1
|
Chen Q, Chen Y, Zou R, Shuai W, Guo Y, Wang J, Cao N. Chart2Vec: A Universal Embedding of Context-Aware Visualizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:2167-2181. [PMID: 38551829 DOI: 10.1109/tvcg.2024.3383089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The advances in AI-enabled techniques have accelerated the creation and automation of visualizations in the past decade. However, presenting visualizations in a descriptive and generative format remains a challenge. Moreover, current visualization embedding methods focus on standalone visualizations, neglecting the importance of contextual information for multi-view visualizations. To address this issue, we propose a new representation model, Chart2Vec, to learn a universal embedding of visualizations with context-aware information. Chart2Vec aims to support a wide range of downstream visualization tasks such as recommendation and storytelling. Our model considers both structural and semantic information of visualizations in declarative specifications. To enhance the context-aware capability, Chart2Vec employs multi-task learning on both supervised and unsupervised tasks concerning the cooccurrence of visualizations. We evaluate our method through an ablation study, a user study, and a quantitative comparison. The results verified the consistency of our embedding method with human cognition and showed its advantages over existing methods.
Collapse
|
2
|
Bernard J, Barth CM, Cuba E, Meier A, Peiris Y, Shneiderman B. IVESA - Visual Analysis of Time-Stamped Event Sequences. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:2235-2256. [PMID: 38587948 DOI: 10.1109/tvcg.2024.3382760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Time-stamped event sequences (TSEQs) are time-oriented data without value information, shifting the focus of users to the exploration of temporal event occurrences. TSEQs exist in application domains, such as sleeping behavior, earthquake aftershocks, and stock market crashes. Domain experts face four challenges, for which they could use interactive and visual data analysis methods. First, TSEQs can be large with respect to both the number of sequences and events, often leading to millions of events. Second, domain experts need validated metrics and features to identify interesting patterns. Third, after identifying interesting patterns, domain experts contextualize the patterns to foster sensemaking. Finally, domain experts seek to reduce data complexity by data simplification and machine learning support. We present IVESA, a visual analytics approach for TSEQs. It supports the analysis of TSEQs at the granularities of sequences and events, supported with metrics and feature analysis tools. IVESA has multiple linked views that support overview, sort+filter, comparison, details-on-demand, and metadata relation-seeking tasks, as well as data simplification through feature analysis, interactive clustering, filtering, and motif detection and simplification. We evaluated IVESA with three case studies and a user study with six domain experts working with six different datasets and applications. Results demonstrate the usability and generalizability of IVESA across applications and cases that had up to 1,000,000 events.
Collapse
|
3
|
Podo L, Prenkaj B, Velardi P. Agnostic Visual Recommendation Systems: Open Challenges and Future Directions. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:1902-1917. [PMID: 38466597 DOI: 10.1109/tvcg.2024.3374571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Visualization Recommendation Systems (VRSs) are a novel and challenging field of study aiming to help generate insightful visualizations from data and support non-expert users in information discovery. Among the many contributions proposed in this area, some systems embrace the ambitious objective of imitating human analysts to identify relevant relationships in data and make appropriate design choices to represent these relationships with insightful charts. We denote these systems as "agnostic" VRSs since they do not rely on human-provided constraints and rules but try to learn the task autonomously. Despite the high application potential of agnostic VRSs, their progress is hindered by several obstacles, including the absence of standardized datasets to train recommendation algorithms, the difficulty of learning design rules, and defining quantitative criteria for evaluating the perceptual effectiveness of generated plots. This article summarizes the literature on agnostic VRSs and outlines promising future research directions.
Collapse
|
4
|
Tian Y, Cui W, Deng D, Yi X, Yang Y, Zhang H, Wu Y. ChartGPT: Leveraging LLMs to Generate Charts From Abstract Natural Language. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:1731-1745. [PMID: 38386583 DOI: 10.1109/tvcg.2024.3368621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The use of natural language interfaces (NLIs) to create charts is becoming increasingly popular due to the intuitiveness of natural language interactions. One key challenge in this approach is to accurately capture user intents and transform them to proper chart specifications. This obstructs the wide use of NLI in chart generation, as users' natural language inputs are generally abstract (i.e., ambiguous or under-specified), without a clear specification of visual encodings. Recently, pre-trained large language models (LLMs) have exhibited superior performance in understanding and generating natural language, demonstrating great potential for downstream tasks. Inspired by this major trend, we propose ChartGPT, generating charts from abstract natural language inputs. However, LLMs are struggling to address complex logic problems. To enable the model to accurately specify the complex parameters and perform operations in chart generation, we decompose the generation process into a step-by-step reasoning pipeline, so that the model only needs to reason a single and specific sub-task during each run. Moreover, LLMs are pre-trained on general datasets, which might be biased for the task of chart generation. To provide adequate visualization knowledge, we create a dataset consisting of abstract utterances and charts and improve model performance through fine-tuning. We further design an interactive interface for ChartGPT that allows users to check and modify the intermediate outputs of each step. The effectiveness of the proposed system is evaluated through quantitative evaluations and a user study.
Collapse
|
5
|
Wang X, Jiao S, Bryan C. Defogger: A Visual Analysis Approach for Data Exploration of Sensitive Data Protected by Differential Privacy. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:448-458. [PMID: 39255174 DOI: 10.1109/tvcg.2024.3456304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Differential privacy ensures the security of individual privacy but poses challenges to data exploration processes because the limited privacy budget incapacitates the flexibility of exploration and the noisy feedback of data requests leads to confusing uncertainty. In this study, we take the lead in describing corresponding exploration scenarios, including underlying requirements and available exploration strategies. To facilitate practical applications, we propose a visual analysis approach to the formulation of exploration strategies. Our approach applies a reinforcement learning model to provide diverse suggestions for exploration strategies according to the exploration intent of users. A novel visual design for representing uncertainty in correlation patterns is integrated into our prototype system to support the proposed approach. Finally, we implemented a user study and two case studies. The results of these studies verified that our approach can help develop strategies that satisfy the exploration intent of users.
Collapse
|
6
|
Wang AZ, Borland D, Gotz D. Beyond Correlation: Incorporating Counterfactual Guidance to Better Support Exploratory Visual Analysis. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:776-786. [PMID: 39255136 DOI: 10.1109/tvcg.2024.3456369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Providing effective guidance for users has long been an important and challenging task for efficient exploratory visual analytics, especially when selecting variables for visualization in high-dimensional datasets. Correlation is the most widely applied metric for guidance in statistical and analytical tools, however a reliance on correlation may lead users towards false positives when interpreting causal relations in the data. In this work, inspired by prior insights on the benefits of counterfactual visualization in supporting visual causal inference, we propose a novel, simple, and efficient counterfactual guidance method to enhance causal inference performance in guided exploratory analytics based on insights and concerns gathered from expert interviews. Our technique aims to capitalize on the benefits of counterfactual approaches while reducing their complexity for users. We integrated counterfactual guidance into an exploratory visual analytics system, and using a synthetically generated ground-truth causal dataset, conducted a comparative user study and evaluated to what extent counterfactual guidance can help lead users to more precise visual causal inferences. The results suggest that counterfactual guidance improved visual causal inference performance, and also led to different exploratory behaviors compared to correlation-based guidance. Based on these findings, we offer future directions and challenges for incorporating counterfactual guidance to better support exploratory visual analytics.
Collapse
|
7
|
Li G, Mi H, Liu CH, Itoh T, Wang G. HiRegEx: Interactive Visual Query and Exploration of Multivariate Hierarchical Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:699-709. [PMID: 39255148 DOI: 10.1109/tvcg.2024.3456389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
When using exploratory visual analysis to examine multivariate hierarchical data, users often need to query data to narrow down the scope of analysis. However, formulating effective query expressions remains a challenge for multivariate hierarchical data, particularly when datasets become very large. To address this issue, we develop a declarative grammar, HiRegEx (Hierarchical data Regular Expression), for querying and exploring multivariate hierarchical data. Rooted in the extended multi-level task topology framework for tree visualizations (e-MLTT), HiRegEx delineates three query targets (node, path, and subtree) and two aspects for querying these targets (features and positions), and uses operators developed based on classical regular expressions for query construction. Based on the HiRegEx grammar, we develop an exploratory framework for querying and exploring multivariate hierarchical data and integrate it into the TreeQueryER prototype system. The exploratory framework includes three major components: top-down pattern specification, bottom-up data-driven inquiry, and context-creation data overview. We validate the expressiveness of HiRegEx with the tasks from the e-MLTT framework and showcase the utility and effectiveness of TreeQueryER system through a case study involving expert users in the analysis of a citation tree dataset.
