1
|
Deng Z, Weng D, Liu S, Tian Y, Xu M, Wu Y. A survey of urban visual analytics: Advances and future directions. COMPUTATIONAL VISUAL MEDIA 2022; 9:3-39. [PMID: 36277276 PMCID: PMC9579670 DOI: 10.1007/s41095-022-0275-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/08/2022] [Indexed: 06/16/2023]
Abstract
Developing effective visual analytics systems demands care in characterization of domain problems and integration of visualization techniques and computational models. Urban visual analytics has already achieved remarkable success in tackling urban problems and providing fundamental services for smart cities. To promote further academic research and assist the development of industrial urban analytics systems, we comprehensively review urban visual analytics studies from four perspectives. In particular, we identify 8 urban domains and 22 types of popular visualization, analyze 7 types of computational method, and categorize existing systems into 4 types based on their integration of visualization techniques and computational models. We conclude with potential research directions and opportunities.
Collapse
Affiliation(s)
- Zikun Deng
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| | - Di Weng
- Microsoft Research Asia, Beijing, 100080 China
| | - Shuhan Liu
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| | - Yuan Tian
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| | - Mingliang Xu
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001 China
| | - Yingcai Wu
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
2
|
Deng Z, Weng D, Liang Y, Bao J, Zheng Y, Schreck T, Xu M, Wu Y. Visual Cascade Analytics of Large-Scale Spatiotemporal Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:2486-2499. [PMID: 33822726 DOI: 10.1109/tvcg.2021.3071387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many spatiotemporal events can be viewed as contagions. These events implicitly propagate across space and time by following cascading patterns, expanding their influence, and generating event cascades that involve multiple locations. Analyzing such cascading processes presents valuable implications in various urban applications, such as traffic planning and pollution diagnostics. Motivated by the limited capability of the existing approaches in mining and interpreting cascading patterns, we propose a visual analytics system called VisCas. VisCas combines an inference model with interactive visualizations and empowers analysts to infer and interpret the latent cascading patterns in the spatiotemporal context. To develop VisCas, we address three major challenges 1) generalized pattern inference; 2) implicit influence visualization; and 3) multifaceted cascade analysis. For the first challenge, we adapt the state-of-the-art cascading network inference technique to general urban scenarios, where cascading patterns can be reliably inferred from large-scale spatiotemporal data. For the second and third challenges, we assemble a set of effective visualizations to support location navigation, influence inspection, and cascading exploration, and facilitate the in-depth cascade analysis. We design a novel influence view based on a three-fold optimization strategy for analyzing the implicit influences of the inferred patterns. We demonstrate the capability and effectiveness of VisCas with two case studies conducted on real-world traffic congestion and air pollution datasets with domain experts.
Collapse
|
3
|
Burch M, Staudt Y, Frommer S, Uttenweiler J, Grupp P, Hähnle S, Scheytt J, Kloos U. The public transport navigation system. J Vis (Tokyo) 2022. [DOI: 10.1007/s12650-021-00822-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractPublic transport maps are typically designed in a way to support route finding tasks for passengers, while they also provide an overview about stations, metro lines, and city-specific attractions. Most of those maps are designed as a static representation, maybe placed in a metro station or printed in a travel guide. In this paper, we describe a dynamic, interactive public transport map visualization enhanced by additional views for the dynamic passenger data on different levels of temporal granularity. Moreover, we also allow extra statistical information in form of density plots, calendar-based visualizations, and line graphs. All this information is linked to the contextual metro map to give a viewer insights into the relations between time points and typical routes taken by the passengers. We also integrated a graph-based view on user-selected routes, a way to interactively compare those routes, an attribute- and property-driven automatic computation of specific routes for one map as well as for all available maps in our repertoire, and finally, also the most important sights in each city are included as extra information to include in a user-selected route. We illustrate the usefulness of our interactive visualization and map navigation system by applying it to the railway system of Hamburg in Germany while also taking into account the extra passenger data. As another indication for the usefulness of the interactively enhanced metro maps we conducted a controlled user experiment with 20 participants.
