1
|
Evers M, Linsen L. 2D Embeddings of Multi-Dimensional Partitionings. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:218-228. [PMID: 39259625 DOI: 10.1109/tvcg.2024.3456394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Partitionings (or segmentations) divide a given domain into disjoint connected regions whose union forms again the entire domain. Multi-dimensional partitionings occur, for example, when analyzing parameter spaces of simulation models, where each segment of the partitioning represents a region of similar model behavior. Having computed a partitioning, one is commonly interested in understanding how large the segments are and which segments lie next to each other. While visual representations of 2D domain partitionings that reveal sizes and neighborhoods are straightforward, this is no longer the case when considering multi-dimensional domains of three or more dimensions. We propose an algorithm for computing 2D embeddings of multi-dimensional partitionings. The embedding shall have the following properties: It shall maintain the topology of the partitioning and optimize the area sizes and joint boundary lengths of the embedded segments to match the respective sizes and lengths in the multi-dimensional domain. We demonstrate the effectiveness of our approach by applying it to different use cases, including the visual exploration of 3D spatial domain segmentations and multi-dimensional parameter space partitionings of simulation ensembles. We numerically evaluate our algorithm with respect to how well sizes and lengths are preserved depending on the dimensionality of the domain and the number of segments.
Collapse
|
2
|
Piccolotto N, Bogl M, Muehlmann C, Nordhausen K, Filzmoser P, Schmidt J, Miksch S. Data Type Agnostic Visual Sensitivity Analysis. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; PP:1-11. [PMID: 37922175 DOI: 10.1109/tvcg.2023.3327203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Modern science and industry rely on computational models for simulation, prediction, and data analysis. Spatial blind source separation (SBSS) is a model used to analyze spatial data. Designed explicitly for spatial data analysis, it is superior to popular non-spatial methods, like PCA. However, a challenge to its practical use is setting two complex tuning parameters, which requires parameter space analysis. In this paper, we focus on sensitivity analysis (SA). SBSS parameters and outputs are spatial data, which makes SA difficult as few SA approaches in the literature assume such complex data on both sides of the model. Based on the requirements in our design study with statistics experts, we developed a visual analytics prototype for data type agnostic visual sensitivity analysis that fits SBSS and other contexts. The main advantage of our approach is that it requires only dissimilarity measures for parameter settings and outputs (Fig. 1). We evaluated the prototype heuristically with visualization experts and through interviews with two SBSS experts. In addition, we show the transferability of our approach by applying it to microclimate simulations. Study participants could confirm suspected and known parameter-output relations, find surprising associations, and identify parameter subspaces to examine in the future. During our design study and evaluation, we identified challenging future research opportunities.
Collapse
|
3
|
Piccolotto N, Bögl M, Miksch S. Visual Parameter Space Exploration in Time and Space. COMPUTER GRAPHICS FORUM : JOURNAL OF THE EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS 2023; 42:e14785. [PMID: 38505647 PMCID: PMC10947302 DOI: 10.1111/cgf.14785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Computational models, such as simulations, are central to a wide range of fields in science and industry. Those models take input parameters and produce some output. To fully exploit their utility, relations between parameters and outputs must be understood. These include, for example, which parameter setting produces the best result (optimization) or which ranges of parameter settings produce a wide variety of results (sensitivity). Such tasks are often difficult to achieve for various reasons, for example, the size of the parameter space, and supported with visual analytics. In this paper, we survey visual parameter space exploration (VPSE) systems involving spatial and temporal data. We focus on interactive visualizations and user interfaces. Through thematic analysis of the surveyed papers, we identify common workflow steps and approaches to support them. We also identify topics for future work that will help enable VPSE on a greater variety of computational models.
Collapse
Affiliation(s)
- Nikolaus Piccolotto
- TU WienInstitute of Visual Computing and Human‐Centered TechnologyWienAustria
| | - Markus Bögl
- TU WienInstitute of Visual Computing and Human‐Centered TechnologyWienAustria
| | - Silvia Miksch
- TU WienInstitute of Visual Computing and Human‐Centered TechnologyWienAustria
| |
Collapse
|
4
|
Younesy H, Pober J, Möller T, Karimi MM. ModEx: a general purpose computer model exploration system. FRONTIERS IN BIOINFORMATICS 2023; 3:1153800. [PMID: 37304402 PMCID: PMC10249055 DOI: 10.3389/fbinf.2023.1153800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
We present a general purpose visual analysis system that can be used for exploring parameters of a variety of computer models. Our proposed system offers key components of a visual parameter analysis framework including parameter sampling, deriving output summaries, and an exploration interface. It also provides an API for rapid development of parameter space exploration solutions as well as the flexibility to support custom workflows for different application domains. We evaluate the effectiveness of our system by demonstrating it in three domains: data mining, machine learning and specific application in bioinformatics.
