1
|
AboArab MA, Potsika VT, Skalski A, Stanuch M, Gkois G, Koncar I, Matejevic D, Theodorou A, Vagena S, Sigala F, Fotiadis DI. DECODE-3DViz: Efficient WebGL-Based High-Fidelity Visualization of Large-Scale Images using Level of Detail and Data Chunk Streaming. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025:10.1007/s10278-025-01430-9. [PMID: 39953258 DOI: 10.1007/s10278-025-01430-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/17/2025]
Abstract
The DECODE-3DViz pipeline represents a major advancement in the web-based visualization of large-scale medical imaging data, particularly for peripheral artery computed tomography images. This research addresses the critical challenges of rendering high-resolution volumetric datasets via WebGL technology. By integrating progressive chunk streaming and level of detail (LOD) algorithms, DECODE-3DViz optimizes the rendering process for real-time interaction and high-fidelity visualization. The system efficiently manages WebGL texture size constraints and browser memory limitations, ensuring smooth performance even with extensive datasets. A comparative evaluation against state-of-the-art visualization tools demonstrates DECODE-3DViz's superior performance, achieving up to a 98% reduction in rendering time compared with that of competitors and maintaining a high frame rate of up to 144 FPS. Furthermore, the system exhibits exceptional GPU memory efficiency, utilizing as little as 2.6 MB on desktops, which is significantly less than the over 100 MB required by other tools. User feedback, collected through a comprehensive questionnaire, revealed high satisfaction with the tool's performance, particularly in areas such as structure definition and diagnostic capability, with an average score of 4.3 out of 5. These enhancements enable detailed and accurate visualizations of the peripheral vasculature, improving diagnostic accuracy and supporting better clinical outcomes. The DECODE-3DViz tool is open source and can be accessed at https://github.com/mohammed-abo-arab/3D_WebGL_VolumeRendering.git .
Collapse
Affiliation(s)
- Mohammed A AboArab
- Unit of Medical Technology and Intelligent Information Systems, Dept. of Materials Science and Engineering, University of Ioannina, 45110, Ioannina, Greece
- Electronics and Electrical Communication Engineering Dept, Faculty of Engineering, Tanta University, Tanta, Egypt
| | - Vassiliki T Potsika
- Unit of Medical Technology and Intelligent Information Systems, Dept. of Materials Science and Engineering, University of Ioannina, 45110, Ioannina, Greece
| | - Andrzej Skalski
- Dept. of Measurement and Electronics, AGH University of Krakow, 30-059, Krakow, Poland
- MedApp S.A, 30-037, Krakow, Poland
| | - Maciej Stanuch
- Dept. of Measurement and Electronics, AGH University of Krakow, 30-059, Krakow, Poland
- MedApp S.A, 30-037, Krakow, Poland
| | - George Gkois
- Unit of Medical Technology and Intelligent Information Systems, Dept. of Materials Science and Engineering, University of Ioannina, 45110, Ioannina, Greece
| | - Igor Koncar
- Clinic for Vascular and Endovascular Surgery, University Clinical of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - David Matejevic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Alexis Theodorou
- First Propaedeutic Dept. of Surgery, National and Kapodistrian University of Athens, Athens, Greece
| | - Sylvia Vagena
- First Propaedeutic Dept. of Surgery, National and Kapodistrian University of Athens, Athens, Greece
| | - Fragiska Sigala
- First Propaedeutic Dept. of Surgery, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios I Fotiadis
- Unit of Medical Technology and Intelligent Information Systems, Dept. of Materials Science and Engineering, University of Ioannina, 45110, Ioannina, Greece.