Graphical abstract
Collapse
|
4
|
A dynamic data structure for temporal reachability with unsorted contact insertions. SOCIAL NETWORK ANALYSIS AND MINING 2021. [DOI: 10.1007/s13278-021-00851-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Pi M, Yeon H, Son H, Jang Y. Visual Cause Analytics for Traffic Congestion. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:2186-2201. [PMID: 31514142 DOI: 10.1109/tvcg.2019.2940580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Urban traffic congestion has become an important issue not only affecting our daily lives, but also limiting economic development. The primary cause of urban traffic congestion is that the number of vehicles is higher than the permissible limit of the road. Previous studies have focused on dispersing traffic volume by detecting urban traffic congestion zones and predicting future trends. However, to solve the fundamental problem, it is necessary to discover the cause of traffic congestion. Nevertheless, it is difficult to find a research which presents an approach to identify the causes of traffic congestion. In this paper, we propose a technique to analyze the cause of traffic congestion based on the traffic flow theory. We extract vehicle flows from traffic data, such as GPS trajectory and Vehicle Detector data. We detect vehicle flow changes utilizing the entropy from the information theory. Then, we build cumulative vehicle count curves (N-curve) that can quantify the flow of the vehicles in the traffic congestion area. The N-curves are classified into four different traffic congestion patterns by a convolutional neural network. Analyzing the causes and influence of traffic congestion is difficult and requires considerable experience and knowledge. Therefore, we present a visual analytics system that can efficiently perform a series of processes to analyze the cause and influence of traffic congestion. Through case studies, we have evaluated that our system can classify the causes of traffic congestion and can be used efficiently in road planning.
Collapse
|
6
|
Feng Z, Li H, Zeng W, Yang SH, Qu H. Topology Density Map for Urban Data Visualization and Analysis. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:828-838. [PMID: 33048749 DOI: 10.1109/tvcg.2020.3030469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Density map is an effective visualization technique for depicting the scalar field distribution in 2D space. Conventional methods for constructing density maps are mainly based on Euclidean distance, limiting their applicability in urban analysis that shall consider road network and urban traffic. In this work, we propose a new method named Topology Density Map, targeting for accurate and intuitive density maps in the context of urban environment. Based on the various constraints of road connections and traffic conditions, the method first constructs a directed acyclic graph (DAG) that propagates nonlinear scalar fields along 1D road networks. Next, the method extends the scalar fields to a 2D space by identifying key intersecting points in the DAG and calculating the scalar fields for every point, yielding a weighted Voronoi diagram like effect of space division. Two case studies demonstrate that the Topology Density Map supplies accurate information to users and provides an intuitive visualization for decision making. An interview with domain experts demonstrates the feasibility, usability, and effectiveness of our method.
Collapse
|
7
|
Weng D, Zheng C, Deng Z, Ma M, Bao J, Zheng Y, Xu M, Wu Y. Towards Better Bus Networks: A Visual Analytics Approach. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:817-827. [PMID: 33048743 DOI: 10.1109/tvcg.2020.3030458] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bus routes are typically updated every 3-5 years to meet constantly changing travel demands. However, identifying deficient bus routes and finding their optimal replacements remain challenging due to the difficulties in analyzing a complex bus network and the large solution space comprising alternative routes. Most of the automated approaches cannot produce satisfactory results in real-world settings without laborious inspection and evaluation of the candidates. The limitations observed in these approaches motivate us to collaborate with domain experts and propose a visual analytics solution for the performance analysis and incremental planning of bus routes based on an existing bus network. Developing such a solution involves three major challenges, namely, a) the in-depth analysis of complex bus route networks, b) the interactive generation of improved route candidates, and c) the effective evaluation of alternative bus routes. For challenge a, we employ an overview-to-detail approach by dividing the analysis of a complex bus network into three levels to facilitate the efficient identification of deficient routes. For challenge b, we improve a route generation model and interpret the performance of the generation with tailored visualizations. For challenge c, we incorporate a conflict resolution strategy in the progressive decision-making process to assist users in evaluating the alternative routes and finding the most optimal one. The proposed system is evaluated with two usage scenarios based on real-world data and received positive feedback from the experts. Index Terms-Bus route planning, spatial decision-making, urban data visual analytics.