Collapse
Affiliation(s)
- Hamid Younesy
- School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
| | | | - Torsten Möller
- Research Network Data Science and Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Mohammad M. Karimi
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
5
|
Kumpf A, Stumpfegger J, Hartl PF, Westermann R. Visual Analysis of Multi-Parameter Distributions Across Ensembles of 3D Fields. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:3530-3545. [PMID: 33625986 DOI: 10.1109/tvcg.2021.3061925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For an ensemble of 3D multi-parameter fields, we present a visual analytics workflow to analyse whether and which parts of a selected multi-parameter distribution is present in all ensemble members. Supported by a parallel coordinate plot, a multi-parameter brush is applied to all ensemble members to select data points with similar multi-parameter distribution. By a combination of spatial sub-division and a covariance analysis of partitioned sub-sets of data points, a tight partition in multi-parameter space with reduced number of selected data points is obtained. To assess the representativeness of the selected multi-parameter distribution across the ensemble, we propose a novel extension of violin plots that can show multiple parameter distributions simultaneously. We investigate the visual design that effectively conveys (dis-)similarities in multi-parameter distributions, and demonstrate that users can quickly comprehend parameter-specific differences regarding distribution shape and representativeness from a side-by-side view of these plots. In a 3D spatial view, users can analyse and compare the spatial distribution of selected data points in different ensemble members via interval-based isosurface raycasting. In two real-world application cases we show how our approach is used to analyse the multi-parameter distributions across an ensemble of 3D fields.
Collapse
|
6
|
Dunne M, Mohammadi H, Challenor P, Borgo R, Porphyre T, Vernon I, Firat EE, Turkay C, Torsney-Weir T, Goldstein M, Reeve R, Fang H, Swallow B. Complex model calibration through emulation, a worked example for a stochastic epidemic model. Epidemics 2022; 39:100574. [PMID: 35617882 PMCID: PMC9109972 DOI: 10.1016/j.epidem.2022.100574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 12/03/2022] Open
Abstract
Uncertainty quantification is a formal paradigm of statistical estimation that aims to account for all uncertainties inherent in the modelling process of real-world complex systems. The methods are directly applicable to stochastic models in epidemiology, however they have thus far not been widely used in this context. In this paper, we provide a tutorial on uncertainty quantification of stochastic epidemic models, aiming to facilitate the use of the uncertainty quantification paradigm for practitioners with other complex stochastic simulators of applied systems. We provide a formal workflow including the important decisions and considerations that need to be taken, and illustrate the methods over a simple stochastic epidemic model of UK SARS-CoV-2 transmission and patient outcome. We also present new approaches to visualisation of outputs from sensitivity analyses and uncertainty quantification more generally in high input and/or output dimensions.
Collapse
Affiliation(s)
- Michael Dunne
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Hossein Mohammadi
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Peter Challenor
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Rita Borgo
- Department of Informatics, King's College London, London, UK
| | - Thibaud Porphyre
- Laboratoire de Biométrie et Biologie Evolutive, VetAgro Sup, Marcy l'Etoile, France
| | - Ian Vernon
- Department of Mathematical Sciences, Durham University, Durham, UK
| | - Elif E Firat
- Department of Computer Science, University of Nottingham, Nottingham, UK
| | - Cagatay Turkay
- Centre for Interdisciplinary Methodologies, University of Warwick, Coventry, UK
| | - Thomas Torsney-Weir
- VRVis Zentrum für Virtual Reality und Visualisierung Forschungs-GmbH, Vienna, Austria
| | | | - Richard Reeve
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Hui Fang
- Department of Computer Science, Loughborough University, Loughborough, UK
| | - Ben Swallow
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK.