Collapse
|
8
|
L'Yi S, van den Brandt A, Adams E, Nguyen HN, Gehlenborg N. Learnable and Expressive Visualization Authoring Through Blended Interfaces. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:459-469. [PMID: 39255109 PMCID: PMC11875996 DOI: 10.1109/tvcg.2024.3456598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
A wide range of visualization authoring interfaces enable the creation of highly customized visualizations. However, prioritizing expressiveness often impedes the learnability of the authoring interface. The diversity of users, such as varying computational skills and prior experiences in user interfaces, makes it even more challenging for a single authoring interface to satisfy the needs of a broad audience. In this paper, we introduce a framework to balance learnability and expressivity in a visualization authoring system. Adopting insights from learnability studies, such as multimodal interaction and visualization literacy, we explore the design space of blending multiple visualization authoring interfaces for supporting authoring tasks in a complementary and flexible manner. To evaluate the effectiveness of blending interfaces, we implemented a proof-of-concept system, Blace, that combines four common visualization authoring interfaces-template-based, shelf configuration, natural language, and code editor-that are tightly linked to one another to help users easily relate unfamiliar interfaces to more familiar ones. Using the system, we conducted a user study with 12 domain experts who regularly visualize genomics data as part of their analysis workflow. Participants with varied visualization and programming backgrounds were able to successfully reproduce unfamiliar visualization examples without a guided tutorial in the study. Feedback from a post-study qualitative questionnaire further suggests that blending interfaces enabled participants to learn the system easily and assisted them in confidently editing unfamiliar visualization grammar in the code editor, enabling expressive customization. Reflecting on our study results and the design of our system, we discuss the different interaction patterns that we identified and design implications for blending visualization authoring interfaces.
Collapse
|
9
|
Coscia A, Suh A, Chang R, Endert A. Preliminary Guidelines for Combining Data Integration and Visual Data Analysis. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:6678-6690. [PMID: 37983146 DOI: 10.1109/tvcg.2023.3334513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Data integration is often performed to consolidate information from multiple disparate data sources during visual data analysis. However, integration operations are usually separate from visual analytics operations such as encode and filter in both interface design and empirical research. We conducted a preliminary user study to investigate whether and how data integration should be incorporated directly into the visual analytics process. We used two interface alternatives featuring contrasting approaches to the data preparation and analysis workflow: manual file-based ex-situ integration as a separate step from visual analytics operations; and automatic UI-based in-situ integration merged with visual analytics operations. Participants were asked to complete specific and free-form tasks with each interface, browsing for patterns, generating insights, and summarizing relationships between attributes distributed across multiple files. Analyzing participants' interactions and feedback, we found both task completion time and total interactions to be similar across interfaces and tasks, as well as unique integration strategies between interfaces and emergent behaviors related to satisficing and cognitive bias. Participants' time spent and interactions revealed that in-situ integration enabled users to spend more time on analysis tasks compared with ex-situ integration. Participants' integration strategies and analytical behaviors revealed differences in interface usage for generating and tracking hypotheses and insights. With these results, we synthesized preliminary guidelines for designing future visual analytics interfaces that can support integrating attributes throughout an active analysis process.
Collapse
|
10
|
Younesy H, Pober J, Möller T, Karimi MM. ModEx: a general purpose computer model exploration system. FRONTIERS IN BIOINFORMATICS 2023; 3:1153800. [PMID: 37304402 PMCID: PMC10249055 DOI: 10.3389/fbinf.2023.1153800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
We present a general purpose visual analysis system that can be used for exploring parameters of a variety of computer models. Our proposed system offers key components of a visual parameter analysis framework including parameter sampling, deriving output summaries, and an exploration interface. It also provides an API for rapid development of parameter space exploration solutions as well as the flexibility to support custom workflows for different application domains. We evaluate the effectiveness of our system by demonstrating it in three domains: data mining, machine learning and specific application in bioinformatics.
Collapse
Affiliation(s)
- Hamid Younesy
- School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
| | | | - Torsten Möller
- Research Network Data Science and Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Mohammad M. Karimi
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
11
|
Zhao J, Xu S, Chandrasegaran S, Bryan C, Du F, Mishra A, Qian X, Li Y, Ma KL. ChartStory: Automated Partitioning, Layout, and Captioning of Charts into Comic-Style Narratives. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:1384-1399. [PMID: 34559655 DOI: 10.1109/tvcg.2021.3114211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Visual data storytelling is gaining importance as a means of presenting data-driven information or analysis results, especially to the general public. This has resulted in design principles being proposed for data-driven storytelling, and new authoring tools being created to aid such storytelling. However, data analysts typically lack sufficient background in design and storytelling to make effective use of these principles and authoring tools. To assist this process, we present ChartStory for crafting data stories from a collection of user-created charts, using a style akin to comic panels to imply the underlying sequence and logic of data-driven narratives. Our approach is to operationalize established design principles into an advanced pipeline that characterizes charts by their properties and similarities to each other, and recommends ways to partition, layout, and caption story pieces to serve a narrative. ChartStory also augments this pipeline with intuitive user interactions for visual refinement of generated data comics. We extensively and holistically evaluate ChartStory via a trio of studies. We first assess how the tool supports data comic creation in comparison to a manual baseline tool. Data comics from this study are subsequently compared and evaluated to ChartStory's automated recommendations by a team of narrative visualization practitioners. This is followed by a pair of interview studies with data scientists using their own datasets and charts who provide an additional assessment of the system. We find that ChartStory provides cogent recommendations for narrative generation, resulting in data comics that compare favorably to manually-created ones.
Collapse
|
12
|
Bako HK, Liu X, Battle L, Liu Z. Understanding how Designers Find and Use Data Visualization Examples. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:1048-1058. [PMID: 36155454 DOI: 10.1109/tvcg.2022.3209490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Examples are useful for inspiring ideas and facilitating implementation in visualization design. However, there is little understanding of how visualization designers use examples, and how computational tools may support such activities. In this paper, we contribute an exploratory study of current practices in incorporating visualization examples. We conducted semi-structured interviews with 15 university students and 15 professional designers. Our analysis focus on two core design activities: searching for examples and utilizing examples. We characterize observed strategies and tools for performing these activities, as well as major challenges that hinder designers' current workflows. In addition, we identify themes that cut across these two activities: criteria for determining example usefulness, curation practices, and design fixation. Given our findings, we discuss the implications for visualization design and authoring tools and highlight critical areas for future research.
Collapse
|
13
|
Chen Z, Yang Q, Xie X, Beyer J, Xia H, Wu Y, Pfister H. Sporthesia: Augmenting Sports Videos Using Natural Language. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:918-928. [PMID: 36197856 DOI: 10.1109/tvcg.2022.3209497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Augmented sports videos, which combine visualizations and video effects to present data in actual scenes, can communicate insights engagingly and thus have been increasingly popular for sports enthusiasts around the world. Yet, creating augmented sports videos remains a challenging task, requiring considerable time and video editing skills. On the other hand, sports insights are often communicated using natural language, such as in commentaries, oral presentations, and articles, but usually lack visual cues. Thus, this work aims to facilitate the creation of augmented sports videos by enabling analysts to directly create visualizations embedded in videos using insights expressed in natural language. To achieve this goal, we propose a three-step approach - 1) detecting visualizable entities in the text, 2) mapping these entities into visualizations, and 3) scheduling these visualizations to play with the video - and analyzed 155 sports video clips and the accompanying commentaries for accomplishing these steps. Informed by our analysis, we have designed and implemented Sporthesia, a proof-of-concept system that takes racket-based sports videos and textual commentaries as the input and outputs augmented videos. We demonstrate Sporthesia's applicability in two exemplar scenarios, i.e., authoring augmented sports videos using text and augmenting historical sports videos based on auditory comments. A technical evaluation shows that Sporthesia achieves high accuracy (F1-score of 0.9) in detecting visualizable entities in the text. An expert evaluation with eight sports analysts suggests high utility, effectiveness, and satisfaction with our language-driven authoring method and provides insights for future improvement and opportunities.