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus of Ioannina, 45110, Ioannina, Greece.
| |
Collapse
|
5
|
Aldemir E, Gezer NS, Tohumoglu G, Barış M, Kavur AE, Dicle O, Selver MA. Reversible 3D compression of segmented medical volumes: usability analysis for teleradiology and storage. Med Phys 2020; 47:1727-1737. [PMID: 31994208 DOI: 10.1002/mp.14053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND DICOM standard does not have modules that provide the possibilities of two-dimensional Presentation States to three-dimensional (3D). Once the final 3D rendering is obtained, only video/image exporting or snapshots can be used. To increase the utility of 3D Presentation States in clinical practice and teleradiology, the storing and transferring the segmentation results, obtained after tedious procedures, can be very effective. PURPOSE To propose a strategy for preserving interaction and mobility of visualizations for teleradiology by storing and transferring only binary segmented data, which is effectively compressed by modern adaptive and context-based reversible methods. MATERIAL AND METHODS A diverse set of segmented data, which include four abdominal organs (liver, spleen, right, and left kidneys) from 20 T1-DUAL and 20 T2-SPIR MRI, liver from 20 CT, and abdominal aorta with aneurysms (AAA) from 19 computed tomography-angiography datasets, are collected. Each organ is segmented manually by expert physicians, and binary volumes are created. The well-established reversible binary compression methods PNG, JPEG-LS, JPEG-XR, CCITT-G4, LZW, JBIG2, and ZIP are applied to medical datasets. Recently proposed context-based (3D-RLE) and adaptive (ABIC) algorithms are also employed. The performance assessment has been presented in terms of the compression ratio that is a universal compression metric. RESULTS Reversible compression of binary volumes results with substantial decreases in file size such as 254 to 2.14 MB for CT-AAA, 56.7 to 0.3 MB for CT-liver. Moreover, compared to the performance of well-established methods (i.e., mean 76.14%), CR is observed to be increased significantly for all segmented organs from both CT and MRI datasets when ABIC (95.49%) and 3D-RLE (94.98%) are utilized. The hypothesis is that morphological coherence of scanning procedure and adaptation between the segmented organs, that is, bi-level images, contributes to compression performance. Although the performance of well-established techniques is satisfactory, the sensitivity of ABIC to modality type and the advantage of 3D-RLE when the spatial coherence between the adjacent slices are high results with up to 10 times more CR performance. CONCLUSION Adaptive and context-based compression strategies allow effective storage and transfer of segmented binary data, which can be used to re-produce visualizations for better teleradiology practices preserving all interaction mechanisms.
Collapse
Affiliation(s)
- Erdoğan Aldemir
- The Graduate School of Natural and Applied Sciences, Dokuz Eylül University, Kuruçeşme Mahallesi, DEÜ Tinaztepe Campus No: 22, 35390, Buca, İzmir, Turkey
| | - Naciye Sinem Gezer
- Dokuz Eylül University Medical School, Department of Radiology, İnciraltı Mahallesi, Mithatpaşa Street, İnciraltı Campus, No:1606, 35340, Narlıdere/İzmir, Turkey
| | - Gulay Tohumoglu
- Electrical and Electronics Engineering Department, Dokuz Eylül University, Kuruçeşme Mahallesi, DEÜ Kaynaklar Campus No: 22, 35090, Buca, İzmir, Turkey
| | - Mustafa Barış
- Dokuz Eylül University Medical School, Department of Radiology, İnciraltı Mahallesi, Mithatpaşa Street, İnciraltı Campus, No:1606, 35340, Narlıdere/İzmir, Turkey
| | - A Emre Kavur
- The Graduate School of Natural and Applied Sciences, Dokuz Eylül University, Kuruçeşme Mahallesi, DEÜ Tinaztepe Campus No: 22, 35390, Buca, İzmir, Turkey
| | - Oguz Dicle
