1
|
Firat EE, Srinivas C, Lang C, Srinivas B, Laramee RS, Joshi AP, Santos BS, Magana AJ, Bidarra R. Evaluating the Impact of a Constructivist Approach to Treemap Literacy. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2025; 45:139-147. [PMID: 40227912 DOI: 10.1109/mcg.2024.3475188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Constructivist learning is based on the principle that learners construct knowledge based on their prior knowledge and experiences. We explored the impact of a constructivist approach to introduce students to the Treemaps visualization technique. We developed software that helps students understand Treemaps using a synchronized, multiview, interactive node-link representation of the same data. While students in both groups-the ones who used the node-link diagram with the Treemaps and the ones who used only the interactive Treemaps-demonstrated significant improvement in learning, students who only interacted with the Treemaps representation performed better on a variety of tasks related to reading and interpreting Treemaps.
Collapse
|
2
|
L'Yi S, van den Brandt A, Adams E, Nguyen HN, Gehlenborg N. Learnable and Expressive Visualization Authoring Through Blended Interfaces. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:459-469. [PMID: 39255109 PMCID: PMC11875996 DOI: 10.1109/tvcg.2024.3456598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
A wide range of visualization authoring interfaces enable the creation of highly customized visualizations. However, prioritizing expressiveness often impedes the learnability of the authoring interface. The diversity of users, such as varying computational skills and prior experiences in user interfaces, makes it even more challenging for a single authoring interface to satisfy the needs of a broad audience. In this paper, we introduce a framework to balance learnability and expressivity in a visualization authoring system. Adopting insights from learnability studies, such as multimodal interaction and visualization literacy, we explore the design space of blending multiple visualization authoring interfaces for supporting authoring tasks in a complementary and flexible manner. To evaluate the effectiveness of blending interfaces, we implemented a proof-of-concept system, Blace, that combines four common visualization authoring interfaces-template-based, shelf configuration, natural language, and code editor-that are tightly linked to one another to help users easily relate unfamiliar interfaces to more familiar ones. Using the system, we conducted a user study with 12 domain experts who regularly visualize genomics data as part of their analysis workflow. Participants with varied visualization and programming backgrounds were able to successfully reproduce unfamiliar visualization examples without a guided tutorial in the study. Feedback from a post-study qualitative questionnaire further suggests that blending interfaces enabled participants to learn the system easily and assisted them in confidently editing unfamiliar visualization grammar in the code editor, enabling expressive customization. Reflecting on our study results and the design of our system, we discuss the different interaction patterns that we identified and design implications for blending visualization authoring interfaces.
Collapse
|
3
|
Shu X, Pister A, Tang J, Chevalier F, Bach B. Does This Have a Particular Meaning? Interactive Pattern Explanation for Network Visualizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:677-687. [PMID: 39283797 DOI: 10.1109/tvcg.2024.3456192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
This paper presents an interactive technique to explain visual patterns in network visualizations to analysts who do not understand these visualizations and who are learning to read them. Learning a visualization requires mastering its visual grammar and decoding information presented through visual marks, graphical encodings, and spatial configurations. To help people learn network visualization designs and extract meaningful information, we introduce the concept of interactive pattern explanation that allows viewers to select an arbitrary area in a visualization, then automatically mines the underlying data patterns, and explains both visual and data patterns present in the viewer's selection. In a qualitative and a quantitative user study with a total of 32 participants, we compare interactive pattern explanations to textual-only and visual-only (cheatsheets) explanations. Our results show that interactive explanations increase learning of i) unfamiliar visualizations, ii) patterns in network science, and iii) the respective network terminology.
