1
|
Piccolotto N, Bögl M, Miksch S. Visual Parameter Space Exploration in Time and Space. COMPUTER GRAPHICS FORUM : JOURNAL OF THE EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS 2023; 42:e14785. [PMID: 38505647 PMCID: PMC10947302 DOI: 10.1111/cgf.14785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Computational models, such as simulations, are central to a wide range of fields in science and industry. Those models take input parameters and produce some output. To fully exploit their utility, relations between parameters and outputs must be understood. These include, for example, which parameter setting produces the best result (optimization) or which ranges of parameter settings produce a wide variety of results (sensitivity). Such tasks are often difficult to achieve for various reasons, for example, the size of the parameter space, and supported with visual analytics. In this paper, we survey visual parameter space exploration (VPSE) systems involving spatial and temporal data. We focus on interactive visualizations and user interfaces. Through thematic analysis of the surveyed papers, we identify common workflow steps and approaches to support them. We also identify topics for future work that will help enable VPSE on a greater variety of computational models.
Collapse
Affiliation(s)
- Nikolaus Piccolotto
- TU WienInstitute of Visual Computing and Human‐Centered TechnologyWienAustria
| | - Markus Bögl
- TU WienInstitute of Visual Computing and Human‐Centered TechnologyWienAustria
| | - Silvia Miksch
- TU WienInstitute of Visual Computing and Human‐Centered TechnologyWienAustria
| |
Collapse
|
2
|
Palenik J, Spengler T, Hauser H. IsoTrotter: Visually Guided Empirical Modelling of Atmospheric Convection. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:775-784. [PMID: 33079665 DOI: 10.1109/tvcg.2020.3030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Empirical models, fitted to data from observations, are often used in natural sciences to describe physical behaviour and support discoveries. However, with more complex models, the regression of parameters quickly becomes insufficient, requiring a visual parameter space analysis to understand and optimize the models. In this work, we present a design study for building a model describing atmospheric convection. We present a mixed-initiative approach to visually guided modelling, integrating an interactive visual parameter space analysis with partial automatic parameter optimization. Our approach includes a new, semi-automatic technique called IsoTrotting, where we optimize the procedure by navigating along isocontours of the model. We evaluate the model with unique observational data of atmospheric convection based on flight trajectories of paragliders.
Collapse
|
3
|
Wang J, Hazarika S, Li C, Shen HW. Visualization and Visual Analysis of Ensemble Data: A Survey. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2019; 25:2853-2872. [PMID: 29994615 DOI: 10.1109/tvcg.2018.2853721] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Over the last decade, ensemble visualization has witnessed a significant development due to the wide availability of ensemble data, and the increasing visualization needs from a variety of disciplines. From the data analysis point of view, it can be observed that many ensemble visualization works focus on the same facet of ensemble data, use similar data aggregation or uncertainty modeling methods. However, the lack of reflections on those essential commonalities and a systematic overview of those works prevents visualization researchers from effectively identifying new or unsolved problems and planning for further developments. In this paper, we take a holistic perspective and provide a survey of ensemble visualization. Specifically, we study ensemble visualization works in the recent decade, and categorize them from two perspectives: (1) their proposed visualization techniques; and (2) their involved analytic tasks. For the first perspective, we focus on elaborating how conventional visualization techniques (e.g., surface, volume visualization techniques) have been adapted to ensemble data; for the second perspective, we emphasize how analytic tasks (e.g., comparison, clustering) have been performed differently for ensemble data. From the study of ensemble visualization literature, we have also identified several research trends, as well as some future research opportunities.
Collapse
|
4
|
Bugbee B, Bush BW, Gruchalla K, Potter K, Brunhart‐Lupo N, Krishnan V. Enabling immersive engagement in energy system models with deep learning. Stat Anal Data Min 2019. [DOI: 10.1002/sam.11419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bruce Bugbee
- Computational Sciences CenterNational Renewable Energy Laboratory Golden Colorado
| | - Brian W. Bush
- Strategic Energy Analysis CenterNational Renewable Energy Laboratory Golden Colorado
| | - Kenny Gruchalla
- Computational Sciences CenterNational Renewable Energy Laboratory Golden Colorado
| | - Kristin Potter
- Computational Sciences CenterNational Renewable Energy Laboratory Golden Colorado
| | | | - Venkat Krishnan
- Power Systems Engineering CenterNational Renewable Energy Laboratory Golden Colorado
| |
Collapse
|
5
|
Zhou F, Lin X, Liu C, Zhao Y, Xu P, Ren L, Xue T, Ren L. A survey of visualization for smart manufacturing. J Vis (Tokyo) 2018. [DOI: 10.1007/s12650-018-0530-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Luciani T, Burks A, Sugiyama C, Komperda J, Marai GE. Details-First, Show Context, Overview Last: Supporting Exploration of Viscous Fingers in Large-Scale Ensemble Simulations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:10.1109/TVCG.2018.2864849. [PMID: 30136949 PMCID: PMC6382591 DOI: 10.1109/tvcg.2018.2864849] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Visualization research often seeks designs that first establish an overview of the data, in accordance to the information seeking mantra: "Overview first, zoom and filter, then details on demand". However, in computational fluid dynamics (CFD), as well as in other domains, there are many situations where such a spatial overview is not relevant or practical for users, for example when the experts already have a good mental overview of the data, or when an analysis of a large overall structure may not be related to the specific, information-driven tasks of users. Using scientific workflow theory and, as a vehicle, the problem of viscous finger evolution, we advocate an alternative model that allows domain experts to explore features of interest first, then explore the context around those features, and finally move to a potentially unfamiliar summarization overview. In a model instantiation, we show how a computational back-end can identify and track over time low-level, small features, then be used to filter the context of those features while controlling the complexity of the visualization, and finally to summarize and compare simulations. We demonstrate the effectiveness of this approach with an online web-based exploration of a total volume of data approaching half a billion seven-dimensional data points, and report supportive feedback provided by domain experts with respect to both the instantiation and the theoretical model.