- Dokuz Eylül University Medical School, Department of Radiology, İnciraltı Mahallesi, Mithatpaşa Street, İnciraltı Campus, No:1606, 35340, Narlıdere/İzmir, Turkey
| | - M Alper Selver
- Electrical and Electronics Engineering Department, Dokuz Eylül University, Kuruçeşme Mahallesi, DEÜ Kaynaklar Campus No: 22, 35090, Buca, İzmir, Turkey
| |
Collapse
|
6
|
Kavur AE, Gezer NS, Barış M, Şahin Y, Özkan S, Baydar B, Yüksel U, Kılıkçıer Ç, Olut Ş, Akar GB, Ünal G, Dicle O, Selver MA. Comparison of semi-automatic and deep learning-based automatic methods for liver segmentation in living liver transplant donors. Diagn Interv Radiol 2020; 26:11-21. [PMID: 31904568 PMCID: PMC7075579 DOI: 10.5152/dir.2019.19025] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/05/2019] [Accepted: 06/10/2019] [Indexed: 11/22/2022]
Abstract
PURPOSE To compare the accuracy and repeatability of emerging machine learning based (i.e. deep) automatic segmentation algorithms with those of well-established semi-automatic (interactive) methods for determining liver volume in living liver transplant donors at computerized tomography (CT) imaging. METHODS A total of 12 (6 semi-, 6 full-automatic) methods are evaluated. The semi-automatic segmentation algorithms are based on both traditional iterative models including watershed, fast marching, region growing, active contours and modern techniques including robust statistical segmenter and super-pixels. These methods entail some sort of interaction mechanism such as placing initialization seeds on images or determining a parameter range. The automatic methods are based on deep learning and they include three framework templates (DeepMedic, NiftyNet and U-Net) the first two of which are applied with default parameter sets and the last two involve adapted novel model designs. For 20 living donors (6 training and 12 test datasets), a group of imaging scientists and radiologists created ground truths by performing manual segmentations on contrast material-enhanced CT images. Each segmentation is evaluated using five metrics (i.e. volume overlap and relative volume errors, average/RMS/maximum symmetrical surface distances). The results are mapped to a scoring system and a final grade is calculated by taking their average. Accuracy and repeatability were evaluated using slice by slice comparisons and volumetric analysis. Diversity and complementarity are observed through heatmaps. Majority voting and Simultaneous Truth and Performance Level Estimation (STAPLE) algorithms are utilized to obtain the fusion of the individual results. RESULTS The top four methods are determined to be automatic deep models having 79.63, 79.46 and 77.15 and 74.50 scores. Intra-user score is determined as 95.14. Overall, deep automatic segmentation outperformed interactive techniques on all metrics. The mean volume of liver of ground truth is found to be 1409.93 mL ± 271.28 mL, while it is calculated as 1342.21 mL ± 231.24 mL using automatic and 1201.26 mL ± 258.13 mL using interactive methods, showing higher accuracy and less variation on behalf of automatic methods. The qualitative analysis of segmentation results showed significant diversity and complementarity enabling the idea of using ensembles to obtain superior results. The fusion of automatic methods reached 83.87 with majority voting and 86.20 using STAPLE that are only slightly less than fusion of all methods that achieved 86.70 (majority voting) and 88.74 (STAPLE). CONCLUSION Use of the new deep learning based automatic segmentation algorithms substantially increases the accuracy and repeatability for segmentation and volumetric measurements of liver. Fusion of automatic methods based on ensemble approaches exhibits best results almost without any additional time cost due to potential parallel execution of multiple models.
