1
|
Lange D, Judson-Torres R, Zangle TA, Lex A. Aardvark: Composite Visualizations of Trees, Time-Series, and Images. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:1290-1300. [PMID: 39255114 DOI: 10.1109/tvcg.2024.3456193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
How do cancer cells grow, divide, proliferate, and die? How do drugs influence these processes? These are difficult questions that we can attempt to answer with a combination of time-series microscopy experiments, classification algorithms, and data visualization. However, collecting this type of data and applying algorithms to segment and track cells and construct lineages of proliferation is error-prone; and identifying the errors can be challenging since it often requires cross-checking multiple data types. Similarly, analyzing and communicating the results necessitates synthesizing different data types into a single narrative. State-of-the-art visualization methods for such data use independent line charts, tree diagrams, and images in separate views. However, this spatial separation requires the viewer of these charts to combine the relevant pieces of data in memory. To simplify this challenging task, we describe design principles for weaving cell images, time-series data, and tree data into a cohesive visualization. Our design principles are based on choosing a primary data type that drives the layout and integrates the other data types into that layout. We then introduce Aardvark, a system that uses these principles to implement novel visualization techniques. Based on Aardvark, we demonstrate the utility of each of these approaches for discovery, communication, and data debugging in a series of case studies.
Collapse
|
2
|
Piccolotto N, Bogl M, Muehlmann C, Nordhausen K, Filzmoser P, Schmidt J, Miksch S. Data Type Agnostic Visual Sensitivity Analysis. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; PP:1-11. [PMID: 37922175 DOI: 10.1109/tvcg.2023.3327203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Modern science and industry rely on computational models for simulation, prediction, and data analysis. Spatial blind source separation (SBSS) is a model used to analyze spatial data. Designed explicitly for spatial data analysis, it is superior to popular non-spatial methods, like PCA. However, a challenge to its practical use is setting two complex tuning parameters, which requires parameter space analysis. In this paper, we focus on sensitivity analysis (SA). SBSS parameters and outputs are spatial data, which makes SA difficult as few SA approaches in the literature assume such complex data on both sides of the model. Based on the requirements in our design study with statistics experts, we developed a visual analytics prototype for data type agnostic visual sensitivity analysis that fits SBSS and other contexts. The main advantage of our approach is that it requires only dissimilarity measures for parameter settings and outputs (Fig. 1). We evaluated the prototype heuristically with visualization experts and through interviews with two SBSS experts. In addition, we show the transferability of our approach by applying it to microclimate simulations. Study participants could confirm suspected and known parameter-output relations, find surprising associations, and identify parameter subspaces to examine in the future. During our design study and evaluation, we identified challenging future research opportunities.
Collapse
|
3
|
Piccolotto N, Bögl M, Miksch S. Visual Parameter Space Exploration in Time and Space. COMPUTER GRAPHICS FORUM : JOURNAL OF THE EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS 2023; 42:e14785. [PMID: 38505647 PMCID: PMC10947302 DOI: 10.1111/cgf.14785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Computational models, such as simulations, are central to a wide range of fields in science and industry. Those models take input parameters and produce some output. To fully exploit their utility, relations between parameters and outputs must be understood. These include, for example, which parameter setting produces the best result (optimization) or which ranges of parameter settings produce a wide variety of results (sensitivity). Such tasks are often difficult to achieve for various reasons, for example, the size of the parameter space, and supported with visual analytics. In this paper, we survey visual parameter space exploration (VPSE) systems involving spatial and temporal data. We focus on interactive visualizations and user interfaces. Through thematic analysis of the surveyed papers, we identify common workflow steps and approaches to support them. We also identify topics for future work that will help enable VPSE on a greater variety of computational models.
