1
|
Yin J, Jia H, Zhou B, Tang T, Ying L, Ye S, Peng TQ, Wu Y. Blowing Seeds Across Gardens: Visualizing Implicit Propagation of Cross-Platform Social Media Posts. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:185-195. [PMID: 39255156 DOI: 10.1109/tvcg.2024.3456181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Propagation analysis refers to studying how information spreads on social media, a pivotal endeavor for understanding social sentiment and public opinions. Numerous studies contribute to visualizing information spread, but few have considered the implicit and complex diffusion patterns among multiple platforms. To bridge the gap, we summarize cross-platform diffusion patterns with experts and identify significant factors that dissect the mechanisms of cross-platform information spread. Based on that, we propose an information diffusion model that estimates the likelihood of a topic/post spreading among different social media platforms. Moreover, we propose a novel visual metaphor that encapsulates cross-platform propagation in a manner analogous to the spread of seeds across gardens. Specifically, we visualize platforms, posts, implicit cross-platform routes, and salient instances as elements of a virtual ecosystem - gardens, flowers, winds, and seeds, respectively. We further develop a visual analytic system, namely BloomWind, that enables users to quickly identify the cross-platform diffusion patterns and investigate the relevant social media posts. Ultimately, we demonstrate the usage of BloomWind through two case studies and validate its effectiveness using expert interviews.
Collapse
|
2
|
Ying L, Shu X, Deng D, Yang Y, Tang T, Yu L, Wu Y. MetaGlyph: Automatic Generation of Metaphoric Glyph-based Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:331-341. [PMID: 36179002 DOI: 10.1109/tvcg.2022.3209447] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Glyph-based visualization achieves an impressive graphic design when associated with comprehensive visual metaphors, which help audiences effectively grasp the conveyed information through revealing data semantics. However, creating such metaphoric glyph-based visualization (MGV) is not an easy task, as it requires not only a deep understanding of data but also professional design skills. This paper proposes MetaGlyph, an automatic system for generating MGVs from a spreadsheet. To develop MetaGlyph, we first conduct a qualitative analysis to understand the design of current MGVs from the perspectives of metaphor embodiment and glyph design. Based on the results, we introduce a novel framework for generating MGVs by metaphoric image selection and an MGV construction. Specifically, MetaGlyph automatically selects metaphors with corresponding images from online resources based on the input data semantics. We then integrate a Monte Carlo tree search algorithm that explores the design of an MGV by associating visual elements with data dimensions given the data importance, semantic relevance, and glyph non-overlap. The system also provides editing feedback that allows users to customize the MGVs according to their design preferences. We demonstrate the use of MetaGlyph through a set of examples, one usage scenario, and validate its effectiveness through a series of expert interviews.
Collapse
|
3
|
Ding W, Abdel-Basset M, Hawash H, Ali AM. Explainability of artificial intelligence methods, applications and challenges: A comprehensive survey. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Deng Z, Weng D, Liu S, Tian Y, Xu M, Wu Y. A survey of urban visual analytics: Advances and future directions. COMPUTATIONAL VISUAL MEDIA 2022; 9:3-39. [PMID: 36277276 PMCID: PMC9579670 DOI: 10.1007/s41095-022-0275-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/08/2022] [Indexed: 06/16/2023]
Abstract
Developing effective visual analytics systems demands care in characterization of domain problems and integration of visualization techniques and computational models. Urban visual analytics has already achieved remarkable success in tackling urban problems and providing fundamental services for smart cities. To promote further academic research and assist the development of industrial urban analytics systems, we comprehensively review urban visual analytics studies from four perspectives. In particular, we identify 8 urban domains and 22 types of popular visualization, analyze 7 types of computational method, and categorize existing systems into 4 types based on their integration of visualization techniques and computational models. We conclude with potential research directions and opportunities.