Collapse
|
14
|
Zong J, Pollock J, Wootton D, Satyanarayan A. Animated Vega-Lite: Unifying Animation with a Grammar of Interactive Graphics. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:149-159. [PMID: 36215347 DOI: 10.1109/tvcg.2022.3209369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We present Animated Vega-Lite, a set of extensions to Vega-Lite that model animated visualizations as time-varying data queries. In contrast to alternate approaches for specifying animated visualizations, which prize a highly expressive design space, Animated Vega-Lite prioritizes unifying animation with the language's existing abstractions for static and interactive visualizations to enable authors to smoothly move between or combine these modalities. Thus, to compose animation with static visualizations, we represent time as an encoding channel. Time encodings map a data field to animation keyframes, providing a lightweight specification for animations without interaction. To compose animation and interaction, we also represent time as an event stream; Vega-Lite selections, which provide dynamic data queries, are now driven not only by input events but by timer ticks as well. We evaluate the expressiveness of our approach through a gallery of diverse examples that demonstrate coverage over taxonomies of both interaction and animation. We also critically reflect on the conceptual affordances and limitations of our contribution by interviewing five expert developers of existing animation grammars. These reflections highlight the key motivating role of in-the-wild examples, and identify three central tradeoffs: the language design process, the types of animated transitions supported, and how the systems model keyframes.
Collapse
|
15
|
Deng D, Wu A, Qu H, Wu Y. DashBot: Insight-Driven Dashboard Generation Based on Deep Reinforcement Learning. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:690-700. [PMID: 36179003 DOI: 10.1109/tvcg.2022.3209468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Analytical dashboards are popular in business intelligence to facilitate insight discovery with multiple charts. However, creating an effective dashboard is highly demanding, which requires users to have adequate data analysis background and be familiar with professional tools, such as Power BI. To create a dashboard, users have to configure charts by selecting data columns and exploring different chart combinations to optimize the communication of insights, which is trial-and-error. Recent research has started to use deep learning methods for dashboard generation to lower the burden of visualization creation. However, such efforts are greatly hindered by the lack of large-scale and high-quality datasets of dashboards. In this work, we propose using deep reinforcement learning to generate analytical dashboards that can use well-established visualization knowledge and the estimation capacity of reinforcement learning. Specifically, we use visualization knowledge to construct a training environment and rewards for agents to explore and imitate human exploration behavior with a well-designed agent network. The usefulness of the deep reinforcement learning model is demonstrated through ablation studies and user studies. In conclusion, our work opens up new opportunities to develop effective ML-based visualization recommenders without beforehand training datasets.
Collapse
|
16
|
Chen R, Weng D, Huang Y, Shu X, Zhou J, Sun G, Wu Y. Rigel: Transforming Tabular Data by Declarative Mapping. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:128-138. [PMID: 36191098 DOI: 10.1109/tvcg.2022.3209385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We present Rigel, an interactive system for rapid transformation of tabular data. Rigel implements a new declarative mapping approach that formulates the data transformation procedure as direct mappings from data to the row, column, and cell channels of the target table. To construct such mappings, Rigel allows users to directly drag data attributes from input data to these three channels and indirectly drag or type data values in a spreadsheet, and possible mappings that do not contradict these interactions are recommended to achieve efficient and straightforward data transformation. The recommended mappings are generated by enumerating and composing data variables based on the row, column, and cell channels, thereby revealing the possibility of alternative tabular forms and facilitating open-ended exploration in many data transformation scenarios, such as designing tables for presentation. In contrast to existing systems that transform data by composing operations (like transposing and pivoting), Rigel requires less prior knowledge on these operations, and constructing tables from the channels is more efficient and results in less ambiguity than generating operation sequences as done by the traditional by-example approaches. User study results demonstrated that Rigel is significantly less demanding in terms of time and interactions and suits more scenarios compared to the state-of-the-art by-example approach. A gallery of diverse transformation cases is also presented to show the potential of Rigel's expressiveness.
Collapse
|
17
|
Pandey A, L'Yi S, Wang Q, Borkin MA, Gehlenborg N. GenoREC: A Recommendation System for Interactive Genomics Data Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:570-580. [PMID: 36191105 PMCID: PMC10067538 DOI: 10.1109/tvcg.2022.3209407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Interpretation of genomics data is critically reliant on the application of a wide range of visualization tools. A large number of visualization techniques for genomics data and different analysis tasks pose a significant challenge for analysts: which visualization technique is most likely to help them generate insights into their data? Since genomics analysts typically have limited training in data visualization, their choices are often based on trial and error or guided by technical details, such as data formats that a specific tool can load. This approach prevents them from making effective visualization choices for the many combinations of data types and analysis questions they encounter in their work. Visualization recommendation systems assist non-experts in creating data visualization by recommending appropriate visualizations based on the data and task characteristics. However, existing visualization recommendation systems are not designed to handle domain-specific problems. To address these challenges, we designed GenoREC, a novel visualization recommendation system for genomics. GenoREC enables genomics analysts to select effective visualizations based on a description of their data and analysis tasks. Here, we present the recommendation model that uses a knowledge-based method for choosing appropriate visualizations and a web application that enables analysts to input their requirements, explore recommended visualizations, and export them for their usage. Furthermore, we present the results of two user studies demonstrating that GenoREC recommends visualizations that are both accepted by domain experts and suited to address the given genomics analysis problem. All supplemental materials are available at https://osf.io/y73pt/.
Collapse
|
18
|
Sun M, Cai L, Cui W, Wu Y, Shi Y, Cao N. Erato: Cooperative Data Story Editing via Fact Interpolation. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:983-993. [PMID: 36155449 DOI: 10.1109/tvcg.2022.3209428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As an effective form of narrative visualization, visual data stories are widely used in data-driven storytelling to communicate complex insights and support data understanding. Although important, they are difficult to create, as a variety of interdisciplinary skills, such as data analysis and design, are required. In this work, we introduce Erato, a human-machine cooperative data story editing system, which allows users to generate insightful and fluent data stories together with the computer. Specifically, Erato only requires a number of keyframes provided by the user to briefly describe the topic and structure of a data story. Meanwhile, our system leverages a novel interpolation algorithm to help users insert intermediate frames between the keyframes to smooth the transition. We evaluated the effectiveness and usefulness of the Erato system via a series of evaluations including a Turing test, a controlled user study, a performance validation, and interviews with three expert users. The evaluation results showed that the proposed interpolation technique was able to generate coherent story content and help users create data stories more efficiently.
Collapse
|
19
|
Lee DJL, Setlur V, Tory M, Karahalios K, Parameswaran A. Deconstructing Categorization in Visualization Recommendation: A Taxonomy and Comparative Study. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:4225-4239. [PMID: 34061748 DOI: 10.1109/tvcg.2021.3085751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Visualization recommendation (VisRec) systems provide users with suggestions for potentially interesting and useful next steps during exploratory data analysis. These recommendations are typically organized into categories based on their analytical actions, i.e., operations employed to transition from the current exploration state to a recommended visualization. However, despite the emergence of a plethora of VisRec systems in recent work, the utility of the categories employed by these systems in analytical workflows has not been systematically investigated. Our article explores the efficacy of recommendation categories by formalizing a taxonomy of common categories and developing a system, Frontier, that implements these categories. Using Frontier, we evaluate workflow strategies adopted by users and how categories influence those strategies. Participants found recommendations that add attributes to enhance the current visualization and recommendations that filter to sub-populations to be comparatively most useful during data exploration. Our findings pave the way for next-generation VisRec systems that are adaptive and personalized via carefully chosen, effective recommendation categories.