Collapse
|
4
|
Bendeck A, Stasko J. An Empirical Evaluation of the GPT-4 Multimodal Language Model on Visualization Literacy Tasks. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:1105-1115. [PMID: 39255141 DOI: 10.1109/tvcg.2024.3456155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Large Language Models (LLMs) like GPT-4 which support multimodal input (i.e., prompts containing images in addition to text) have immense potential to advance visualization research. However, many questions exist about the visual capabilities of such models, including how well they can read and interpret visually represented data. In our work, we address this question by evaluating the GPT-4 multimodal LLM using a suite of task sets meant to assess the model's visualization literacy. The task sets are based on existing work in the visualization community addressing both automated chart question answering and human visualization literacy across multiple settings. Our assessment finds that GPT-4 can perform tasks such as recognizing trends and extreme values, and also demonstrates some understanding of visualization design best-practices. By contrast, GPT-4 struggles with simple value retrieval when not provided with the original dataset, lacks the ability to reliably distinguish between colors in charts, and occasionally suffers from hallucination and inconsistency. We conclude by reflecting on the model's strengths and weaknesses as well as the potential utility of models like GPT-4 for future visualization research. We also release all code, stimuli, and results for the task sets at the following link: https://doi.org/10.17605/OSF.IO/F39J6.
Collapse
|
5
|
Cabouat AF, He T, Isenberg P, Isenberg T. PREVis: Perceived Readability Evaluation for Visualizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:1083-1093. [PMID: 39283793 DOI: 10.1109/tvcg.2024.3456318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
We developed and validated an instrument to measure the perceived readability in data visualization: PREVis. Researchers and practitioners can easily use this instrument as part of their evaluations to compare the perceived readability of different visual data representations. Our instrument can complement results from controlled experiments on user task performance or provide additional data during in-depth qualitative work such as design iterations when developing a new technique. Although readability is recognized as an essential quality of data visualizations, so far there has not been a unified definition of the construct in the context of visual representations. As a result, researchers often lack guidance for determining how to ask people to rate their perceived readability of a visualization. To address this issue, we engaged in a rigorous process to develop the first validated instrument targeted at the subjective readability of visual data representations. Our final instrument consists of 11 items across 4 dimensions: understandability, layout clarity, readability of data values, and readability of data patterns. We provide the questionnaire as a document with implementation guidelines on osf.io/9cg8j. Beyond this instrument, we contribute a discussion of how researchers have previously assessed visualization readability, and an analysis of the factors underlying perceived readability in visual data representations.
Collapse
|
6
|
Burns A, Lee C, On T, Xiong C, Peck E, Mahyar N. From Invisible to Visible: Impacts of Metadata in Communicative Data Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:3427-3443. [PMID: 37015379 DOI: 10.1109/tvcg.2022.3231716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Leaving the context of visualizations invisible can have negative impacts on understanding and transparency. While common wisdom suggests that recontextualizing visualizations with metadata (e.g., disclosing the data source or instructions for decoding the visualizations' encoding) may counter these effects, the impact remains largely unknown. To fill this gap, we conducted two experiments. In Experiment 1, we explored how chart type, topic, and user goal impacted which categories of metadata participants deemed most relevant. We presented 64 participants with four real-world visualizations. For each visualization, participants were given four goals and selected the type of metadata they most wanted from a set of 18 types. Our results indicated that participants were most interested in metadata which explained the visualization's encoding for goals related to understanding and metadata about the source of the data for assessing trustworthiness. In Experiment 2, we explored how these two types of metadata impact transparency, trustworthiness and persuasiveness, information relevance, and understanding. We asked 144 participants to explain the main message of two pairs of visualizations (one with metadata and one without); rate them on scales of transparency and relevance; and then predict the likelihood that they were selected for a presentation to policymakers. Our results suggested that visualizations with metadata were perceived as more thorough than those without metadata, but similarly relevant, accurate, clear, and complete. Additionally, we found that metadata did not impact the accuracy of the information extracted from visualizations, but may have influenced which information participants remembered as important or interesting.
Collapse
|
7
|
Yang L, Xiong C, Wong JK, Wu A, Qu H. Explaining With Examples: Lessons Learned From Crowdsourced Introductory Description of Information Visualizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:1638-1650. [PMID: 34780329 DOI: 10.1109/tvcg.2021.3128157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Data visualizations have been increasingly used in oral presentations to communicate data patterns to the general public. Clear verbal introductions of visualizations to explain how to interpret the visually encoded information are essential to convey the takeaways and avoid misunderstandings. We contribute a series of studies to investigate how to effectively introduce visualizations to the audience with varying degrees of visualization literacy. We begin with understanding how people are introducing visualizations. We crowdsource 110 introductions of visualizations and categorize them based on their content and structures. From these crowdsourced introductions, we identify different introduction strategies and generate a set of introductions for evaluation. We conduct experiments to systematically compare the effectiveness of different introduction strategies across four visualizations with 1,080 participants. We find that introductions explaining visual encodings with concrete examples are the most effective. Our study provides both qualitative and quantitative insights into how to construct effective verbal introductions of visualizations in presentations, inspiring further research in data storytelling.