Collapse
Affiliation(s)
- A. Emre Kavur
- From the Graduate School of Natural and Applied Sciences (A.E.K., U.Y.), Dokuz Eylül University, İzmir, Turkey; Departments of Radiology (N.S.G., M.B., O.D.) and Electrical and Electronics Engineering (M.A.S. ), Dokuz Eylül University School of Medicine, İzmir, Turkey; Department of Computer Engineering (Y.Ş., Ş.O., G.Ü.), İstanbul Technical University, İstanbul, Turkey; Department of Electrical and Electronics Engineering (S.Ö., B.B., G.B.A.), Middle East Technical University, Ankara, Turkey; Department of Computer Engineering (Ç.K.), Uludağ University, Bursa, Turkey
| | - Naciye Sinem Gezer
- From the Graduate School of Natural and Applied Sciences (A.E.K., U.Y.), Dokuz Eylül University, İzmir, Turkey; Departments of Radiology (N.S.G., M.B., O.D.) and Electrical and Electronics Engineering (M.A.S. ), Dokuz Eylül University School of Medicine, İzmir, Turkey; Department of Computer Engineering (Y.Ş., Ş.O., G.Ü.), İstanbul Technical University, İstanbul, Turkey; Department of Electrical and Electronics Engineering (S.Ö., B.B., G.B.A.), Middle East Technical University, Ankara, Turkey; Department of Computer Engineering (Ç.K.), Uludağ University, Bursa, Turkey
| | - Mustafa Barış
- From the Graduate School of Natural and Applied Sciences (A.E.K., U.Y.), Dokuz Eylül University, İzmir, Turkey; Departments of Radiology (N.S.G., M.B., O.D.) and Electrical and Electronics Engineering (M.A.S. ), Dokuz Eylül University School of Medicine, İzmir, Turkey; Department of Computer Engineering (Y.Ş., Ş.O., G.Ü.), İstanbul Technical University, İstanbul, Turkey; Department of Electrical and Electronics Engineering (S.Ö., B.B., G.B.A.), Middle East Technical University, Ankara, Turkey; Department of Computer Engineering (Ç.K.), Uludağ University, Bursa, Turkey
| | - Yusuf Şahin
- From the Graduate School of Natural and Applied Sciences (A.E.K., U.Y.), Dokuz Eylül University, İzmir, Turkey; Departments of Radiology (N.S.G., M.B., O.D.) and Electrical and Electronics Engineering (M.A.S. ), Dokuz Eylül University School of Medicine, İzmir, Turkey; Department of Computer Engineering (Y.Ş., Ş.O., G.Ü.), İstanbul Technical University, İstanbul, Turkey; Department of Electrical and Electronics Engineering (S.Ö., B.B., G.B.A.), Middle East Technical University, Ankara, Turkey; Department of Computer Engineering (Ç.K.), Uludağ University, Bursa, Turkey
| | - Savaş Özkan
- From the Graduate School of Natural and Applied Sciences (A.E.K., U.Y.), Dokuz Eylül University, İzmir, Turkey; Departments of Radiology (N.S.G., M.B., O.D.) and Electrical and Electronics Engineering (M.A.S. ), Dokuz Eylül University School of Medicine, İzmir, Turkey; Department of Computer Engineering (Y.Ş., Ş.O., G.Ü.), İstanbul Technical University, İstanbul, Turkey; Department of Electrical and Electronics Engineering (S.Ö., B.B., G.B.A.), Middle East Technical University, Ankara, Turkey; Department of Computer Engineering (Ç.K.), Uludağ University, Bursa, Turkey
| | - Bora Baydar
- From the Graduate School of Natural and Applied Sciences (A.E.K., U.Y.), Dokuz Eylül University, İzmir, Turkey; Departments of Radiology (N.S.G., M.B., O.D.) and Electrical and Electronics Engineering (M.A.S. ), Dokuz Eylül University School of Medicine, İzmir, Turkey; Department of Computer Engineering (Y.Ş., Ş.O., G.Ü.), İstanbul Technical University, İstanbul, Turkey; Department of Electrical and Electronics Engineering (S.Ö., B.B., G.B.A.), Middle East Technical University, Ankara, Turkey; Department of Computer Engineering (Ç.K.), Uludağ University, Bursa, Turkey
| | - Ulaş Yüksel