| |
Collapse
|
7
|
He W, Wang J, Guo H, Wang KC, Shen HW, Raj M, Nashed YSG, Peterka T. InSituNet: Deep Image Synthesis for Parameter Space Exploration of Ensemble Simulations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:23-33. [PMID: 31425097 DOI: 10.1109/tvcg.2019.2934312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We propose InSituNet, a deep learning based surrogate model to support parameter space exploration for ensemble simulations that are visualized in situ. In situ visualization, generating visualizations at simulation time, is becoming prevalent in handling large-scale simulations because of the I/O and storage constraints. However, in situ visualization approaches limit the flexibility of post-hoc exploration because the raw simulation data are no longer available. Although multiple image-based approaches have been proposed to mitigate this limitation, those approaches lack the ability to explore the simulation parameters. Our approach allows flexible exploration of parameter space for large-scale ensemble simulations by taking advantage of the recent advances in deep learning. Specifically, we design InSituNet as a convolutional regression model to learn the mapping from the simulation and visualization parameters to the visualization results. With the trained model, users can generate new images for different simulation parameters under various visualization settings, which enables in-depth analysis of the underlying ensemble simulations. We demonstrate the effectiveness of InSituNet in combustion, cosmology, and ocean simulations through quantitative and qualitative evaluations.
Collapse
|
8
|
Faust R, Glickenstein D, Scheidegger C. DimReader: Axis lines that explain non-linear projections. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:481-490. [PMID: 30136997 DOI: 10.1109/tvcg.2018.2865194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Non-linear dimensionality reduction (NDR) methods such as LLE and t-SNE are popular with visualization researchers and experienced data analysts, but present serious problems of interpretation. In this paper, we present DimReader, a technique that recovers readable axes from such techniques. DimReader is based on analyzing infinitesimal perturbations of the dataset with respect to variables of interest. The perturbations define exactly how we want to change each point in the original dataset and we measure the effect that these changes have on the projection. The recovered axes are in direct analogy with the axis lines (grid lines) of traditional scatterplots. We also present methods for discovering perturbations on the input data that change the projection the most. The calculation of the perturbations is efficient and easily integrated into programs written in modern programming languages. We present results of DimReader on a variety of NDR methods and datasets both synthetic and real-life, and show how it can be used to compare different NDR methods. Finally, we discuss limitations of our proposal and situations where further research is needed.
Collapse
|
9
|
von Landesberger T, Fellner DW, Ruddle RA. Visualization System Requirements for Data Processing Pipeline Design and Optimization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:2028-2041. [PMID: 28113376 DOI: 10.1109/tvcg.2016.2603178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The rising quantity and complexity of data creates a need to design and optimize data processing pipelines-the set of data processing steps, parameters and algorithms that perform operations on the data. Visualization can support this process but, although there are many examples of systems for visual parameter analysis, there remains a need to systematically assess users' requirements and match those requirements to exemplar visualization methods. This article presents a new characterization of the requirements for pipeline design and optimization. This characterization is based on both a review of the literature and first-hand assessment of eight application case studies. We also match these requirements with exemplar functionality provided by existing visualization tools. Thus, we provide end-users and visualization developers with a way of identifying functionality that addresses data processing problems in an application. We also identify seven future challenges for visualization research that are not met by the capabilities of today's systems.
Collapse
|
10
|
Pajer S, Streit M, Torsney-Weir T, Spechtenhauser F, Muller T, Piringer H. WeightLifter: Visual Weight Space Exploration for Multi-Criteria Decision Making. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:611-620. [PMID: 27875176 DOI: 10.1109/tvcg.2016.2598589] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A common strategy in Multi-Criteria Decision Making (MCDM) is to rank alternative solutions by weighted summary scores. Weights, however, are often abstract to the decision maker and can only be set by vague intuition. While previous work supports a point-wise exploration of weight spaces, we argue that MCDM can benefit from a regional and global visual analysis of weight spaces. Our main contribution is WeightLifter, a novel interactive visualization technique for weight-based MCDM that facilitates the exploration of weight spaces with up to ten criteria. Our technique enables users to better understand the sensitivity of a decision to changes of weights, to efficiently localize weight regions where a given solution ranks high, and to filter out solutions which do not rank high enough for any plausible combination of weights. We provide a comprehensive requirement analysis for weight-based MCDM and describe an interactive workflow that meets these requirements. For evaluation, we describe a usage scenario of WeightLifter in automotive engineering and report qualitative feedback from users of a deployed version as well as preliminary feedback from decision makers in multiple domains. This feedback confirms that WeightLifter increases both the efficiency of weight-based MCDM and the awareness of uncertainty in the ultimate decisions.