Collapse
|
20
|
Yuan LP, Zhou Z, Zhao J, Guo Y, Du F, Qu H. InfoColorizer: Interactive Recommendation of Color Palettes for Infographics. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:4252-4266. [PMID: 34061743 DOI: 10.1109/tvcg.2021.3085327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
When designing infographics, general users usually struggle with getting desired color palettes using existing infographic authoring tools, which sometimes sacrifice customizability, require design expertise, or neglect the influence of elements' spatial arrangement. We propose a data-driven method that provides flexibility by considering users' preferences, lowers the expertise barrier via automation, and tailors suggested palettes to the spatial layout of elements. We build a recommendation engine by utilizing deep learning techniques to characterize good color design practices from data, and further develop InfoColorizer, a tool that allows users to obtain color palettes for their infographics in an interactive and dynamic manner. To validate our method, we conducted a comprehensive four-part evaluation, including case studies, a controlled user study, a survey study, and an interview study. The results indicate that InfoColorizer can provide compelling palette recommendations with adequate flexibility, allowing users to effectively obtain high-quality color design for input infographics with low effort.
Collapse
|
21
|
Crisan A, Fisher SE, Gardy JL, Munzner T. GEViTRec: Data Reconnaissance Through Recommendation Using a Domain-Specific Visualization Prevalence Design Space. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:4855-4872. [PMID: 34449391 DOI: 10.1109/tvcg.2021.3107749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Genomic Epidemiology (genEpi) is a branch of public health that uses many different data types including tabular, network, genomic, and geographic, to identify and contain outbreaks of deadly diseases. Due to the volume and variety of data, it is challenging for genEpi domain experts to conduct data reconnaissance; that is, have an overview of the data they have and make assessments toward its quality, completeness, and suitability. We present an algorithm for data reconnaissance through automatic visualization recommendation, GEViTRec. Our approach handles a broad variety of dataset types and automatically generates visually coherent combinations of charts, in contrast to existing systems that primarily focus on singleton visual encodings of tabular datasets. We automatically detect linkages across multiple input datasets by analyzing non-numeric attribute fields, creating a data source graph within which we analyze and rank paths. For each high-ranking path, we specify chart combinations with positional and color alignments between shared fields, using a gradual binding approach to transform initial partial specifications of singleton charts to complete specifications that are aligned and oriented consistently. A novel aspect of our approach is its combination of domain-agnostic elements with domain-specific information that is captured through a domain-specific visualization prevalence design space. Our implementation is applied to both synthetic data and real Ebola outbreak data. We compare GEViTRec's output to what previous visualization recommendation systems would generate, and to manually crafted visualizations used by practitioners. We conducted formative evaluations with ten genEpi experts to assess the relevance and interpretability of our results. Code, Data, and Study Materials Availability: https://github.com/amcrisan/GEVitRec.
Collapse
|
22
|
Wu A, Wang Y, Shu X, Moritz D, Cui W, Zhang H, Zhang D, Qu H. AI4VIS: Survey on Artificial Intelligence Approaches for Data Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:5049-5070. [PMID: 34310306 DOI: 10.1109/tvcg.2021.3099002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Visualizations themselves have become a data format. Akin to other data formats such as text and images, visualizations are increasingly created, stored, shared, and (re-)used with artificial intelligence (AI) techniques. In this survey, we probe the underlying vision of formalizing visualizations as an emerging data format and review the recent advance in applying AI techniques to visualization data (AI4VIS). We define visualization data as the digital representations of visualizations in computers and focus on data visualization (e.g., charts and infographics). We build our survey upon a corpus spanning ten different fields in computer science with an eye toward identifying important common interests. Our resulting taxonomy is organized around WHAT is visualization data and its representation, WHY and HOW to apply AI to visualization data. We highlight a set of common tasks that researchers apply to the visualization data and present a detailed discussion of AI approaches developed to accomplish those tasks. Drawing upon our literature review, we discuss several important research questions surrounding the management and exploitation of visualization data, as well as the role of AI in support of those processes. We make the list of surveyed papers and related material available online at.
Collapse
|
23
|
Quadri GJ, Rosen P. A Survey of Perception-Based Visualization Studies by Task. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:5026-5048. [PMID: 34283717 DOI: 10.1109/tvcg.2021.3098240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Knowledge of human perception has long been incorporated into visualizations to enhance their quality and effectiveness. The last decade, in particular, has shown an increase in perception-based visualization research studies. With all of this recent progress, the visualization community lacks a comprehensive guide to contextualize their results. In this report, we provide a systematic and comprehensive review of research studies on perception related to visualization. This survey reviews perception-focused visualization studies since 1980 and summarizes their research developments focusing on low-level tasks, further breaking techniques down by visual encoding and visualization type. In particular, we focus on how perception is used to evaluate the effectiveness of visualizations, to help readers understand and apply the principles of perception of their visualization designs through a task-optimized approach. We concluded our report with a summary of the weaknesses and open research questions in the area.
Collapse
|
24
|
Kalinin AA, Palanimalai S, Zhu J, Wu W, Devraj N, Ye C, Ponarul N, Husain SS, Dinov ID. SOCRAT: a Dynamic Web Toolbox for Interactive Data Processing, Analysis and Visualization. INFORMATION 2022; 13:547. [PMID: 37009525 PMCID: PMC10062429 DOI: 10.3390/info13110547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many systems for exploratory and visual data analytics require platform-dependent software installation, coding skills, and analytical expertise. The rapid advances in data-acquisition, web-based information, and communication and computation technologies promoted the explosive growth of online services and tools implementing novel solutions for interactive data exploration and visualization. However, web-based solutions for visual analytics remain scattered and relatively problem-specific. This leads to per-case re-implementations of common components, system architectures, and user interfaces, rather than focusing on innovation and building sophisticated applications for visual analytics. In this paper, we present the Statistics Online Computational Resource Analytical Toolbox (SOCRAT), a dynamic, flexible, and extensible web-based visual analytics framework. The SOCRAT platform is designed and implemented using multi-level modularity and declarative specifications. This enables easy integration of a number of components for data management, analysis, and visualization. SOCRAT benefits from the diverse landscape of existing in-browser solutions by combining them with flexible template modules into a unique, powerful, and feature-rich visual analytics toolbox. The platform integrates a number of independently developed tools for data import, display, storage, interactive visualization, statistical analysis, and machine learning. Various use cases demonstrate the unique features of SOCRAT for visual and statistical analysis of heterogeneous types of data.
Collapse
Affiliation(s)
- Alexandr A. Kalinin
- Statistics Online Computational Resource (SOCR), Department of Health Behavior and Biological Sciences, University of Michigan, Ann Arbor, MI 48104, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48104, USA
- Shenzhen Research Institute of Big Data, Shenzhen, Guangdong 518172, China
- Statistics Online Computational Resource (SOCR), Department of Statistics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Selvam Palanimalai
- Statistics Online Computational Resource (SOCR), Department of Health Behavior and Biological Sciences, University of Michigan, Ann Arbor, MI 48104, USA
| | - Junqi Zhu
- Statistics Online Computational Resource (SOCR), Department of Health Behavior and Biological Sciences, University of Michigan, Ann Arbor, MI 48104, USA
| | - Wenyi Wu
- Statistics Online Computational Resource (SOCR), Department of Health Behavior and Biological Sciences, University of Michigan, Ann Arbor, MI 48104, USA
| | - Nikhil Devraj
- Statistics Online Computational Resource (SOCR), Department of Health Behavior and Biological Sciences, University of Michigan, Ann Arbor, MI 48104, USA
| | - Chunchun Ye
- Statistics Online Computational Resource (SOCR), Department of Statistics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Nellie Ponarul
- Statistics Online Computational Resource (SOCR), Department of Statistics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Syed S. Husain
- Statistics Online Computational Resource (SOCR), Department of Health Behavior and Biological Sciences, University of Michigan, Ann Arbor, MI 48104, USA
| | - Ivo D. Dinov
- Statistics Online Computational Resource (SOCR), Department of Health Behavior and Biological Sciences, University of Michigan, Ann Arbor, MI 48104, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48104, USA
- Shenzhen Research Institute of Big Data, Shenzhen, Guangdong 518172, China
- Statistics Online Computational Resource (SOCR), Department of Statistics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Michigan Institute for Data Science (MIDAS), University of Michigan, Ann Arbor, MI 48104, USA
| |
Collapse
|
25
|
Pandey A, Srinivasan A, Setlur V. MEDLEY: Intent-based Recommendations to Support Dashboard Composition. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; PP:1135-1145. [PMID: 36194711 DOI: 10.1109/tvcg.2022.3209421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite the ever-growing popularity of dashboards across a wide range of domains, their authoring still remains a tedious and complex process. Current tools offer considerable support for creating individual visualizations but provide limited support for discovering groups of visualizations that can be collectively useful for composing analytic dashboards. To address this problem, we present MEDLEY, a mixed-initiative interface that assists in dashboard composition by recommending dashboard collections (i.e., a logically grouped set of views and filtering widgets) that map to specific analytical intents. Users can specify dashboard intents (namely, measure analysis, change analysis, category analysis, or distribution analysis) explicitly through an input panel in the interface or implicitly by selecting data attributes and views of interest. The system recommends collections based on these analytic intents, and views and widgets can be selected to compose a variety of dashboards. MEDLEY also provides a lightweight direct manipulation interface to configure interactions between views in a dashboard. Based on a study with 13 participants performing both targeted and open-ended tasks, we discuss how MEDLEY's recommendations guide dashboard composition and facilitate different user workflows. Observations from the study identify potential directions for future work, including combining manual view specification with dashboard recommendations and designing natural language interfaces for dashboard authoring.