Collapse
|
8
|
Yao L, Bezerianos A, Vuillemot R, Isenberg P. Visualization in Motion: A Research Agenda and Two Evaluations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:3546-3562. [PMID: 35727779 DOI: 10.1109/tvcg.2022.3184993] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We contribute a research agenda for visualization in motion and two experiments to understand how well viewers can read data from moving visualizations. We define visualizations in motion as visual data representations that are used in contexts that exhibit relative motion between a viewer and an entire visualization. Sports analytics, video games, wearable devices, or data physicalizations are example contexts that involve different types of relative motion between a viewer and a visualization. To analyze the opportunities and challenges for designing visualization in motion, we show example scenarios and outline a first research agenda. Motivated primarily by the prevalence of and opportunities for visualizations in sports and video games we started to investigate a small aspect of our research agenda: the impact of two important characteristics of motion-speed and trajectory on a stationary viewer's ability to read data from moving donut and bar charts. We found that increasing speed and trajectory complexity did negatively affect the accuracy of reading values from the charts and that bar charts were more negatively impacted. In practice, however, this impact was small: both charts were still read fairly accurately.
Collapse
|
9
|
Wang J, Cai X, Su J, Liao Y, Wu Y. What makes a scatterplot hard to comprehend: data size and pattern salience matter. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-021-00778-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Lalle S, Toker D, Conati C. Gaze-Driven Adaptive Interventions for Magazine-Style Narrative Visualizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:2941-2952. [PMID: 31831427 DOI: 10.1109/tvcg.2019.2958540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this article, we investigate the value of gaze-driven adaptive interventions to support the processing of textual documents with embedded visualizations, i.e., Magazine Style Narrative Visualizations (MSNVs). These interventions are provided dynamically by highlighting relevant data points in the visualization when the user reads related sentences in the MSNV text, as detected by an eye-tracker. We conducted a user study during which participants read a set of MSNVs with our interventions, and compared their performance and experience with participants who received no interventions. Our work extends previous findings by showing that dynamic, gaze-driven interventions can be delivered based on reading behaviors in MSNVs, a widespread form of documents that have never been considered for gaze-driven adaptation so far. Next, we found that the interventions significantly improved the performance of users with low levels of visualization literacy, i.e., those users who need help the most due to their lower ability to process and understand data visualizations. However, high literacy users were not impacted by the interventions, providing initial evidence that gaze-driven interventions can be further improved by personalizing them to the levels of visualization literacy of their users.
Collapse
|
11
|
Conati C, Lallé S, Rahman MA, Toker D. Comparing and Combining Interaction Data and Eye-tracking Data for the Real-time Prediction of User Cognitive Abilities in Visualization Tasks. ACM T INTERACT INTEL 2020. [DOI: 10.1145/3301400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Previous work has shown that some user cognitive abilities relevant for processing information visualizations can be predicted from eye-tracking data. Performing this type of
user modeling
is important for devising visualizations that can detect a user's abilities and adapt accordingly during the interaction. In this article, we extend previous user modeling work by investigating for the first time
interaction data
as an alternative source to predict cognitive abilities during visualization processing when it is not feasible to collect eye-tracking data. We present an extensive comparison of user models based solely on eye-tracking data, on interaction data, as well as on a combination of the two. Although we found that eye-tracking data generate the most accurate predictions, results show that interaction data can still outperform a majority-class baseline, meaning that adaptation for interactive visualizations could be enabled even when it is not feasible to perform eye tracking, using solely interaction data. Furthermore, we found that interaction data can predict several cognitive abilities with better accuracy at the very beginning of the task than eye-tracking data, which are valuable for delivering adaptation early in the task. We also extend previous work by examining the value of multimodal classifiers combining interaction data and eye-tracking data, with promising results for some of our target user cognitive abilities. Next, we contribute to previous work by extending the type of visualizations considered and the set of cognitive abilities that can be predicted from either eye-tracking data and interaction data. Finally, we evaluate how noise in gaze data impacts prediction accuracy and find that retaining rather noisy gaze datapoints can yield equal or even better predictions than discarding them, a novel and important contribution for devising adaptive visualizations in real settings where eye-tracking data are typically noisier than in laboratory settings.
