1
|
Chen Q, Cao S, Wang J, Cao N. How Does Automation Shape the Process of Narrative Visualization: A Survey of Tools. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:4429-4448. [PMID: 37030780 DOI: 10.1109/tvcg.2023.3261320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In recent years, narrative visualization has gained much attention. Researchers have proposed different design spaces for various narrative visualization genres and scenarios to facilitate the creation process. As users' needs grow and automation technologies advance, increasingly more tools have been designed and developed. In this study, we summarized six genres of narrative visualization (annotated charts, infographics, timelines & storylines, data comics, scrollytelling & slideshow, and data videos) based on previous research and four types of tools (design spaces, authoring tools, ML/AI-supported tools and ML/AI-generator tools) based on the intelligence and automation level of the tools. We surveyed 105 papers and tools to study how automation can progressively engage in visualization design and narrative processes to help users easily create narrative visualizations. This research aims to provide an overview of current research and development in the automation involvement of narrative visualization tools. We discuss key research problems in each category and suggest new opportunities to encourage further research in the related domain.
Collapse
|
2
|
Sun M, Cai L, Cui W, Wu Y, Shi Y, Cao N. Erato: Cooperative Data Story Editing via Fact Interpolation. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:983-993. [PMID: 36155449 DOI: 10.1109/tvcg.2022.3209428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As an effective form of narrative visualization, visual data stories are widely used in data-driven storytelling to communicate complex insights and support data understanding. Although important, they are difficult to create, as a variety of interdisciplinary skills, such as data analysis and design, are required. In this work, we introduce Erato, a human-machine cooperative data story editing system, which allows users to generate insightful and fluent data stories together with the computer. Specifically, Erato only requires a number of keyframes provided by the user to briefly describe the topic and structure of a data story. Meanwhile, our system leverages a novel interpolation algorithm to help users insert intermediate frames between the keyframes to smooth the transition. We evaluated the effectiveness and usefulness of the Erato system via a series of evaluations including a Turing test, a controlled user study, a performance validation, and interviews with three expert users. The evaluation results showed that the proposed interpolation technique was able to generate coherent story content and help users create data stories more efficiently.
Collapse
|
3
|
Sevastjanova R, El-Assady M, Bradley A, Collins C, Butt M, Keim D. VisInReport: Complementing Visual Discourse Analytics Through Personalized Insight Reports. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:4757-4769. [PMID: 34379592 DOI: 10.1109/tvcg.2021.3104026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present VisInReport, a visual analytics tool that supports the manual analysis of discourse transcripts and generates reports based on user interaction. As an integral part of scholarly work in the social sciences and humanities, discourse analysis involves an aggregation of characteristics identified in the text, which, in turn, involves a prior identification of regions of particular interest. Manual data evaluation requires extensive effort, which can be a barrier to effective analysis. Our system addresses this challenge by augmenting the users' analysis with a set of automatically generated visualization layers. These layers enable the detection and exploration of relevant parts of the discussion supporting several tasks, such as topic modeling or question categorization. The system summarizes the extracted events visually and verbally, generating a content-rich insight into the data and the analysis process. During each analysis session, VisInReport builds a shareable report containing a curated selection of interactions and annotations generated by the analyst. We evaluate our approach on real-world datasets through a qualitative study with domain experts from political science, computer science, and linguistics. The results highlight the benefit of integrating the analysis and reporting processes through a visual analytics system, which supports the communication of results among collaborating researchers.
Collapse
|
4
|
Artificial Intelligence-Based Medical Data Mining. J Pers Med 2022; 12:jpm12091359. [PMID: 36143144 PMCID: PMC9501106 DOI: 10.3390/jpm12091359] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Understanding published unstructured textual data using traditional text mining approaches and tools is becoming a challenging issue due to the rapid increase in electronic open-source publications. The application of data mining techniques in the medical sciences is an emerging trend; however, traditional text-mining approaches are insufficient to cope with the current upsurge in the volume of published data. Therefore, artificial intelligence-based text mining tools are being developed and used to process large volumes of data and to explore the hidden features and correlations in the data. This review provides a clear-cut and insightful understanding of how artificial intelligence-based data-mining technology is being used to analyze medical data. We also describe a standard process of data mining based on CRISP-DM (Cross-Industry Standard Process for Data Mining) and the most common tools/libraries available for each step of medical data mining.