Collapse
|
26
|
Ruddle RA, Bernard J, Lucke-Tieke H, May T, Kohlhammer J. The Effect of Alignment on People's Ability to Judge Event Sequence Similarity. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:3070-3081. [PMID: 33434130 DOI: 10.1109/tvcg.2021.3050497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Event sequences are central to the analysis of data in domains that range from biology and health, to logfile analysis and people's everyday behavior. Many visualization tools have been created for such data, but people are error-prone when asked to judge the similarity of event sequences with basic presentation methods. This article describes an experiment that investigates whether local and global alignment techniques improve people's performance when judging sequence similarity. Participants were divided into three groups (basic versus local versus global alignment), and each participant judged the similarity of 180 sets of pseudo-randomly generated sequences. Each set comprised a target, a correct choice and a wrong choice. After training, the global alignment group was more accurate than the local alignment group (98 versus 93 percent correct), with the basic group getting 95 percent correct. Participants' response times were primarily affected by the number of event types, the similarity of sequences (measured by the Levenshtein distance) and the edit types (nine combinations of deletion, insertion and substitution). In summary, global alignment is superior and people's performance could be further improved by choosing alignment parameters that explicitly penalize sequence mismatches.
Collapse
|
27
|
Wu E. View Composition Algebra for Ad Hoc Comparison. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:2470-2485. [PMID: 35180082 DOI: 10.1109/tvcg.2022.3152515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Comparison is a core task in visual analysis. Although there are numerous guidelines to help users design effective visualizations to aid known comparison tasks, there are few techniques available when users want to make ad hoc comparisons between marks, trends, or charts during data exploration and visual analysis. For instance, to compare voting count maps from different years, two stock trends in a line chart, or a scatterplot of country GDPs with a textual summary of the average GDP. Ideally, users can directly select the comparison targets and compare them, however what elements of a visualization should be candidate targets, which combinations of targets are safe to compare, and what comparison operations make sense? This article proposes a conceptual model that lets users compose combinations of values, marks, legend elements, and charts using a set of composition operators that summarize, compute differences, merge, and model their operands. We further define a View Composition Algebra (VCA) that is compatible with datacube-based visualizations, derive an interaction design based on this algebra that supports ad hoc visual comparisons, and illustrate its utility through several use cases.
Collapse
|
28
|
Deagen ME, McCusker JP, Fateye T, Stouffer S, Brinson LC, McGuinness DL, Schadler LS. FAIR and Interactive Data Graphics from a Scientific Knowledge Graph. Sci Data 2022; 9:239. [PMID: 35624233 PMCID: PMC9142568 DOI: 10.1038/s41597-022-01352-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Graph databases capture richly linked domain knowledge by integrating heterogeneous data and metadata into a unified representation. Here, we present the use of bespoke, interactive data graphics (bar charts, scatter plots, etc.) for visual exploration of a knowledge graph. By modeling a chart as a set of metadata that describes semantic context (SPARQL query) separately from visual context (Vega-Lite specification), we leverage the high-level, declarative nature of the SPARQL and Vega-Lite grammars to concisely specify web-based, interactive data graphics synchronized to a knowledge graph. Resources with dereferenceable URIs (uniform resource identifiers) can employ the hyperlink encoding channel or image marks in Vega-Lite to amplify the information content of a given data graphic, and published charts populate a browsable gallery of the database. We discuss design considerations that arise in relation to portability, persistence, and performance. Altogether, this pairing of SPARQL and Vega-Lite-demonstrated here in the domain of polymer nanocomposite materials science-offers an extensible approach to FAIR (findable, accessible, interoperable, reusable) scientific data visualization within a knowledge graph framework.
Collapse
Affiliation(s)
- Michael E Deagen
- Department of Mechanical Engineering, University of Vermont, Burlington, VT, USA.
| | - Jamie P McCusker
- Tetherless World Constellation, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Tolulomo Fateye
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Samuel Stouffer
- Tetherless World Constellation, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - L Cate Brinson
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | | | - Linda S Schadler
- Department of Mechanical Engineering, University of Vermont, Burlington, VT, USA
| |
Collapse
|
29
|
Zhao J, Fan M, Feng M. ChartSeer: Interactive Steering Exploratory Visual Analysis With Machine Intelligence. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:1500-1513. [PMID: 32833636 DOI: 10.1109/tvcg.2020.3018724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
During exploratory visual analysis (EVA), analysts need to continually determine which subsequent activities to perform, such as which data variables to explore or how to present data variables visually. Due to the vast combinations of data variables and visual encodings that are possible, it is often challenging to make such decisions. Further, while performing local explorations, analysts often fail to attend to the holistic picture that is emerging from their analysis, leading them to improperly steer their EVA. These issues become even more impactful in the real world analysis scenarios where EVA occurs in multiple asynchronous sessions that could be completed by one or more analysts. To address these challenges, this work proposes ChartSeer, a system that uses machine intelligence to enable analysts to visually monitor the current state of an EVA and effectively identify future activities to perform. ChartSeer utilizes deep learning techniques to characterize analyst-created data charts to generate visual summaries and recommend appropriate charts for further exploration based on user interactions. A case study was first conducted to demonstrate the usage of ChartSeer in practice, followed by a controlled study to compare ChartSeer's performance with a baseline during EVA tasks. The results demonstrated that ChartSeer enables analysts to adequately understand current EVA status and advance their analysis by creating charts with increased coverage and visual encoding diversity.
Collapse
|
30
|
Khan S, Nguyen PH, Abdul-Rahman A, Bach B, Chen M, Freeman E, Turkay C. Propagating Visual Designs to Numerous Plots and Dashboards. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:86-95. [PMID: 34587060 DOI: 10.1109/tvcg.2021.3114828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In the process of developing an infrastructure for providing visualization and visual analytics (VIS) tools to epidemiologists and modeling scientists, we encountered a technical challenge for applying a number of visual designs to numerous datasets rapidly and reliably with limited development resources. In this paper, we present a technical solution to address this challenge. Operationally, we separate the tasks of data management, visual designs, and plots and dashboard deployment in order to streamline the development workflow. Technically, we utilize: an ontology to bring datasets, visual designs, and deployable plots and dashboards under the same management framework; multi-criteria search and ranking algorithms for discovering potential datasets that match a visual design; and a purposely-design user interface for propagating each visual design to appropriate datasets (often in tens and hundreds) and quality-assuring the propagation before the deployment. This technical solution has been used in the development of the RAMPVIS infrastructure for supporting a consortium of epidemiologists and modeling scientists through visualization.
