Guo H, He W, Peterka T, Shen HW, Collis S, Helmus J. Finite-Time Lyapunov Exponents and Lagrangian Coherent Structures in Uncertain Unsteady Flows.
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2016;
22:1672-1682. [PMID:
26955037 DOI:
10.1109/tvcg.2016.2534560]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The objective of this paper is to understand transport behavior in uncertain time-varying flow fields by redefining the finite-time Lyapunov exponent (FTLE) and Lagrangian coherent structure (LCS) as stochastic counterparts of their traditional deterministic definitions. Three new concepts are introduced: the distribution of the FTLE (D-FTLE), the FTLE of distributions (FTLE-D), and uncertain LCS (U-LCS). The D-FTLE is the probability density function of FTLE values for every spatiotemporal location, which can be visualized with different statistical measurements. The FTLE-D extends the deterministic FTLE by measuring the divergence of particle distributions. It gives a statistical overview of how transport behaviors vary in neighborhood locations. The U-LCS, the probabilities of finding LCSs over the domain, can be extracted with stochastic ridge finding and density estimation algorithms. We show that our approach produces better results than existing variance-based methods do. Our experiments also show that the combination of D-FTLE, FTLE-D, and U-LCS can help users understand transport behaviors and find separatrices in ensemble simulations of atmospheric processes.
Collapse