Collapse
Affiliation(s)
- Zikun Deng
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| | - Di Weng
- Microsoft Research Asia, Beijing, 100080 China
| | - Shuhan Liu
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| | - Yuan Tian
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| | - Mingliang Xu
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001 China
| | - Yingcai Wu
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
5
|
Ying L, Tangl T, Luo Y, Shen L, Xie X, Yu L, Wu Y. GlyphCreator: Towards Example-based Automatic Generation of Circular Glyphs. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:400-410. [PMID: 34596552 DOI: 10.1109/tvcg.2021.3114877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Circular glyphs are used across disparate fields to represent multidimensional data. However, although these glyphs are extremely effective, creating them is often laborious, even for those with professional design skills. This paper presents GlyphCreator, an interactive tool for the example-based generation of circular glyphs. Given an example circular glyph and multidimensional input data, GlyphCreator promptly generates a list of design candidates, any of which can be edited to satisfy the requirements of a particular representation. To develop GlyphCreator, we first derive a design space of circular glyphs by summarizing relationships between different visual elements. With this design space, we build a circular glyph dataset and develop a deep learning model for glyph parsing. The model can deconstruct a circular glyph bitmap into a series of visual elements. Next, we introduce an interface that helps users bind the input data attributes to visual elements and customize visual styles. We evaluate the parsing model through a quantitative experiment, demonstrate the use of GlyphCreator through two use scenarios, and validate its effectiveness through user interviews.
Collapse
|
6
|
Mohseni S, Zarei N, Ragan ED. A Multidisciplinary Survey and Framework for Design and Evaluation of Explainable AI Systems. ACM T INTERACT INTEL 2021. [DOI: 10.1145/3387166] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The need for interpretable and accountable intelligent systems grows along with the prevalence of
artificial intelligence
(
AI
) applications used in everyday life.
Explainable AI
(
XAI
) systems are intended to self-explain the reasoning behind system decisions and predictions. Researchers from different disciplines work together to define, design, and evaluate explainable systems. However, scholars from different disciplines focus on different objectives and fairly independent topics of XAI research, which poses challenges for identifying appropriate design and evaluation methodology and consolidating knowledge across efforts. To this end, this article presents a survey and framework intended to share knowledge and experiences of XAI design and evaluation methods across multiple disciplines. Aiming to support diverse design goals and evaluation methods in XAI research, after a thorough review of XAI related papers in the fields of machine learning, visualization, and human-computer interaction, we present a categorization of XAI design goals and evaluation methods. Our categorization presents the mapping between design goals for different XAI user groups and their evaluation methods. From our findings, we develop a framework with step-by-step design guidelines paired with evaluation methods to close the iterative design and evaluation cycles in multidisciplinary XAI teams. Further, we provide summarized ready-to-use tables of evaluation methods and recommendations for different goals in XAI research.
Collapse
|
7
|
Weng D, Zheng C, Deng Z, Ma M, Bao J, Zheng Y, Xu M, Wu Y. Towards Better Bus Networks: A Visual Analytics Approach. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:817-827. [PMID: 33048743 DOI: 10.1109/tvcg.2020.3030458] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bus routes are typically updated every 3-5 years to meet constantly changing travel demands. However, identifying deficient bus routes and finding their optimal replacements remain challenging due to the difficulties in analyzing a complex bus network and the large solution space comprising alternative routes. Most of the automated approaches cannot produce satisfactory results in real-world settings without laborious inspection and evaluation of the candidates. The limitations observed in these approaches motivate us to collaborate with domain experts and propose a visual analytics solution for the performance analysis and incremental planning of bus routes based on an existing bus network. Developing such a solution involves three major challenges, namely, a) the in-depth analysis of complex bus route networks, b) the interactive generation of improved route candidates, and c) the effective evaluation of alternative bus routes. For challenge a, we employ an overview-to-detail approach by dividing the analysis of a complex bus network into three levels to facilitate the efficient identification of deficient routes. For challenge b, we improve a route generation model and interpret the performance of the generation with tailored visualizations. For challenge c, we incorporate a conflict resolution strategy in the progressive decision-making process to assist users in evaluating the alternative routes and finding the most optimal one. The proposed system is evaluated with two usage scenarios based on real-world data and received positive feedback from the experts. Index Terms-Bus route planning, spatial decision-making, urban data visual analytics.