Collapse
|
31
|
Zeng Z, Moh P, Du F, Hoffswell J, Lee TY, Malik S, Koh E, Battle L. An Evaluation-Focused Framework for Visualization Recommendation Algorithms. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:346-356. [PMID: 34587050 DOI: 10.1109/tvcg.2021.3114814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although we have seen a proliferation of algorithms for recommending visualizations, these algorithms are rarely compared with one another, making it difficult to ascertain which algorithm is best for a given visual analysis scenario. Though several formal frameworks have been proposed in response, we believe this issue persists because visualization recommendation algorithms are inadequately specified from an evaluation perspective. In this paper, we propose an evaluation-focused framework to contextualize and compare a broad range of visualization recommendation algorithms. We present the structure of our framework, where algorithms are specified using three components: (1) a graph representing the full space of possible visualization designs, (2) the method used to traverse the graph for potential candidates for recommendation, and (3) an oracle used to rank candidate designs. To demonstrate how our framework guides the formal comparison of algorithmic performance, we not only theoretically compare five existing representative recommendation algorithms, but also empirically compare four new algorithms generated based on our findings from the theoretical comparison. Our results show that these algorithms behave similarly in terms of user performance, highlighting the need for more rigorous formal comparisons of recommendation algorithms to further clarify their benefits in various analysis scenarios.
Collapse
|
32
|
Wu A, Wang Y, Zhou M, He X, Zhang H, Qu H, Zhang D. MultiVision: Designing Analytical Dashboards with Deep Learning Based Recommendation. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:162-172. [PMID: 34587058 DOI: 10.1109/tvcg.2021.3114826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We contribute a deep-learning-based method that assists in designing analytical dashboards for analyzing a data table. Given a data table, data workers usually need to experience a tedious and time-consuming process to select meaningful combinations of data columns for creating charts. This process is further complicated by the needs of creating dashboards composed of multiple views that unveil different perspectives of data. Existing automated approaches for recommending multiple-view visualizations mainly build on manually crafted design rules, producing sub-optimal or irrelevant suggestions. To address this gap, we present a deep learning approach for selecting data columns and recommending multiple charts. More importantly, we integrate the deep learning models into a mixed-initiative system. Our model could make recommendations given optional user-input selections of data columns. The model, in turn, learns from provenance data of authoring logs in an offline manner. We compare our deep learning model with existing methods for visualization recommendation and conduct a user study to evaluate the usefulness of the system.
Collapse
|
33
|
Moore J, Goffin P, Wiese J, Meyer M. Exploring the Personal Informatics Analysis Gap: "There's a Lot of Bacon". IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:96-106. [PMID: 34609943 DOI: 10.1109/tvcg.2021.3114798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Personal informatics research helps people track personal data for the purposes of self-reflection and gaining self-knowledge. This field, however, has predominantly focused on the data collection and insight-generation elements of self-tracking, with less attention paid to flexible data analysis. As a result, this inattention has led to inflexible analytic pipelines that do not reflect or support the diverse ways people want to engage with their data. This paper contributes a review of personal informatics and visualization research literature to expose a gap in our knowledge for designing flexible tools that assist people engaging with and analyzing personal data in personal contexts, what we call the personal informatics analysis gap. We explore this gap through a multistage longitudinal study on how asthmatics engage with personal air quality data, and we report how participants: were motivated by broad and diverse goals; exhibited patterns in the way they explored their data; engaged with their data in playful ways; discovered new insights through serendipitous exploration; and were reluctant to use analysis tools on their own. These results present new opportunities for visual analysis research and suggest the need for fundamental shifts in how and what we design when supporting personal data analysis.
Collapse
|
34
|
Li H, Wang Y, Zhang S, Song Y, Qu H. KG4Vis: A Knowledge Graph-Based Approach for Visualization Recommendation. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:195-205. [PMID: 34587080 DOI: 10.1109/tvcg.2021.3114863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Visualization recommendation or automatic visualization generation can significantly lower the barriers for general users to rapidly create effective data visualizations, especially for those users without a background in data visualizations. However, existing rule-based approaches require tedious manual specifications of visualization rules by visualization experts. Other machine learning-based approaches often work like black-box and are difficult to understand why a specific visualization is recommended, limiting the wider adoption of these approaches. This paper fills the gap by presenting KG4Vis, a knowledge graph (KG)-based approach for visualization recommendation. It does not require manual specifications of visualization rules and can also guarantee good explainability. Specifically, we propose a framework for building knowledge graphs, consisting of three types of entities (i.e., data features, data columns and visualization design choices) and the relations between them, to model the mapping rules between data and effective visualizations. A TransE-based embedding technique is employed to learn the embeddings of both entities and relations of the knowledge graph from existing dataset-visualization pairs. Such embeddings intrinsically model the desirable visualization rules. Then, given a new dataset, effective visualizations can be inferred from the knowledge graph with semantically meaningful rules. We conducted extensive evaluations to assess the proposed approach, including quantitative comparisons, case studies and expert interviews. The results demonstrate the effectiveness of our approach.
Collapse
|
35
|
Jia S, Li Z, Chen N, Zhang J. Towards Visual Explainable Active Learning for Zero-Shot Classification. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:791-801. [PMID: 34587036 DOI: 10.1109/tvcg.2021.3114793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Zero-shot classification is a promising paradigm to solve an applicable problem when the training classes and test classes are disjoint. Achieving this usually needs experts to externalize their domain knowledge by manually specifying a class-attribute matrix to define which classes have which attributes. Designing a suitable class-attribute matrix is the key to the subsequent procedure, but this design process is tedious and trial-and-error with no guidance. This paper proposes a visual explainable active learning approach with its design and implementation called semantic navigator to solve the above problems. This approach promotes human-AI teaming with four actions (ask, explain, recommend, respond) in each interaction loop. The machine asks contrastive questions to guide humans in the thinking process of attributes. A novel visualization called semantic map explains the current status of the machine. Therefore analysts can better understand why the machine misclassifies objects. Moreover, the machine recommends the labels of classes for each attribute to ease the labeling burden. Finally, humans can steer the model by modifying the labels interactively, and the machine adjusts its recommendations. The visual explainable active learning approach improves humans' efficiency of building zero-shot classification models interactively, compared with the method without guidance. We justify our results with user studies using the standard benchmarks for zero-shot classification.
Collapse
|
36
|
L'Yi S, Wang Q, Lekschas F, Gehlenborg N. Gosling: A Grammar-based Toolkit for Scalable and Interactive Genomics Data Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:140-150. [PMID: 34596551 PMCID: PMC8826597 DOI: 10.1109/tvcg.2021.3114876] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The combination of diverse data types and analysis tasks in genomics has resulted in the development of a wide range of visualization techniques and tools. However, most existing tools are tailored to a specific problem or data type and offer limited customization, making it challenging to optimize visualizations for new analysis tasks or datasets. To address this challenge, we designed Gosling-a grammar for interactive and scalable genomics data visualization. Gosling balances expressiveness for comprehensive multi-scale genomics data visualizations with accessibility for domain scientists. Our accompanying JavaScript toolkit called Gosling.js provides scalable and interactive rendering. Gosling.js is built on top of an existing platform for web-based genomics data visualization to further simplify the visualization of common genomics data formats. We demonstrate the expressiveness of the grammar through a variety of real-world examples. Furthermore, we show how Gosling supports the design of novel genomics visualizations. An online editor and examples of Gosling.js, its source code, and documentation are available at https://gosling.js.org.
Collapse
|
37
|
Chen Q, Sun F, Xu X, Chen Z, Wang J, Cao N. VizLinter: A Linter and Fixer Framework for Data Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:206-216. [PMID: 34587044 DOI: 10.1109/tvcg.2021.3114804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite the rising popularity of automated visualization tools, existing systems tend to provide direct results which do not always fit the input data or meet visualization requirements. Therefore, additional specification adjustments are still required in real-world use cases. However, manual adjustments are difficult since most users do not necessarily possess adequate skills or visualization knowledge. Even experienced users might create imperfect visualizations that involve chart construction errors. We present a framework, VizLinter, to help users detect flaws and rectify already-built but defective visualizations. The framework consists of two components, (1) a visualization linter, which applies well-recognized principles to inspect the legitimacy of rendered visualizations, and (2) a visualization fixer, which automatically corrects the detected violations according to the linter. We implement the framework into an online editor prototype based on Vega-Lite specifications. To further evaluate the system, we conduct an in-lab user study. The results prove its effectiveness and efficiency in identifying and fixing errors for data visualizations.