Collapse
|
5
|
Tovanich N, Soulie N, Heulot N, Isenberg P. MiningVis: Visual Analytics of the Bitcoin Mining Economy. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:868-878. [PMID: 34596542 DOI: 10.1109/tvcg.2021.3114821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present a visual analytics tool, MiningVis, to explore the long-term historical evolution and dynamics of the Bitcoin mining ecosystem. Bitcoin is a cryptocurrency that attracts much attention but remains difficult to understand. Particularly important to the success, stability, and security of Bitcoin is a component of the system called "mining." Miners are responsible for validating transactions and are incentivized to participate by the promise of a monetary reward. Mining pools have emerged as collectives of miners that ensure a more stable and predictable income. MiningVis aims to help analysts understand the evolution and dynamics of the Bitcoin mining ecosystem, including mining market statistics, multi-measure mining pool rankings, and pool hopping behavior. Each of these features can be compared to external data concerning pool characteristics and Bitcoin news. In order to assess the value of MiningVis, we conducted online interviews and insight-based user studies with Bitcoin miners. We describe research questions tackled and insights made by our participants and illustrate practical implications for visual analytics systems for Bitcoin mining.
Collapse
|
6
|
Chen S, Li J, Andrienko G, Andrienko N, Wang Y, Nguyen PH, Turkay C. Supporting Story Synthesis: Bridging the Gap between Visual Analytics and Storytelling. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:2499-2516. [PMID: 30582542 DOI: 10.1109/tvcg.2018.2889054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Visual analytics usually deals with complex data and uses sophisticated algorithmic, visual, and interactive techniques supporting the analysis. Findings and results of the analysis often need to be communicated to an audience that lacks visual analytics expertise. This requires analysis outcomes to be presented in simpler ways than that are typically used in visual analytics systems. However, not only analytical visualizations may be too complex for target audiences but also the information that needs to be presented. Analysis results may consist of multiple components, which may involve multiple heterogeneous facets. Hence, there exists a gap on the path from obtaining analysis findings to communicating them, within which two main challenges lie: information complexity and display complexity. We address this problem by proposing a general framework where data analysis and result presentation are linked by story synthesis, in which the analyst creates and organises story contents. Unlike previous research, where analytic findings are represented by stored display states, we treat findings as data constructs. We focus on selecting, assembling and organizing findings for further presentation rather than on tracking analysis history and enabling dual (i.e., explorative and communicative) use of data displays. In story synthesis, findings are selected, assembled, and arranged in meaningful layouts that take into account the structure of information and inherent properties of its components. We propose a workflow for applying the proposed conceptual framework in designing visual analytics systems and demonstrate the generality of the approach by applying it to two diverse domains, social media and movement analysis.
Collapse
|
7
|
Liu S, Wang X, Collins C, Dou W, Ouyang F, El-Assady M, Jiang L, Keim DA. Bridging Text Visualization and Mining: A Task-Driven Survey. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2019; 25:2482-2504. [PMID: 29993887 DOI: 10.1109/tvcg.2018.2834341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Visual text analytics has recently emerged as one of the most prominent topics in both academic research and the commercial world. To provide an overview of the relevant techniques and analysis tasks, as well as the relationships between them, we comprehensively analyzed 263 visualization papers and 4,346 mining papers published between 1992-2017 in two fields: visualization and text mining. From the analysis, we derived around 300 concepts (visualization techniques, mining techniques, and analysis tasks) and built a taxonomy for each type of concept. The co-occurrence relationships between the concepts were also extracted. Our research can be used as a stepping-stone for other researchers to 1) understand a common set of concepts used in this research topic; 2) facilitate the exploration of the relationships between visualization techniques, mining techniques, and analysis tasks; 3) understand the current practice in developing visual text analytics tools; 4) seek potential research opportunities by narrowing the gulf between visualization and mining techniques based on the analysis tasks; and 5) analyze other interdisciplinary research areas in a similar way. We have also contributed a web-based visualization tool for analyzing and understanding research trends and opportunities in visual text analytics.