Collapse
|
8
|
Xu K, Salisu S, Nguyen PH, Walker R, Wong BLW, Wagstaff A, Phillips G, Biggs M, Potel M. TimeSets: Temporal Sensemaking in Intelligence Analysis. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2020; 40:83-93. [PMID: 32356730 DOI: 10.1109/mcg.2020.2981855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
TimeSets is a temporal data visualization technique designed to reveal insights into event sets, such as all the events linked to one person or organization. In this article, we describe two TimeSets-based visual analytics tools for intelligence analysis. In the first case, TimeSets is integrated with other visual analytics tools to support open-source intelligence analysis with Twitter data, particularly the challenge of finding the right questions to ask. The second case uses TimeSets in a participatory design process with analysts that aims to meet their requirements of uncertainty analysis involving fake news. Lessons learned are potentially beneficial to other application domains.
Collapse
|
9
|
Liu S, Wang X, Collins C, Dou W, Ouyang F, El-Assady M, Jiang L, Keim DA. Bridging Text Visualization and Mining: A Task-Driven Survey. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2019; 25:2482-2504. [PMID: 29993887 DOI: 10.1109/tvcg.2018.2834341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Visual text analytics has recently emerged as one of the most prominent topics in both academic research and the commercial world. To provide an overview of the relevant techniques and analysis tasks, as well as the relationships between them, we comprehensively analyzed 263 visualization papers and 4,346 mining papers published between 1992-2017 in two fields: visualization and text mining. From the analysis, we derived around 300 concepts (visualization techniques, mining techniques, and analysis tasks) and built a taxonomy for each type of concept. The co-occurrence relationships between the concepts were also extracted. Our research can be used as a stepping-stone for other researchers to 1) understand a common set of concepts used in this research topic; 2) facilitate the exploration of the relationships between visualization techniques, mining techniques, and analysis tasks; 3) understand the current practice in developing visual text analytics tools; 4) seek potential research opportunities by narrowing the gulf between visualization and mining techniques based on the analysis tasks; and 5) analyze other interdisciplinary research areas in a similar way. We have also contributed a web-based visualization tool for analyzing and understanding research trends and opportunities in visual text analytics.
Collapse
|
10
|
Chen Y, Guan Z, Zhang R, Du X, Wang Y. A survey on visualization approaches for exploring association relationships in graph data. J Vis (Tokyo) 2019. [DOI: 10.1007/s12650-019-00551-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Li H, Fang S, Mukhopadhyay S, Saykin AJ, Shen L. Interactive Machine Learning by Visualization: A Small Data Solution. PROCEEDINGS : ... IEEE INTERNATIONAL CONFERENCE ON BIG DATA. IEEE INTERNATIONAL CONFERENCE ON BIG DATA 2018; 2018:3513-3521. [PMID: 31061990 DOI: 10.1109/bigdata.2018.8621952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Machine learning algorithms and traditional data mining process usually require a large volume of data to train the algorithm-specific models, with little or no user feedback during the model building process. Such a "big data" based automatic learning strategy is sometimes unrealistic for applications where data collection or processing is very expensive or difficult, such as in clinical trials. Furthermore, expert knowledge can be very valuable in the model building process in some fields such as biomedical sciences. In this paper, we propose a new visual analytics approach to interactive machine learning and visual data mining. In this approach, multi-dimensional data visualization techniques are employed to facilitate user interactions with the machine learning and mining process. This allows dynamic user feedback in different forms, such as data selection, data labeling, and data correction, to enhance the efficiency of model building. In particular, this approach can significantly reduce the amount of data required for training an accurate model, and therefore can be highly impactful for applications where large amount of data is hard to obtain. The proposed approach is tested on two application problems: the handwriting recognition (classification) problem and the human cognitive score prediction (regression) problem. Both experiments show that visualization supported interactive machine learning and data mining can achieve the same accuracy as an automatic process can with much smaller training data sets.