Collapse
|
38
|
Kristiansen YS, Garrison L, Bruckner S. Semantic Snapping for Guided Multi-View Visualization Design. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:43-53. [PMID: 34591769 DOI: 10.1109/tvcg.2021.3114860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Visual information displays are typically composed of multiple visualizations that are used to facilitate an understanding of the underlying data. A common example are dashboards, which are frequently used in domains such as finance, process monitoring and business intelligence. However, users may not be aware of existing guidelines and lack expert design knowledge when composing such multi-view visualizations. In this paper, we present semantic snapping, an approach to help non-expert users design effective multi-view visualizations from sets of pre-existing views. When a particular view is placed on a canvas, it is "aligned" with the remaining views-not with respect to its geometric layout, but based on aspects of the visual encoding itself, such as how data dimensions are mapped to channels. Our method uses an on-the-fly procedure to detect and suggest resolutions for conflicting, misleading, or ambiguous designs, as well as to provide suggestions for alternative presentations. With this approach, users can be guided to avoid common pitfalls encountered when composing visualizations. Our provided examples and case studies demonstrate the usefulness and validity of our approach.
Collapse
|
39
|
Latif S, Zhou Z, Kim Y, Beck F, Kim NW. Kori: Interactive Synthesis of Text and Charts in Data Documents. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:184-194. [PMID: 34587042 DOI: 10.1109/tvcg.2021.3114802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Charts go hand in hand with text to communicate complex data and are widely adopted in news articles, online blogs, and academic papers. They provide graphical summaries of the data, while text explains the message and context. However, synthesizing information across text and charts is difficult; it requires readers to frequently shift their attention. We investigated ways to support the tight coupling of text and charts in data documents. To understand their interplay, we analyzed the design space of chart-text references through news articles and scientific papers. Informed by the analysis, we developed a mixed-initiative interface enabling users to construct interactive references between text and charts. It leverages natural language processing to automatically suggest references as well as allows users to manually construct other references effortlessly. A user study complemented with algorithmic evaluation of the system suggests that the interface provides an effective way to compose interactive data documents.
Collapse
|
40
|
Chen Z, Ye S, Chu X, Xia H, Zhang H, Qu H, Wu Y. Augmenting Sports Videos with VisCommentator. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:824-834. [PMID: 34587045 DOI: 10.1109/tvcg.2021.3114806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Visualizing data in sports videos is gaining traction in sports analytics, given its ability to communicate insights and explicate player strategies engagingly. However, augmenting sports videos with such data visualizations is challenging, especially for sports analysts, as it requires considerable expertise in video editing. To ease the creation process, we present a design space that characterizes augmented sports videos at an element-level (what the constituents are) and clip-level (how those constituents are organized). We do so by systematically reviewing 233 examples of augmented sports videos collected from TV channels, teams, and leagues. The design space guides selection of data insights and visualizations for various purposes. Informed by the design space and close collaboration with domain experts, we design VisCommentator, a fast prototyping tool, to eases the creation of augmented table tennis videos by leveraging machine learning-based data extractors and design space-based visualization recommendations. With VisCommentator, sports analysts can create an augmented video by selecting the data to visualize instead of manually drawing the graphical marks. Our system can be generalized to other racket sports (e.g., tennis, badminton) once the underlying datasets and models are available. A user study with seven domain experts shows high satisfaction with our system, confirms that the participants can reproduce augmented sports videos in a short period, and provides insightful implications into future improvements and opportunities.
Collapse
|
41
|
Franconeri SL, Padilla LM, Shah P, Zacks JM, Hullman J. The Science of Visual Data Communication: What Works. Psychol Sci Public Interest 2021; 22:110-161. [PMID: 34907835 DOI: 10.1177/15291006211051956] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Effectively designed data visualizations allow viewers to use their powerful visual systems to understand patterns in data across science, education, health, and public policy. But ineffectively designed visualizations can cause confusion, misunderstanding, or even distrust-especially among viewers with low graphical literacy. We review research-backed guidelines for creating effective and intuitive visualizations oriented toward communicating data to students, coworkers, and the general public. We describe how the visual system can quickly extract broad statistics from a display, whereas poorly designed displays can lead to misperceptions and illusions. Extracting global statistics is fast, but comparing between subsets of values is slow. Effective graphics avoid taxing working memory, guide attention, and respect familiar conventions. Data visualizations can play a critical role in teaching and communication, provided that designers tailor those visualizations to their audience.
Collapse
Affiliation(s)
| | - Lace M Padilla
- Department of Cognitive and Information Sciences, University of California, Merced
| | - Priti Shah
- Department of Psychology, University of Michigan
| | - Jeffrey M Zacks
- Department of Psychological & Brain Sciences, Washington University in St. Louis
| | | |
Collapse
|
42
|
An evolutional model for operation-driven visualization design. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-021-00784-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Comprehensive Review and Future Research Directions on Dynamic Faceted Search. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11178113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In modern society, the increasing number of web search operations on various search engines has become ubiquitous due to the significant number of results presented to the users and the incompetent result-ranking mechanism in some domains, such as medical, law, and academia. As a result, the user is overwhelmed with a large number of misranked or uncategorized search results. One of the most promising technologies to reduce the number of results and provide desirable information to the users is dynamic faceted filters. Therefore, this paper extensively reviews related research articles published in IEEE Xplore, Web of Science, and the ACM digital library. As a result, a total of 170 related research papers were considered and organized into five categories. The main contribution of this paper is to provide a detailed analysis of the faceted search’s fundamental attributes, as well as to demonstrate the motivation from the usage, concerns, challenges, and recommendations to enhance the use of the faceted approach among web search service providers.
Collapse
|
44
|
Jo J, LrYi S, Lee B, Seo J. ProReveal: Progressive Visual Analytics With Safeguards. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:3109-3122. [PMID: 31880556 DOI: 10.1109/tvcg.2019.2962404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present a new visual exploration concept-Progressive Visual Analytics with Safeguards-that helps people manage the uncertainty arising from progressive data exploration. Despite its potential benefits, intermediate knowledge from progressive analytics can be incorrect due to various machine and human factors, such as a sampling bias or misinterpretation of uncertainty. To alleviate this problem, we introduce PVA-Guards, safeguards people can leave on uncertain intermediate knowledge that needs to be verified, and derive seven PVA-Guards based on previous visualization task taxonomies. PVA-Guards provide a means of ensuring the correctness of the conclusion and understanding the reason when intermediate knowledge becomes invalid. We also present ProReveal, a proof-of-concept system designed and developed to integrate the seven safeguards into progressive data exploration. Finally, we report a user study with 14 participants, which shows people voluntarily employed PVA-Guards to safeguard their findings and ProReveal's PVA-Guard view provides an overview of uncertain intermediate knowledge. We believe our new concept can also offer better consistency in progressive data exploration, alleviating people's heterogeneous interpretation of uncertainty.
Collapse
|
45
|
An Ontology-Driven Personalized Faceted Search for Exploring Knowledge Bases of Capsicum. FUTURE INTERNET 2021. [DOI: 10.3390/fi13070172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Capsicum is a genus of flowering plants in the Solanaceae family in which the members are well known to have a high economic value. The Capsicum fruits, which are popularly known as peppers or chili, have been widely used by people worldwide. It serves as a spice and raw material for many products such as sauce, food coloring, and medicine. For many years, scientists have studied this plant to optimize its production. A tremendous amount of knowledge has been obtained and shared, as reflected in multiple knowledge-based systems, databases, or information systems. An approach to knowledge-sharing is through the adoption of a common ontology to eliminate knowledge understanding discrepancy. Unfortunately, most of the knowledge-sharing solutions are intended for scientists who are familiar with the subject. On the other hand, there are groups of potential users that could benefit from such systems but have minimal knowledge of the subject. For these non-expert users, finding relevant information from a less familiar knowledge base would be daunting. More than that, users have various degrees of understanding of the available content in the knowledge base. This understanding discrepancy raises a personalization problem. In this paper, we introduce a solution to overcome this challenge. First, we developed an ontology to facilitate knowledge-sharing about Capsicum to non-expert users. Second, we developed a personalized faceted search algorithm that provides multiple structured ways to explore the knowledge base. The algorithm addresses the personalization problem by identifying the degree of understanding about the subject from each user. In this way, non-expert users could explore a knowledge base of Capsicum efficiently. Our solution characterized users into four groups. As a result, our faceted search algorithm defines four types of matching mechanisms, including three ranking mechanisms as the core of our solution. In order to evaluate the proposed method, we measured the predictability degree of produced list of facets. Our findings indicated that the proposed matching mechanisms could tolerate various query types, and a high degree of predictability can be achieved by combining multiple ranking mechanisms. Furthermore, it demonstrates that our approach has a high potential contribution to biodiversity science in general, where many knowledge-based systems have been developed with limited access to users outside of the domain.