Collapse
Affiliation(s)
| | | | | | - Dereck Toker
- University of British Columbia, Vancouver, Canada
| |
Collapse
|
12
|
Wang Q, Li Z, Fu S, Cui W, Qu H. Narvis: Authoring Narrative Slideshows for Introducing Data Visualization Designs. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:779-788. [PMID: 30136999 DOI: 10.1109/tvcg.2018.2865232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Visual designs can be complex in modern data visualization systems, which poses special challenges for explaining them to the non-experts. However, few if any presentation tools are tailored for this purpose. In this study, we present Narvis, a slideshow authoring tool designed for introducing data visualizations to non-experts. Narvis targets two types of end users: teachers, experts in data visualization who produce tutorials for explaining a data visualization, and students, non-experts who try to understand visualization designs through tutorials. We present an analysis of requirements through close discussions with the two types of end users. The resulting considerations guide the design and implementation of Narvis. Additionally, to help teachers better organize their introduction slideshows, we specify a data visualization as a hierarchical combination of components, which are automatically detected and extracted by Narvis. The teachers craft an introduction slideshow through first organizing these components, and then explaining them sequentially. A series of templates are provided for adding annotations and animations to improve efficiency during the authoring process. We evaluate Narvis through a qualitative analysis of the authoring experience, and a preliminary evaluation of the generated slideshows.
Collapse
|
13
|
Wang B, Mueller K. The Subspace Voyager: Exploring High-Dimensional Data along a Continuum of Salient 3D Subspaces. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:1204-1222. [PMID: 28252403 DOI: 10.1109/tvcg.2017.2672987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Analyzing high-dimensional data and finding hidden patterns is a difficult problem and has attracted numerous research efforts. Automated methods can be useful to some extent but bringing the data analyst into the loop via interactive visual tools can help the discovery process tremendously. An inherent problem in this effort is that humans lack the mental capacity to truly understand spaces exceeding three spatial dimensions. To keep within this limitation, we describe a framework that decomposes a high-dimensional data space into a continuum of generalized 3D subspaces. Analysts can then explore these 3D subspaces individually via the familiar trackball interface while using additional facilities to smoothly transition to adjacent subspaces for expanded space comprehension. Since the number of such subspaces suffers from combinatorial explosion, we provide a set of data-driven subspace selection and navigation tools which can guide users to interesting subspaces and views. A subspace trail map allows users to manage the explored subspaces, keep their bearings, and return to interesting subspaces and views. Both trackball and trail map are each embedded into a word cloud of attribute labels which aid in navigation. We demonstrate our system via several use cases in a diverse set of application areas-cluster analysis and refinement, information discovery, and supervised training of classifiers. We also report on a user study that evaluates the usability of the various interactions our system provides.
Collapse
|
14
|
Abstract
Health literacy is concerned with the degree to which individuals can access and understand information to make health decisions. The multifaceted nature of health data presents challenges for individuals seeking to improve their understanding of health. To aid health literacy efforts, we have developed HealthConfection, a visualization tool that uses elaborate and non-typical interactive visualizations to represent health data. In this paper, we report on two studies we conducted with HealthConfection. In the first study, we investigate whether individuals can learn to use non-typical visualizations, and the impact that short, minimalist video tutorials will have on participants’ understanding of the visualizations. The findings from this study suggest that individuals can learn to use non-typical visualizations and that participants who used the tutorials achieved higher scores than those without tutorials. This work indicates that non-typical visualizations are a viable option for conveying complex datasets. Based on this foundation, we conducted a second study to investigate if non-typical visualizations can improve health literacy for the general public. Results show that participants who used HealthConfection achieved higher scores than those who did not interact with the tool. Our work suggests that non-typical visualizations can be used to improve health literacy.