Collapse
Affiliation(s)
- Timothy Luciani
- Electronic Visualization Laboratory, University of Illinois at Chicago.
| | - Andrew Burks
- Electronic Visualization Laboratory, University of Illinois at Chicago.
| | | | - Jonathan Komperda
- Department of Mechanical & Industrial Engineering, University of Illinois at Chicago
| | | |
Collapse
|
7
|
Nowke C, Diaz-Pier S, Weyers B, Hentschel B, Morrison A, Kuhlen TW, Peyser A. Toward Rigorous Parameterization of Underconstrained Neural Network Models Through Interactive Visualization and Steering of Connectivity Generation. Front Neuroinform 2018; 12:32. [PMID: 29937723 PMCID: PMC5992991 DOI: 10.3389/fninf.2018.00032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/11/2018] [Indexed: 11/13/2022] Open
Abstract
Simulation models in many scientific fields can have non-unique solutions or unique solutions which can be difficult to find. Moreover, in evolving systems, unique final state solutions can be reached by multiple different trajectories. Neuroscience is no exception. Often, neural network models are subject to parameter fitting to obtain desirable output comparable to experimental data. Parameter fitting without sufficient constraints and a systematic exploration of the possible solution space can lead to conclusions valid only around local minima or around non-minima. To address this issue, we have developed an interactive tool for visualizing and steering parameters in neural network simulation models. In this work, we focus particularly on connectivity generation, since finding suitable connectivity configurations for neural network models constitutes a complex parameter search scenario. The development of the tool has been guided by several use cases-the tool allows researchers to steer the parameters of the connectivity generation during the simulation, thus quickly growing networks composed of multiple populations with a targeted mean activity. The flexibility of the software allows scientists to explore other connectivity and neuron variables apart from the ones presented as use cases. With this tool, we enable an interactive exploration of parameter spaces and a better understanding of neural network models and grapple with the crucial problem of non-unique network solutions and trajectories. In addition, we observe a reduction in turn around times for the assessment of these models, due to interactive visualization while the simulation is computed.
Collapse
Affiliation(s)
- Christian Nowke
- Visual Computing Institute, RWTH Aachen University, JARA-HPC, Aachen, Germany
| | - Sandra Diaz-Pier
- SimLab Neuroscience, Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Benjamin Weyers
- Visual Computing Institute, RWTH Aachen University, JARA-HPC, Aachen, Germany
| | - Bernd Hentschel
- Visual Computing Institute, RWTH Aachen University, JARA-HPC, Aachen, Germany
| | - Abigail Morrison
- SimLab Neuroscience, Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany.,Institute of Neuroscience and Medicine, Institute for Advanced Simulation, JARA Institute Brain Structure-Function Relationships, Forschungszentrum Jülich GmbH, Jülich, Germany.,Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Torsten W Kuhlen
- Visual Computing Institute, RWTH Aachen University, JARA-HPC, Aachen, Germany
| | - Alexander Peyser
- SimLab Neuroscience, Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
8
|
von Landesberger T, Fellner DW, Ruddle RA. Visualization System Requirements for Data Processing Pipeline Design and Optimization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:2028-2041. [PMID: 28113376 DOI: 10.1109/tvcg.2016.2603178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The rising quantity and complexity of data creates a need to design and optimize data processing pipelines-the set of data processing steps, parameters and algorithms that perform operations on the data. Visualization can support this process but, although there are many examples of systems for visual parameter analysis, there remains a need to systematically assess users' requirements and match those requirements to exemplar visualization methods. This article presents a new characterization of the requirements for pipeline design and optimization. This characterization is based on both a review of the literature and first-hand assessment of eight application case studies. We also match these requirements with exemplar functionality provided by existing visualization tools. Thus, we provide end-users and visualization developers with a way of identifying functionality that addresses data processing problems in an application. We also identify seven future challenges for visualization research that are not met by the capabilities of today's systems.
Collapse
|
9
|
|