Collapse
Affiliation(s)
- Nikolaus Piccolotto
- TU WienInstitute of Visual Computing and Human‐Centered TechnologyWienAustria
| | - Markus Bögl
- TU WienInstitute of Visual Computing and Human‐Centered TechnologyWienAustria
| | - Silvia Miksch
- TU WienInstitute of Visual Computing and Human‐Centered TechnologyWienAustria
| |
Collapse
|
4
|
Toward a taxonomy for 2D non-paired General Line Coordinates: a comprehensive survey. INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS 2022. [DOI: 10.1007/s41060-022-00361-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Dementia Patient Segmentation Using EMR Data Visualization: A Design Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16183438. [PMID: 31527556 PMCID: PMC6765847 DOI: 10.3390/ijerph16183438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/31/2019] [Accepted: 09/07/2019] [Indexed: 11/17/2022]
Abstract
(1) Background: The Electronic Medical Record system, which is a digital medical record management architecture, is critical for reliable medical research. It facilitates the investigation of disease patterns and efficient treatment via collaboration with data scientists. (2) Methods: In this study, we present multidimensional visual tools for the analysis of multidimensional datasets via a combination of 3-dimensional radial coordinate visualization (3D RadVis) and many-objective optimization (e.g., Parallel Coordinates). Also, we propose a user-driven research design to facilitate visualization. We followed a design process to (1) understand the demands of domain experts, (2) define the problems based on relevant works, (3) design visualization, (4) implement visualization, and (5) enable qualitative evaluation by domain experts. (3) Results: This study provides clinical insight into dementia based on EMR data via visual analysis. Results of a case study based on questionnaires surveying daily living activities indicated that daily behaviors influenced the progression of dementia. (4) Conclusions: This study provides a visual analytical tool to support cluster segmentation. Using this tool, we segmented dementia patients into clusters and interpreted the behavioral patterns of each group. This study contributes to biomedical data interpretation based on a visual approach.
Collapse
|
6
|
Harrison DG, Efford ND, Fisher QJ, Ruddle RA. PETMiner-A Visual Analysis Tool for Petrophysical Properties of Core Sample Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:1728-1741. [PMID: 28320668 DOI: 10.1109/tvcg.2017.2682865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The aim of the PETMiner software is to reduce the time and monetary cost of analysing petrophysical data that is obtained from reservoir sample cores. Analysis of these data requires tacit knowledge to fill 'gaps' so that predictions can be made for incomplete data. Through discussions with 30 industry and academic specialists, we identified three analysis use cases that exemplified the limitations of current petrophysics analysis tools. We used those use cases to develop nine core requirements for PETMiner, which is innovative because of its ability to display detailed images of the samples as data points, directly plot multiple sample properties and derived measures for comparison, and substantially reduce interaction cost. An 11-month evaluation demonstrated benefits across all three use cases by allowing a consultant to: (1) generate more accurate reservoir flow models, (2) discover a previously unknown relationship between one easy-to-measure property and another that is costly, and (3) make a 100-fold reduction in the time required to produce plots for a report.
Collapse
|
7
|
Crossno P. Challenges in Visual Analysis of Ensembles. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2018; 38:122-131. [PMID: 29672261 DOI: 10.1109/mcg.2018.021951640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Modeling physical phenomena through computational simulation increasingly relies on generating a collection of related runs, known as an ensemble. This article explores the challenges we face in developing analysis and visualization systems for large and complex ensemble data sets, which we seek to understand without having to view the results of every simulation run. Implementing approaches and ideas developed in response to this goal, we demonstrate the analysis of a 15K run material fracturing study using Slycat, our ensemble analysis system.
Collapse
|
8
|
Kumpf A, Tost B, Baumgart M, Riemer M, Westermann R, Rautenhaus M. Visualizing Confidence in Cluster-Based Ensemble Weather Forecast Analyses. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:109-119. [PMID: 28866576 DOI: 10.1109/tvcg.2017.2745178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In meteorology, cluster analysis is frequently used to determine representative trends in ensemble weather predictions in a selected spatio-temporal region, e.g., to reduce a set of ensemble members to simplify and improve their analysis. Identified clusters (i.e., groups of similar members), however, can be very sensitive to small changes of the selected region, so that clustering results can be misleading and bias subsequent analyses. In this article, we - a team of visualization scientists and meteorologists-deliver visual analytics solutions to analyze the sensitivity of clustering results with respect to changes of a selected region. We propose an interactive visual interface that enables simultaneous visualization of a) the variation in composition of identified clusters (i.e., their robustness), b) the variability in cluster membership for individual ensemble members, and c) the uncertainty in the spatial locations of identified trends. We demonstrate that our solution shows meteorologists how representative a clustering result is, and with respect to which changes in the selected region it becomes unstable. Furthermore, our solution helps to identify those ensemble members which stably belong to a given cluster and can thus be considered similar. In a real-world application case we show how our approach is used to analyze the clustering behavior of different regions in a forecast of "Tropical Cyclone Karl", guiding the user towards the cluster robustness information required for subsequent ensemble analysis.