Collapse
|
8
|
Lee C, Kim Y, Jin S, Kim D, Maciejewski R, Ebert D, Ko S. A Visual Analytics System for Exploring, Monitoring, and Forecasting Road Traffic Congestion. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:3133-3146. [PMID: 31199260 DOI: 10.1109/tvcg.2019.2922597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present an interactive visual analytics system that enables traffic congestion exploration, surveillance, and forecasting based on vehicle detector data. Through domain expert collaboration, we have extracted task requirements, incorporated the Long Short-Term Memory (LSTM) model for congestion forecasting, and designed a weighting method for detecting the causes of congestion and congestion propagation directions. Our visual analytics system is designed to enable users to explore congestion causes, directions, and severity. Congestion conditions of a city are visualized using a Volume-Speed Rivers (VSRivers) visualization that simultaneously presents traffic volumes and speeds. To evaluate our system, we report performance comparison results, wherein our model is more accurate than other forecasting algorithms. We demonstrate the usefulness of our system in the traffic management and congestion broadcasting domains through three case studies and domain expert feedback.
Collapse
|
9
|
Zhang Y, Shi H, Zhou F, Hu Y, Yin B. Visual analysis method for abnormal passenger flow on urban metro network. J Vis (Tokyo) 2020. [DOI: 10.1007/s12650-020-00674-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Integrating Geovisual Analytics with Machine Learning for Human Mobility Pattern Discovery. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2019. [DOI: 10.3390/ijgi8100434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Understanding human movement patterns is of fundamental importance in transportation planning and management. We propose to examine complex public transit travel patterns over a large-scale transit network, which is challenging since it involves thousands of transit passengers and massive data from heterogeneous sources. Additionally, efficient representation and visualization of discovered travel patterns is difficult given a large number of transit trips. To address these challenges, this study leverages advanced machine learning methods to identify time-varying mobility patterns based on smart card data and other urban data. The proposed approach delivers a comprehensive solution to pre-process, analyze, and visualize complex public transit travel patterns. This approach first fuses smart card data with other urban data to reconstruct original transit trips. We use two machine learning methods, including a clustering algorithm to extract transit corridors to represent primary mobility connections between different regions and a graph-embedding algorithm to discover hierarchical mobility community structures. We also devise compact and effective multi-scale visualization forms to represent the discovered travel behavior dynamics. An interactive web-based mapping prototype is developed to integrate advanced machine learning methods with specific visualizations to characterize transit travel behavior patterns and to enable visual exploration of transit mobility patterns at different scales and resolutions over space and time. The proposed approach is evaluated using multi-source big transit data (e.g., smart card data, transit network data, and bus trajectory data) collected in Shenzhen City, China. Evaluation of our prototype demonstrates that the proposed visual analytics approach offers a scalable and effective solution for discovering meaningful travel patterns across large metropolitan areas.
Collapse
|
11
|
Miranda F, Doraiswamy H, Lage M, Wilson L, Hsieh M, Silva CT. Shadow Accrual Maps: Efficient Accumulation of City-Scale Shadows Over Time. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2019; 25:1559-1574. [PMID: 29994514 DOI: 10.1109/tvcg.2018.2802945] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Large scale shadows from buildings in a city play an important role in determining the environmental quality of public spaces. They can be both beneficial, such as for pedestrians during summer, and detrimental, by impacting vegetation and by blocking direct sunlight. Determining the effects of shadows requires the accumulation of shadows over time across different periods in a year. In this paper, we propose a simple yet efficient class of approach that uses the properties of sun movement to track the changing position of shadows within a fixed time interval. We use this approach to extend two commonly used shadow techniques, shadow maps and ray tracing, and demonstrate the efficiency of our approach. Our technique is used to develop an interactive visual analysis system, Shadow Profiler, targeted at city planners and architects that allows them to test the impact of shadows for different development scenarios. We validate the usefulness of this system through case studies set in Manhattan, a dense borough of New York City.
Collapse
|
12
|
Abstract
Massive public resume data emerging on the internet indicates individual-related characteristics in terms of profile and career experiences. Resume Analysis (RA) provides opportunities for many applications, such as recruitment trend predict, talent seeking and evaluation. Existing RA studies either largely rely on the knowledge of domain experts, or leverage classic statistical or data mining models to identify and filter explicit attributes based on pre-defined rules. However, they fail to discover the latent semantic information from semi-structured resume text, i.e., individual career progress trajectory and social-relations, which are otherwise vital to comprehensive understanding of people’s career evolving patterns. Besides, when dealing with large numbers of resumes, how to properly visualize such semantic information to reduce the information load and to support better human cognition is also challenging.