Collapse
|
8
|
Wu Y, Chen Z, Sun G, Xie X, Cao N, Liu S, Cui W. StreamExplorer: A Multi-Stage System for Visually Exploring Events in Social Streams. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:2758-2772. [PMID: 29053452 DOI: 10.1109/tvcg.2017.2764459] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Analyzing social streams is important for many applications, such as crisis management. However, the considerable diversity, increasing volume, and high dynamics of social streams of large events continue to be significant challenges that must be overcome to ensure effective exploration. We propose a novel framework by which to handle complex social streams on a budget PC. This framework features two components: 1) an online method to detect important time periods (i.e., subevents), and 2) a tailored GPU-assisted Self-Organizing Map (SOM) method, which clusters the tweets of subevents stably and efficiently. Based on the framework, we present StreamExplorer to facilitate the visual analysis, tracking, and comparison of a social stream at three levels. At a macroscopic level, StreamExplorer uses a new glyph-based timeline visualization, which presents a quick multi-faceted overview of the ebb and flow of a social stream. At a mesoscopic level, a map visualization is employed to visually summarize the social stream from either a topical or geographical aspect. At a microscopic level, users can employ interactive lenses to visually examine and explore the social stream from different perspectives. Two case studies and a task-based evaluation are used to demonstrate the effectiveness and usefulness of StreamExplorer.Analyzing social streams is important for many applications, such as crisis management. However, the considerable diversity, increasing volume, and high dynamics of social streams of large events continue to be significant challenges that must be overcome to ensure effective exploration. We propose a novel framework by which to handle complex social streams on a budget PC. This framework features two components: 1) an online method to detect important time periods (i.e., subevents), and 2) a tailored GPU-assisted Self-Organizing Map (SOM) method, which clusters the tweets of subevents stably and efficiently. Based on the framework, we present StreamExplorer to facilitate the visual analysis, tracking, and comparison of a social stream at three levels. At a macroscopic level, StreamExplorer uses a new glyph-based timeline visualization, which presents a quick multi-faceted overview of the ebb and flow of a social stream. At a mesoscopic level, a map visualization is employed to visually summarize the social stream from either a topical or geographical aspect. At a microscopic level, users can employ interactive lenses to visually examine and explore the social stream from different perspectives. Two case studies and a task-based evaluation are used to demonstrate the effectiveness and usefulness of StreamExplorer.
Collapse
Affiliation(s)
- Yingcai Wu
- Computer Science, Zhejiang University, 12377 Hangzhou, Beijing China 310058 (e-mail: )
| | - Zhutian Chen
- Department of Computer Science and Engineering, Hong Kong University of Science and Technology, 58207 Kowloon, Hong Kong Hong Kong (e-mail: )
| | - Guodao Sun
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang China 310023 (e-mail: )
| | - Xiao Xie
- State Key Lab of CAD&CG, Zhejiang University, 12377 Hangzhou, Zhejiang China (e-mail: )
| | - Nan Cao
- College of Design and Innovation, Tongji University, 12476 Shanghai, Shanghai China (e-mail: )
| | - Shixia Liu
- School of Sotfware, Tsinghua University, Beijing, Beijing China (e-mail: )
| | - Weiwei Cui
- Internet Graphics, Microsoft Research Asia, Beijing, Beijing China (e-mail: )
| |
Collapse
|
9
|
Lu Y, Wang H, Landis S, Maciejewski R. A Visual Analytics Framework for Identifying Topic Drivers in Media Events. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:2501-2515. [PMID: 28920902 DOI: 10.1109/tvcg.2017.2752166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Media data has been the subject of large scale analysis with applications of text mining being used to provide overviews of media themes and information flows. Such information extracted from media articles has also shown its contextual value of being integrated with other data, such as criminal records and stock market pricing. In this work, we explore linking textual media data with curated secondary textual data sources through user-guided semantic lexical matching for identifying relationships and data links. In this manner, critical information can be identified and used to annotate media timelines in order to provide a more detailed overview of events that may be driving media topics and frames. These linked events are further analyzed through an application of causality modeling to model temporal drivers between the data series. Such causal links are then annotated through automatic entity extraction which enables the analyst to explore persons, locations, and organizations that may be pertinent to the media topic of interest. To demonstrate the proposed framework, two media datasets and an armed conflict event dataset are explored.