Collapse
|
9
|
von Landesberger T, Fellner DW, Ruddle RA. Visualization System Requirements for Data Processing Pipeline Design and Optimization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:2028-2041. [PMID: 28113376 DOI: 10.1109/tvcg.2016.2603178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The rising quantity and complexity of data creates a need to design and optimize data processing pipelines-the set of data processing steps, parameters and algorithms that perform operations on the data. Visualization can support this process but, although there are many examples of systems for visual parameter analysis, there remains a need to systematically assess users' requirements and match those requirements to exemplar visualization methods. This article presents a new characterization of the requirements for pipeline design and optimization. This characterization is based on both a review of the literature and first-hand assessment of eight application case studies. We also match these requirements with exemplar functionality provided by existing visualization tools. Thus, we provide end-users and visualization developers with a way of identifying functionality that addresses data processing problems in an application. We also identify seven future challenges for visualization research that are not met by the capabilities of today's systems.
Collapse
|
10
|
Big Data Management with Incremental K-Means Trees–GPU-Accelerated Construction and Visualization. INFORMATICS 2017. [DOI: 10.3390/informatics4030024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
11
|
Visual Exploration of Large Multidimensional Data Using Parallel Coordinates on Big Data Infrastructure. INFORMATICS 2017. [DOI: 10.3390/informatics4030021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Sorger J, Ortner T, Luksch C, Schwärzler M, Gröller E, Piringer H. LiteVis: Integrated Visualization for Simulation-Based Decision Support in Lighting Design. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2016; 22:290-299. [PMID: 26529708 DOI: 10.1109/tvcg.2015.2468011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
State-of-the-art lighting design is based on physically accurate lighting simulations of scenes such as offices. The simulation results support lighting designers in the creation of lighting configurations, which must meet contradicting customer objectives regarding quality and price while conforming to industry standards. However, current tools for lighting design impede rapid feedback cycles. On the one side, they decouple analysis and simulation specification. On the other side, they lack capabilities for a detailed comparison of multiple configurations. The primary contribution of this paper is a design study of LiteVis, a system for efficient decision support in lighting design. LiteVis tightly integrates global illumination-based lighting simulation, a spatial representation of the scene, and non-spatial visualizations of parameters and result indicators. This enables an efficient iterative cycle of simulation parametrization and analysis. Specifically, a novel visualization supports decision making by ranking simulated lighting configurations with regard to a weight-based prioritization of objectives that considers both spatial and non-spatial characteristics. In the spatial domain, novel concepts support a detailed comparison of illumination scenarios. We demonstrate LiteVis using a real-world use case and report qualitative feedback of lighting designers. This feedback indicates that LiteVis successfully supports lighting designers to achieve key tasks more efficiently and with greater certainty.
Collapse
|
13
|
Johansson J, Forsell C. Evaluation of Parallel Coordinates: Overview, Categorization and Guidelines for Future Research. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2016; 22:579-588. [PMID: 26529719 DOI: 10.1109/tvcg.2015.2466992] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The parallel coordinates technique is widely used for the analysis of multivariate data. During recent decades significant research efforts have been devoted to exploring the applicability of the technique and to expand upon it, resulting in a variety of extensions. Of these many research activities, a surprisingly small number concerns user-centred evaluations investigating actual use and usability issues for different tasks, data and domains. The result is a clear lack of convincing evidence to support and guide uptake by users as well as future research directions. To address these issues this paper contributes a thorough literature survey of what has been done in the area of user-centred evaluation of parallel coordinates. These evaluations are divided into four categories based on characterization of use, derived from the survey. Based on the data from the survey and the categorization combined with the authors' experience of working with parallel coordinates, a set of guidelines for future research directions is proposed.