To tackle these issues, we propose a visual analytics system called
ResumeVis
to mine and visualize resume data. First, a text mining-based approach is presented to extract semantic information. Then, a set of visualizations are devised to represent the semantic information in multiple perspectives. Through interactive exploration on
ResumeVis
performed by domain experts, the following tasks can be accomplished: to trace individual career evolving trajectory; to mine latent social-relations among individuals; and to hold the full picture of massive resumes’ collective mobility. Case studies with over 2,500 government officer resumes demonstrate the effectiveness of our system.
Collapse
|
13
|
Sobral T, Galvão T, Borges J. Visualization of Urban Mobility Data from Intelligent Transportation Systems. SENSORS 2019; 19:s19020332. [PMID: 30650641 PMCID: PMC6359619 DOI: 10.3390/s19020332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 11/16/2022]
Abstract
Intelligent Transportation Systems are an important enabler for the smart cities paradigm. Currently, such systems generate massive amounts of granular data that can be analyzed to better understand people’s dynamics. To address the multivariate nature of spatiotemporal urban mobility data, researchers and practitioners have developed an extensive body of research and interactive visualization tools. Data visualization provides multiple perspectives on data and supports the analytical tasks of domain experts. This article surveys related studies to analyze which topics of urban mobility were addressed and their related phenomena, and to identify the adopted visualization techniques and sensors data types. We highlight research opportunities based on our findings.
Collapse
Affiliation(s)
- Thiago Sobral
- INESC TEC, Faculty of Engineering, University of Porto, Porto 4200-465, Portugal.
| | - Teresa Galvão
- INESC TEC, Faculty of Engineering, University of Porto, Porto 4200-465, Portugal.
| | - José Borges
- INESC TEC, Faculty of Engineering, University of Porto, Porto 4200-465, Portugal.
| |
Collapse
|
14
|
Chen W, Huang Z, Wu F, Zhu M, Guan H, Maciejewski R. VAUD: A Visual Analysis Approach for Exploring Spatio-Temporal Urban Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:2636-2648. [PMID: 28976317 DOI: 10.1109/tvcg.2017.2758362] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Urban data is massive, heterogeneous, and spatio-temporal, posing a substantial challenge for visualization and analysis. In this paper, we design and implement a novel visual analytics approach, Visual Analyzer for Urban Data (VAUD), that supports the visualization, querying, and exploration of urban data. Our approach allows for cross-domain correlation from multiple data sources by leveraging spatial-temporal and social inter-connectedness features. Through our approach, the analyst is able to select, filter, aggregate across multiple data sources and extract information that would be hidden to a single data subset. To illustrate the effectiveness of our approach, we provide case studies on a real urban dataset that contains the cyber-, physical-, and social- information of 14 million citizens over 22 days.
Collapse
|
15
|
Ortner T, Sorger J, Steinlechner H, Hesina G, Piringer H, Groller E. Vis-A-Ware: Integrating Spatial and Non-Spatial Visualization for Visibility-Aware Urban Planning. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:1139-1151. [PMID: 26812725 DOI: 10.1109/tvcg.2016.2520920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
3D visibility analysis plays a key role in urban planning for assessing the visual impact of proposed buildings on the cityscape. A call for proposals typically yields around 30 candidate buildings that need to be evaluated with respect to selected viewpoints. Current visibility analysis methods are very time-consuming and limited to a small number of viewpoints. Further, analysts neither have measures to evaluate candidates quantitatively, nor to compare them efficiently. The primary contribution of this work is the design study of Vis-A-Ware, a visualization system to qualitatively and quantitatively evaluate, rank, and compare visibility data of candidate buildings with respect to a large number of viewpoints. Vis-A-Ware features a 3D spatial view of an urban scene and non-spatial views of data derived from visibility evaluations, which are tightly integrated by linked interaction. To enable a quantitative evaluation we developed four metrics in accordance with experts from urban planning. We illustrate the applicability of Vis-A-Ware on the basis of a use case scenario and present results from informal feedback sessions with domain experts from urban planning and development. This feedback suggests that Vis-A-Ware is a valuable tool for visibility analysis allowing analysts to answer complex questions more efficiently and objectively.
Collapse
|
16
|
Wu F, Zhu M, Wang Q, Zhao X, Chen W, Maciejewski R. Spatial–temporal visualization of city-wide crowd movement. J Vis (Tokyo) 2016. [DOI: 10.1007/s12650-016-0368-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|