Collapse
|
11
|
Obermaier H, Bensema K, Joy KI. Visual Trends Analysis in Time-Varying Ensembles. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2016; 22:2331-2342. [PMID: 26685253 DOI: 10.1109/tvcg.2015.2507592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Visualization and analysis techniques play a key role in the discovery of relevant features in ensemble data. Trends, in the form of persisting commonalities or differences in time-varying ensemble datasets, constitute one of the most expressive feature types in ensemble analysis. We develop a flow-graph representation as the core of a system designed for the visual analysis of trends in time-varying ensembles. In our interactive analysis framework, this graph is linked to a representation of ensemble parameter-space and the ensemble itself. This facilitates a detailed examination of trends and their correlations to properties of input-space. We demonstrate the utility of the proposed trends analysis framework in several benchmark data sets, highlighting its capability to support goal-driven design of time-varying simulations.
Collapse
|
12
|
Pretorius AJ, Zhou Y, Ruddle RA. Visual parameter optimisation for biomedical image processing. BMC Bioinformatics 2015; 16 Suppl 11:S9. [PMID: 26329538 PMCID: PMC4547193 DOI: 10.1186/1471-2105-16-s11-s9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background Biomedical image processing methods require users to optimise input parameters to ensure high-quality output. This presents two challenges. First, it is difficult to optimise multiple input parameters for multiple input images. Second, it is difficult to achieve an understanding of underlying algorithms, in particular, relationships between input and output. Results We present a visualisation method that transforms users' ability to understand algorithm behaviour by integrating input and output, and by supporting exploration of their relationships. We discuss its application to a colour deconvolution technique for stained histology images and show how it enabled a domain expert to identify suitable parameter values for the deconvolution of two types of images, and metrics to quantify deconvolution performance. It also enabled a breakthrough in understanding by invalidating an underlying assumption about the algorithm. Conclusions The visualisation method presented here provides analysis capability for multiple inputs and outputs in biomedical image processing that is not supported by previous analysis software. The analysis supported by our method is not feasible with conventional trial-and-error approaches.
Collapse
|
13
|
Sedlmair M, Heinzl C, Bruckner S, Piringer H, Möller T. Visual Parameter Space Analysis: A Conceptual Framework. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2014; 20:2161-2170. [PMID: 26356930 DOI: 10.1109/tvcg.2014.2346321] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Various case studies in different application domains have shown the great potential of visual parameter space analysis to support validating and using simulation models. In order to guide and systematize research endeavors in this area, we provide a conceptual framework for visual parameter space analysis problems. The framework is based on our own experience and a structured analysis of the visualization literature. It contains three major components: (1) a data flow model that helps to abstractly describe visual parameter space analysis problems independent of their application domain; (2) a set of four navigation strategies of how parameter space analysis can be supported by visualization tools; and (3) a characterization of six analysis tasks. Based on our framework, we analyze and classify the current body of literature, and identify three open research gaps in visual parameter space analysis. The framework and its discussion are meant to support visualization designers and researchers in characterizing parameter space analysis problems and to guide their design and evaluation processes.
Collapse
|
14
|
Matković K, Gračanin D, Splechtna R, Jelović M, Stehno B, Hauser H, Purgathofer W. Visual Analytics for Complex Engineering Systems: Hybrid Visual Steering of Simulation Ensembles. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2014; 20:1803-1812. [PMID: 26356894 DOI: 10.1109/tvcg.2014.2346744] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this paper we propose a novel approach to hybrid visual steering of simulation ensembles. A simulation ensemble is a collection of simulation runs of the same simulation model using different sets of control parameters. Complex engineering systems have very large parameter spaces so a naïve sampling can result in prohibitively large simulation ensembles. Interactive steering of simulation ensembles provides the means to select relevant points in a multi-dimensional parameter space (design of experiment). Interactive steering efficiently reduces the number of simulation runs needed by coupling simulation and visualization and allowing a user to request new simulations on the fly. As system complexity grows, a pure interactive solution is not always sufficient. The new approach of hybrid steering combines interactive visual steering with automatic optimization. Hybrid steering allows a domain expert to interactively (in a visualization) select data points in an iterative manner, approximate the values in a continuous region of the simulation space (by regression) and automatically find the "best" points in this continuous region based on the specified constraints and objectives (by optimization). We argue that with the full spectrum of optimization options, the steering process can be improved substantially. We describe an integrated system consisting of a simulation, a visualization, and an optimization component. We also describe typical tasks and propose an interactive analysis workflow for complex engineering systems. We demonstrate our approach on a case study from automotive industry, the optimization of a hydraulic circuit in a high pressure common rail Diesel injection system.
Collapse
|