Collapse
|
14
|
Schulz HJ, Hadlak S. Preset-based generation and exploration of visualization designs. JOURNAL OF VISUAL LANGUAGES AND COMPUTING 2015. [DOI: 10.1016/j.jvlc.2015.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Pretorius AJ, Zhou Y, Ruddle RA. Visual parameter optimisation for biomedical image processing. BMC Bioinformatics 2015; 16 Suppl 11:S9. [PMID: 26329538 PMCID: PMC4547193 DOI: 10.1186/1471-2105-16-s11-s9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background Biomedical image processing methods require users to optimise input parameters to ensure high-quality output. This presents two challenges. First, it is difficult to optimise multiple input parameters for multiple input images. Second, it is difficult to achieve an understanding of underlying algorithms, in particular, relationships between input and output. Results We present a visualisation method that transforms users' ability to understand algorithm behaviour by integrating input and output, and by supporting exploration of their relationships. We discuss its application to a colour deconvolution technique for stained histology images and show how it enabled a domain expert to identify suitable parameter values for the deconvolution of two types of images, and metrics to quantify deconvolution performance. It also enabled a breakthrough in understanding by invalidating an underlying assumption about the algorithm. Conclusions The visualisation method presented here provides analysis capability for multiple inputs and outputs in biomedical image processing that is not supported by previous analysis software. The analysis supported by our method is not feasible with conventional trial-and-error approaches.
Collapse
|
16
|
L'Yi S, Ko B, Shin D, Cho YJ, Lee J, Kim B, Seo J. XCluSim: a visual analytics tool for interactively comparing multiple clustering results of bioinformatics data. BMC Bioinformatics 2015; 16 Suppl 11:S5. [PMID: 26328893 PMCID: PMC4547151 DOI: 10.1186/1471-2105-16-s11-s5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Though cluster analysis has become a routine analytic task for bioinformatics research, it is still arduous for researchers to assess the quality of a clustering result. To select the best clustering method and its parameters for a dataset, researchers have to run multiple clustering algorithms and compare them. However, such a comparison task with multiple clustering results is cognitively demanding and laborious. RESULTS In this paper, we present XCluSim, a visual analytics tool that enables users to interactively compare multiple clustering results based on the Visual Information Seeking Mantra. We build a taxonomy for categorizing existing techniques of clustering results visualization in terms of the Gestalt principles of grouping. Using the taxonomy, we choose the most appropriate interactive visualizations for presenting individual clustering results from different types of clustering algorithms. The efficacy of XCluSim is shown through case studies with a bioinformatician. CONCLUSIONS Compared to other relevant tools, XCluSim enables users to compare multiple clustering results in a more scalable manner. Moreover, XCluSim supports diverse clustering algorithms and dedicated visualizations and interactions for different types of clustering results, allowing more effective exploration of details on demand. Through case studies with a bioinformatics researcher, we received positive feedback on the functionalities of XCluSim, including its ability to help identify stably clustered items across multiple clustering results.
Collapse
Affiliation(s)
- Sehi L'Yi
- Department of Computer Science and Engineering & Institute of Computer Technology & Bioinformatics Institute, Seoul National University, Seoul, 151-744, Korea
| | - Bongkyung Ko
- Department of Computer Science and Engineering & Institute of Computer Technology & Bioinformatics Institute, Seoul National University, Seoul, 151-744, Korea
| | - DongHwa Shin
- Department of Computer Science and Engineering & Institute of Computer Technology & Bioinformatics Institute, Seoul National University, Seoul, 151-744, Korea
| | - Young-Joon Cho
- ChunLab, Inc., Seoul National University, Seoul, 151-742, Korea
| | - Jaeyong Lee
- Department of Statistics, Seoul National University, Seoul, 151-742, Korea
| | - Bohyoung Kim
- Department of Radiology, Seoul National University Bundang Hospital, Gyeonggi-do, 463-707, Korea
| | - Jinwook Seo
- Department of Computer Science and Engineering & Institute of Computer Technology & Bioinformatics Institute, Seoul National University, Seoul, 151-744, Korea
| |
Collapse
|