Collapse
|
10
|
Wang Q, Li Z, Fu S, Cui W, Qu H. Narvis: Authoring Narrative Slideshows for Introducing Data Visualization Designs. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:779-788. [PMID: 30136999 DOI: 10.1109/tvcg.2018.2865232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Visual designs can be complex in modern data visualization systems, which poses special challenges for explaining them to the non-experts. However, few if any presentation tools are tailored for this purpose. In this study, we present Narvis, a slideshow authoring tool designed for introducing data visualizations to non-experts. Narvis targets two types of end users: teachers, experts in data visualization who produce tutorials for explaining a data visualization, and students, non-experts who try to understand visualization designs through tutorials. We present an analysis of requirements through close discussions with the two types of end users. The resulting considerations guide the design and implementation of Narvis. Additionally, to help teachers better organize their introduction slideshows, we specify a data visualization as a hierarchical combination of components, which are automatically detected and extracted by Narvis. The teachers craft an introduction slideshow through first organizing these components, and then explaining them sequentially. A series of templates are provided for adding annotations and animations to improve efficiency during the authoring process. We evaluate Narvis through a qualitative analysis of the authoring experience, and a preliminary evaluation of the generated slideshows.
Collapse
|
11
|
Sultanum N, Singh D, Brudno M, Chevalier F. Doccurate: A Curation-Based Approach for Clinical Text Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:142-151. [PMID: 30136959 DOI: 10.1109/tvcg.2018.2864905] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Before seeing a patient, physicians seek to obtain an overview of the patient's medical history. Text plays a major role in this activity since it represents the bulk of the clinical documentation, but reviewing it quickly becomes onerous when patient charts grow too large. Text visualization methods have been widely explored to manage this large scale through visual summaries that rely on information retrieval algorithms to structure text and make it amenable to visualization. However, the integration with such automated approaches comes with a number of limitations, including significant error rates and the need for healthcare providers to fine-tune algorithms without expert knowledge of their inner mechanics. In addition, several of these approaches obscure or substitute the original clinical text and therefore fail to leverage qualitative and rhetorical flavours of the clinical notes. These drawbacks have limited the adoption of text visualization and other summarization technologies in clinical practice. In this work we present Doccurate, a novel system embodying a curation-based approach for the visualization of large clinical text datasets. Our approach offers automation auditing and customizability to physicians while also preserving and extensively linking to the original text. We discuss findings of a formal qualitative evaluation conducted with 6 domain experts, shedding light onto physicians' information needs, perceived strengths and limitations of automated tools, and the importance of customization while balancing efficiency. We also present use case scenarios to showcase Doccurate's envisioned usage in practice.
Collapse
|
12
|
Tang T, Rubab S, Lai J, Cui W, Yu L, Wu Y. iStoryline: Effective Convergence to Hand-drawn Storylines. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:769-778. [PMID: 30136956 DOI: 10.1109/tvcg.2018.2864899] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Storyline visualization techniques have progressed significantly to generate illustrations of complex stories automatically. However, the visual layouts of storylines are not enhanced accordingly despite the improvement in the performance and extension of its application area. Existing methods attempt to achieve several shared optimization goals, such as reducing empty space and minimizing line crossings and wiggles. However, these goals do not always produce optimal results when compared to hand-drawn storylines. We conducted a preliminary study to learn how users translate a narrative into a hand-drawn storyline and check whether the visual elements in hand-drawn illustrations can be mapped back to appropriate narrative contexts. We also compared the hand-drawn storylines with storylines generated by the state-of-the-art methods and found they have significant differences. Our findings led to a design space that summarizes 1) how artists utilize narrative elements and 2) the sequence of actions artists follow to portray expressive and attractive storylines. We developed iStoryline, an authoring tool for integrating high-level user interactions into optimization algorithms and achieving a balance between hand-drawn storylines and automatic layouts. iStoryline allows users to create novel storyline visualizations easily according to their preferences by modifying the automatically generated layouts. The effectiveness and usability of iStoryline are studied with qualitative evaluations.