Collapse
|
46
|
Polka E, Childs E, Friedman A, Tomsho KS, Claus Henn B, Scammell MK, Milando CW. MCR: Open-Source Software to Automate Compilation of Health Study Report-Back. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6104. [PMID: 34198866 PMCID: PMC8201126 DOI: 10.3390/ijerph18116104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/23/2021] [Accepted: 06/02/2021] [Indexed: 12/23/2022]
Abstract
Sharing individualized results with health study participants, a practice we and others refer to as "report-back," ensures participant access to exposure and health information and may promote health equity. However, the practice of report-back and the content shared is often limited by the time-intensive process of personalizing reports. Software tools that automate creation of individualized reports have been built for specific studies, but are largely not open-source or broadly modifiable. We created an open-source and generalizable tool, called the Macro for the Compilation of Report-backs (MCR), to automate compilation of health study reports. We piloted MCR in two environmental exposure studies in Massachusetts, USA, and interviewed research team members (n = 7) about the impact of MCR on the report-back process. Researchers using MCR created more detailed reports than during manual report-back, including more individualized numerical, text, and graphical results. Using MCR, researchers saved time producing draft and final reports. Researchers also reported feeling more creative in the design process and more confident in report-back quality control. While MCR does not expedite the entire report-back process, we hope that this open-source tool reduces the barriers to personalizing health study reports, promotes more equitable access to individualized data, and advances self-determination among participants.
Collapse
Affiliation(s)
- Erin Polka
- Department of Environmental Health, Boston University School of Public Health, 715 Albany St., Boston, MA 02118, USA; (E.P.); (A.F.); (B.C.H.); (M.K.S.)
| | - Ellen Childs
- Abt Associates, Division of Health and the Environment, 6130 Executive Blvd, Rockville, MD 20852, USA;
- Department of Health Policy and Law, Boston University School of Public Health, 715 Albany St., Boston, MA 02118, USA
| | - Alexa Friedman
- Department of Environmental Health, Boston University School of Public Health, 715 Albany St., Boston, MA 02118, USA; (E.P.); (A.F.); (B.C.H.); (M.K.S.)
| | - Kathryn S. Tomsho
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Ave., Boston, MA 02115, USA;
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, 715 Albany St., Boston, MA 02118, USA; (E.P.); (A.F.); (B.C.H.); (M.K.S.)
| | - Madeleine K. Scammell
- Department of Environmental Health, Boston University School of Public Health, 715 Albany St., Boston, MA 02118, USA; (E.P.); (A.F.); (B.C.H.); (M.K.S.)
| | - Chad W. Milando
- Department of Environmental Health, Boston University School of Public Health, 715 Albany St., Boston, MA 02118, USA; (E.P.); (A.F.); (B.C.H.); (M.K.S.)
| |
Collapse
|
47
|
Abstract
Exploratory data analysis (EDA) is an iterative process where data scientists interact with data to extract information about their quality and shape as well as derive knowledge and new insights into the related domain of the dataset. However, data scientists are rarely experienced domain experts who have tangible knowledge about a domain. Integrating domain knowledge into the analytic process is a complex challenge that usually requires constant communication between data scientists and domain experts. For this reason, it is desirable to reuse the domain insights from exploratory analyses in similar use cases. With this objective in mind, we present a conceptual system design on how to extract domain expertise while performing EDA and utilize it to guide other data scientists in similar use cases. Our system design introduces two concepts, interaction storage and analysis context storage, to record user interaction and interesting data points during an exploratory analysis. For new use cases, it identifies historical interactions from similar use cases and facilitates the recorded data to construct candidate interaction sequences and predict their potential insight—i.e., the insight generated from performing the sequence. Based on these predictions, the system recommends the sequences with the highest predicted insight to data scientist. We implement a prototype to test the general feasibility of our system design and enable further research in this area. Within the prototype, we present an exemplary use case that demonstrates the usefulness of recommended interactions. Finally, we give a critical reflection of our first prototype and discuss research opportunities resulting from our system design.
Collapse
|
48
|
Narechania A, Srinivasan A, Stasko J. NL4DV: A Toolkit for Generating Analytic Specifications for Data Visualization from Natural Language Queries. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:369-379. [PMID: 33048704 DOI: 10.1109/tvcg.2020.3030378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Natural language interfaces (NLls) have shown great promise for visual data analysis, allowing people to flexibly specify and interact with visualizations. However, developing visualization NLIs remains a challenging task, requiring low-level implementation of natural language processing (NLP) techniques as well as knowledge of visual analytic tasks and visualization design. We present NL4DV, a toolkit for natural language-driven data visualization. NL4DV is a Python package that takes as input a tabular dataset and a natural language query about that dataset. In response, the toolkit returns an analytic specification modeled as a JSON object containing data attributes, analytic tasks, and a list of Vega-Lite specifications relevant to the input query. In doing so, NL4DV aids visualization developers who may not have a background in NLP, enabling them to create new visualization NLIs or incorporate natural language input within their existing systems. We demonstrate NL4DV's usage and capabilities through four examples: 1) rendering visualizations using natural language in a Jupyter notebook, 2) developing a NLI to specify and edit Vega-Lite charts, 3) recreating data ambiguity widgets from the DataTone system, and 4) incorporating speech input to create a multimodal visualization system.
Collapse
|
49
|
Elshehaly M, Randell R, Brehmer M, McVey L, Alvarado N, Gale CP, Ruddle RA. QualDash: Adaptable Generation of Visualisation Dashboards for Healthcare Quality Improvement. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:689-699. [PMID: 33048727 DOI: 10.1109/tvcg.2020.3030424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Adapting dashboard design to different contexts of use is an open question in visualisation research. Dashboard designers often seek to strike a balance between dashboard adaptability and ease-of-use, and in hospitals challenges arise from the vast diversity of key metrics, data models and users involved at different organizational levels. In this design study, we present QualDash, a dashboard generation engine that allows for the dynamic configuration and deployment of visualisation dashboards for healthcare quality improvement (QI). We present a rigorous task analysis based on interviews with healthcare professionals, a co-design workshop and a series of one-on-one meetings with front line analysts. From these activities we define a metric card metaphor as a unit of visual analysis in healthcare QI, using this concept as a building block for generating highly adaptable dashboards, and leading to the design of a Metric Specification Structure (MSS). Each MSS is a JSON structure which enables dashboard authors to concisely configure unit-specific variants of a metric card, while offloading common patterns that are shared across cards to be preset by the engine. We reflect on deploying and iterating the design of OualDash in cardiology wards and pediatric intensive care units of five NHS hospitals. Finally, we report evaluation results that demonstrate the adaptability, ease-of-use and usefulness of QualDash in a real-world scenario.
Collapse
|
50
|
Kim Y, Heer J. Gemini: A Grammar and Recommender System for Animated Transitions in Statistical Graphics. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:485-494. [PMID: 33079664 DOI: 10.1109/tvcg.2020.3030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Animated transitions help viewers follow changes between related visualizations. Specifying effective animations demands significant effort: authors must select the elements and properties to animate, provide transition parameters, and coordinate the timing of stages. To facilitate this process, we present Gemini, a declarative grammar and recommendation system for animated transitions between single-view statistical graphics. Gemini specifications define transition "steps" in terms of high-level visual components (marks, axes, legends) and composition rules to synchronize and concatenate steps. With this grammar, Gemini can recommend animation designs to augment and accelerate designers' work. Gemini enumerates staged animation designs for given start and end states, and ranks those designs using a cost function informed by prior perceptual studies. To evaluate Gemini, we conduct both a formative study on Mechanical Turk to assess and tune our ranking function, and a summative study in which 8 experienced visualization developers implement animations in D3 that we then compare to Gemini's suggestions. We find that most designs (9/11) are exactly replicable in Gemini, with many (8/11) achievable via edits to suggestions, and that Gemini suggestions avoid multiple participant errors.
Collapse
|