Collapse
|
15
|
Brehmer M, Lee B, Bach B, Riche NH, Munzner T. Timelines Revisited: A Design Space and Considerations for Expressive Storytelling. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:2151-2164. [PMID: 28113509 DOI: 10.1109/tvcg.2016.2614803] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
There are many ways to visualize event sequences as timelines. In a storytelling context where the intent is to convey multiple narrative points, a richer set of timeline designs may be more appropriate than the narrow range that has been used for exploratory data analysis by the research community. Informed by a survey of 263 timelines, we present a design space for storytelling with timelines that balances expressiveness and effectiveness, identifying 14 design choices characterized by three dimensions: representation, scale, and layout. Twenty combinations of these choices are viable timeline designs that can be matched to different narrative points, while smooth animated transitions between narrative points allow for the presentation of a cohesive story, an important aspect of both interactive storytelling and data videos. We further validate this design space by realizing the full set of viable timeline designs and transitions in a proof-of-concept sandbox implementation that we used to produce seven example timeline stories. Ultimately, this work is intended to inform and inspire the design of future tools for storytelling with timelines.
Collapse
|
16
|
Loorak MH, Perin C, Collins C, Carpendale S. Exploring the Possibilities of Embedding Heterogeneous Data Attributes in Familiar Visualizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:581-590. [PMID: 27875173 DOI: 10.1109/tvcg.2016.2598586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Heterogeneous multi-dimensional data are now sufficiently common that they can be referred to as ubiquitous. The most frequent approach to visualizing these data has been to propose new visualizations for representing these data. These new solutions are often inventive but tend to be unfamiliar. We take a different approach. We explore the possibility of extending well-known and familiar visualizations through including Heterogeneous Embedded Data Attributes (HEDA) in order to make familiar visualizations more powerful. We demonstrate how HEDA is a generic, interactive visualization component that can extend common visualization techniques while respecting the structure of the familiar layout. HEDA is a tabular visualization building block that enables individuals to visually observe, explore, and query their familiar visualizations through manipulation of embedded multivariate data. We describe the design space of HEDA by exploring its application to familiar visualizations in the D3 gallery. We characterize these familiar visualizations by the extent to which HEDA can facilitate data queries based on attribute reordering.
Collapse
|
17
|
Lee S, Kim SH, Kwon BC. VLAT: Development of a Visualization Literacy Assessment Test. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:551-560. [PMID: 27875171 DOI: 10.1109/tvcg.2016.2598920] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The Information Visualization community has begun to pay attention to visualization literacy; however, researchers still lack instruments for measuring the visualization literacy of users. In order to address this gap, we systematically developed a visualization literacy assessment test (VLAT), especially for non-expert users in data visualization, by following the established procedure of test development in Psychological and Educational Measurement: (1) Test Blueprint Construction, (2) Test Item Generation, (3) Content Validity Evaluation, (4) Test Tryout and Item Analysis, (5) Test Item Selection, and (6) Reliability Evaluation. The VLAT consists of 12 data visualizations and 53 multiple-choice test items that cover eight data visualization tasks. The test items in the VLAT were evaluated with respect to their essentialness by five domain experts in Information Visualization and Visual Analytics (average content validity ratio = 0.66). The VLAT was also tried out on a sample of 191 test takers and showed high reliability (reliability coefficient omega = 0.76). In addition, we demonstrated the relationship between users' visualization literacy and aptitude for learning an unfamiliar visualization and showed that they had a fairly high positive relationship (correlation coefficient = 0.64). Finally, we discuss evidence for the validity of the VLAT and potential research areas that are related to the instrument.
Collapse
|
18
|
Schulz HJ, Hadlak S. Preset-based generation and exploration of visualization designs. JOURNAL OF VISUAL LANGUAGES AND COMPUTING 2015. [DOI: 10.1016/j.jvlc.2015.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|