Collapse
|
13
|
Personal Web Library: organizing and visualizing Web browsing history. INTERNATIONAL JOURNAL OF WEB INFORMATION SYSTEMS 2018. [DOI: 10.1108/ijwis-09-2017-0065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
Modern Web browsers all provide a history function that allows users to see a list of URLs they have visited in chronological order. The history log contains rich information but is seldom used because of the tedious nature of scrolling through long lists. This paper aims to propose a new way to improve users’ Web browsing experience by analyzing, clustering and visualizing their browsing history.
Design/methodology/approach
The authors developed a system called Personal Web Library to help users develop awareness of and understand their Web browsing patterns, identify their topics of interest and retrieve previously visited Web pages more easily.
Findings
User testing showed that this system is usable and attractive. It found that users can easily see patterns and trends at different time granularities, recall pages from the past and understand the local context of a browsing session. Its flexibility provides users with much more information than the traditional history function in modern Web browsers. Participants in the study gained an improved awareness of their Web browsing patterns. Participants mentioned that they were willing to improve their time management after viewing their browsing patterns.
Practical implications
As more and more daily activities rely on the internet and Web browsers, browsing data captures a large part of users’ lives. Providing users with interactive visualizations of their browsing history can facilitate personal information management, time management and other meta-level activities.
Originality/value
This paper aims to help users gain insights into and improve their Web browsing experience, the authors hope that the work they conducted can spur more research contributions in this underdeveloped yet important area.
Collapse
|
14
|
|
15
|
Wang Y, Chu X, Bao C, Zhu L, Deussen O, Chen B, Sedlmair M. EdWordle: Consistency-Preserving Word Cloud Editing. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:647-656. [PMID: 28866587 DOI: 10.1109/tvcg.2017.2745859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present EdWordle, a method for consistently editing word clouds. At its heart, EdWordle allows users to move and edit words while preserving the neighborhoods of other words. To do so, we combine a constrained rigid body simulation with a neighborhood-aware local Wordle algorithm to update the cloud and to create very compact layouts. The consistent and stable behavior of EdWordle enables users to create new forms of word clouds such as storytelling clouds in which the position of words is carefully edited. We compare our approach with state-of-the-art methods and show that we can improve user performance, user satisfaction, as well as the layout itself.
Collapse
|
16
|
Brehmer M, Lee B, Bach B, Riche NH, Munzner T. Timelines Revisited: A Design Space and Considerations for Expressive Storytelling. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:2151-2164. [PMID: 28113509 DOI: 10.1109/tvcg.2016.2614803] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
There are many ways to visualize event sequences as timelines. In a storytelling context where the intent is to convey multiple narrative points, a richer set of timeline designs may be more appropriate than the narrow range that has been used for exploratory data analysis by the research community. Informed by a survey of 263 timelines, we present a design space for storytelling with timelines that balances expressiveness and effectiveness, identifying 14 design choices characterized by three dimensions: representation, scale, and layout. Twenty combinations of these choices are viable timeline designs that can be matched to different narrative points, while smooth animated transitions between narrative points allow for the presentation of a cohesive story, an important aspect of both interactive storytelling and data videos. We further validate this design space by realizing the full set of viable timeline designs and transitions in a proof-of-concept sandbox implementation that we used to produce seven example timeline stories. Ultimately, this work is intended to inform and inspire the design of future tools for storytelling with timelines.
Collapse
|