- From the Graduate School of Natural and Applied Sciences (A.E.K., U.Y.), Dokuz Eylül University, İzmir, Turkey; Departments of Radiology (N.S.G., M.B., O.D.) and Electrical and Electronics Engineering (M.A.S. ), Dokuz Eylül University School of Medicine, İzmir, Turkey; Department of Computer Engineering (Y.Ş., Ş.O., G.Ü.), İstanbul Technical University, İstanbul, Turkey; Department of Electrical and Electronics Engineering (S.Ö., B.B., G.B.A.), Middle East Technical University, Ankara, Turkey; Department of Computer Engineering (Ç.K.), Uludağ University, Bursa, Turkey
| | - Çağlar Kılıkçıer
- From the Graduate School of Natural and Applied Sciences (A.E.K., U.Y.), Dokuz Eylül University, İzmir, Turkey; Departments of Radiology (N.S.G., M.B., O.D.) and Electrical and Electronics Engineering (M.A.S. ), Dokuz Eylül University School of Medicine, İzmir, Turkey; Department of Computer Engineering (Y.Ş., Ş.O., G.Ü.), İstanbul Technical University, İstanbul, Turkey; Department of Electrical and Electronics Engineering (S.Ö., B.B., G.B.A.), Middle East Technical University, Ankara, Turkey; Department of Computer Engineering (Ç.K.), Uludağ University, Bursa, Turkey
| | - Şahin Olut
- From the Graduate School of Natural and Applied Sciences (A.E.K., U.Y.), Dokuz Eylül University, İzmir, Turkey; Departments of Radiology (N.S.G., M.B., O.D.) and Electrical and Electronics Engineering (M.A.S. ), Dokuz Eylül University School of Medicine, İzmir, Turkey; Department of Computer Engineering (Y.Ş., Ş.O., G.Ü.), İstanbul Technical University, İstanbul, Turkey; Department of Electrical and Electronics Engineering (S.Ö., B.B., G.B.A.), Middle East Technical University, Ankara, Turkey; Department of Computer Engineering (Ç.K.), Uludağ University, Bursa, Turkey
| | - Gözde Bozdağı Akar
- From the Graduate School of Natural and Applied Sciences (A.E.K., U.Y.), Dokuz Eylül University, İzmir, Turkey; Departments of Radiology (N.S.G., M.B., O.D.) and Electrical and Electronics Engineering (M.A.S. ), Dokuz Eylül University School of Medicine, İzmir, Turkey; Department of Computer Engineering (Y.Ş., Ş.O., G.Ü.), İstanbul Technical University, İstanbul, Turkey; Department of Electrical and Electronics Engineering (S.Ö., B.B., G.B.A.), Middle East Technical University, Ankara, Turkey; Department of Computer Engineering (Ç.K.), Uludağ University, Bursa, Turkey
| | - Gözde Ünal
- From the Graduate School of Natural and Applied Sciences (A.E.K., U.Y.), Dokuz Eylül University, İzmir, Turkey; Departments of Radiology (N.S.G., M.B., O.D.) and Electrical and Electronics Engineering (M.A.S. ), Dokuz Eylül University School of Medicine, İzmir, Turkey; Department of Computer Engineering (Y.Ş., Ş.O., G.Ü.), İstanbul Technical University, İstanbul, Turkey; Department of Electrical and Electronics Engineering (S.Ö., B.B., G.B.A.), Middle East Technical University, Ankara, Turkey; Department of Computer Engineering (Ç.K.), Uludağ University, Bursa, Turkey
| | - Oğuz Dicle
- From the Graduate School of Natural and Applied Sciences (A.E.K., U.Y.), Dokuz Eylül University, İzmir, Turkey; Departments of Radiology (N.S.G., M.B., O.D.) and Electrical and Electronics Engineering (M.A.S. ), Dokuz Eylül University School of Medicine, İzmir, Turkey; Department of Computer Engineering (Y.Ş., Ş.O., G.Ü.), İstanbul Technical University, İstanbul, Turkey; Department of Electrical and Electronics Engineering (S.Ö., B.B., G.B.A.), Middle East Technical University, Ankara, Turkey; Department of Computer Engineering (Ç.K.), Uludağ University, Bursa, Turkey
| | - M. Alper Selver
- From the Graduate School of Natural and Applied Sciences (A.E.K., U.Y.), Dokuz Eylül University, İzmir, Turkey; Departments of Radiology (N.S.G., M.B., O.D.) and Electrical and Electronics Engineering (M.A.S. ), Dokuz Eylül University School of Medicine, İzmir, Turkey; Department of Computer Engineering (Y.Ş., Ş.O., G.Ü.), İstanbul Technical University, İstanbul, Turkey; Department of Electrical and Electronics Engineering (S.Ö., B.B., G.B.A.), Middle East Technical University, Ankara, Turkey; Department of Computer Engineering (Ç.K.), Uludağ University, Bursa, Turkey
| |
Collapse
|