, Peterka T. Dynamic Load Balancing Based on Constrained K-D Tree Decomposition for Parallel Particle Tracing. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:954-963. [PMID: 28866518 DOI: 10.1109/tvcg.2017.2744059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We propose a dynamically load-balanced algorithm for parallel particle tracing, which periodically attempts to evenly redistribute particles across processes based on k-d tree decomposition. Each process is assigned with (1) a statically partitioned, axis-aligned data block that partially overlaps with neighboring blocks in other processes and (2) a dynamically determined k-d tree leaf node that bounds the active particles for computation; the bounds of the k-d tree nodes are constrained by the geometries of data blocks. Given a certain degree of overlap between blocks, our method can balance the number of particles as much as possible. Compared with other load-balancing algorithms for parallel particle tracing, the proposed method does not require any preanalysis, does not use any heuristics based on flow features, does not make any assumptions about seed distribution, does not move any data blocks during the run, and does not need any master process for work redistribution. Based on a comprehensive performance study up to 8K processes on a Blue Gene/Q system, the proposed algorithm outperforms baseline approaches in both load balance and scalability on various flow visualization and analysis problems.
Collapse
|
9
|
Hong F, Bi C, Guo H, Ono K, Yuan X. Compression-based integral curve data reuse framework for flow visualization. J Vis (Tokyo) 2017. [DOI: 10.1007/s12650-017-0428-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Biswas A, Lin G, Liu X, Shen HW. Visualization of Time-Varying Weather Ensembles across Multiple Resolutions. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:841-850. [PMID: 27875198 DOI: 10.1109/tvcg.2016.2598869] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Uncertainty quantification in climate ensembles is an important topic for the domain scientists, especially for decision making in the real-world scenarios. With powerful computers, simulations now produce time-varying and multi-resolution ensemble data sets. It is of extreme importance to understand the model sensitivity given the input parameters such that more computation power can be allocated to the parameters with higher influence on the output. Also, when ensemble data is produced at different resolutions, understanding the accuracy of different resolutions helps the total time required to produce a desired quality solution with improved storage and computation cost. In this work, we propose to tackle these non-trivial problems on the Weather Research and Forecasting (WRF) model output. We employ a moment independent sensitivity measure to quantify and analyze parameter sensitivity across spatial regions and time domain. A comparison of clustering structures across three resolutions enables the users to investigate the sensitivity variation over the spatial regions of the five input parameters. The temporal trend in the sensitivity values is explored via an MDS view linked with a line chart for interactive brushing. The spatial and temporal views are connected to provide a full exploration system for complete spatio-temporal sensitivity analysis. To analyze the accuracy across varying resolutions, we formulate a Bayesian approach to identify which regions are better predicted at which resolutions compared to the observed precipitation. This information is aggregated over the time domain and finally encoded in an output image through a custom color map that guides the domain experts towards an adaptive grid implementation given a cost model. Users can select and further analyze the spatial and temporal error patterns for multi-resolution accuracy analysis via brushing and linking on the produced image. In this work, we collaborate with a domain expert whose feedback shows the effectiveness of our proposed exploration work-flow.
Collapse
|
11
|
Obermaier H, Bensema K, Joy KI. Visual Trends Analysis in Time-Varying Ensembles. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2016; 22:2331-2342. [PMID: 26685253 DOI: 10.1109/tvcg.2015.2507592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Visualization and analysis techniques play a key role in the discovery of relevant features in ensemble data. Trends, in the form of persisting commonalities or differences in time-varying ensemble datasets, constitute one of the most expressive feature types in ensemble analysis. We develop a flow-graph representation as the core of a system designed for the visual analysis of trends in time-varying ensembles. In our interactive analysis framework, this graph is linked to a representation of ensemble parameter-space and the ensemble itself. This facilitates a detailed examination of trends and their correlations to properties of input-space. We demonstrate the utility of the proposed trends analysis framework in several benchmark data sets, highlighting its capability to support goal-driven design of time-varying simulations.
Collapse
|
12
|
|
13
|
Guo H, Zhang J, Liu R, Liu L, Yuan X, Huang J, Meng X, Pan J. Advection-Based Sparse Data Management for Visualizing Unsteady Flow. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2014; 20:2555-2564. [PMID: 26356969 DOI: 10.1109/tvcg.2014.2346418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
When computing integral curves and integral surfaces for large-scale unsteady flow fields, a major bottleneck is the widening gap between data access demands and the available bandwidth (both I/O and in-memory). In this work, we explore a novel advection-based scheme to manage flow field data for both efficiency and scalability. The key is to first partition flow field into blocklets (e.g. cells or very fine-grained blocks of cells), and then (pre)fetch and manage blocklets on-demand using a parallel key-value store. The benefits are (1) greatly increasing the scale of local-range analysis (e.g. source-destination queries, streak surface generation) that can fit within any given limit of hardware resources; (2) improving memory and I/O bandwidth-efficiencies as well as the scalability of naive task-parallel particle advection. We demonstrate our method using a prototype system that works on workstation and also in supercomputing environments. Results show significantly reduced I/O overhead compared to accessing raw flow data, and also high scalability on a supercomputer for a variety of applications.
Collapse
|