Collapse
Affiliation(s)
- Huang Li
- Department of Computer & Information Science, Indiana University Purdue University Indianapolis
| | - Shiaofen Fang
- Department of Computer & Information Science, Indiana University Purdue University Indianapolis
| | - Snehasis Mukhopadhyay
- Department of Computer & Information Science, Indiana University Purdue University Indianapolis
| | | | - Li Shen
- University of Pennsylvania Perelman School of Medicine
| |
Collapse
|
12
|
|
13
|
Tang T, Yuan K, Tang J, Wu Y. Toward the better modeling and visualization of uncertainty for streaming data. J Vis (Tokyo) 2018. [DOI: 10.1007/s12650-018-0518-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Liu S, Chen C, Lu Y, Ouyang F, Wang B. An Interactive Method to Improve Crowdsourced Annotations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:235-245. [PMID: 30130224 DOI: 10.1109/tvcg.2018.2864843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In order to effectively infer correct labels from noisy crowdsourced annotations, learning-from-crowds models have introduced expert validation. However, little research has been done on facilitating the validation procedure. In this paper, we propose an interactive method to assist experts in verifying uncertain instance labels and unreliable workers. Given the instance labels and worker reliability inferred from a learning-from-crowds model, candidate instances and workers are selected for expert validation. The influence of verified results is propagated to relevant instances and workers through the learning-from-crowds model. To facilitate the validation of annotations, we have developed a confusion visualization to indicate the confusing classes for further exploration, a constrained projection method to show the uncertain labels in context, and a scatter-plot-based visualization to illustrate worker reliability. The three visualizations are tightly integrated with the learning-from-crowds model to provide an iterative and progressive environment for data validation. Two case studies were conducted that demonstrate our approach offers an efficient method for validating and improving crowdsourced annotations.
Collapse
|
15
|
Liu M, Shi J, Li Z, Li C, Zhu J, Liu S. Towards Better Analysis of Deep Convolutional Neural Networks. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:91-100. [PMID: 27576252 DOI: 10.1109/tvcg.2016.2598831] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Deep convolutional neural networks (CNNs) have achieved breakthrough performance in many pattern recognition tasks such as image classification. However, the development of high-quality deep models typically relies on a substantial amount of trial-and-error, as there is still no clear understanding of when and why a deep model works. In this paper, we present a visual analytics approach for better understanding, diagnosing, and refining deep CNNs. We formulate a deep CNN as a directed acyclic graph. Based on this formulation, a hybrid visualization is developed to disclose the multiple facets of each neuron and the interactions between them. In particular, we introduce a hierarchical rectangle packing algorithm and a matrix reordering algorithm to show the derived features of a neuron cluster. We also propose a biclustering-based edge bundling method to reduce visual clutter caused by a large number of connections between neurons. We evaluated our method on a set of CNNs and the results are generally favorable.
Collapse
|
16
|
von Landesberger T, Bremm S, Wunderlich M. Typology of Uncertainty in Static Geolocated Graphs for Visualization. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2017; 37:18-27. [PMID: 28945576 DOI: 10.1109/mcg.2017.3621220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Static geolocated graphs have nodes connected by edges, where both can have geographic location and associated attributes. For example, it can be uncertain exactly where a node is located or whether an edge between two nodes exists. Because source data is often incomplete or inexact, it is necessary to visualize this uncertainty to help users make appropriate decisions. The proposed typology of uncertainty extends related typologies with specific features needed for characterizing uncertainty in static geolocated graphs.
Collapse
|
17
|
Wang X, Liu S, Liu J, Chen J, Zhu J, Guo B. TopicPanorama: A Full Picture of Relevant Topics. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2016; 22:2508-2521. [PMID: 26761818 DOI: 10.1109/tvcg.2016.2515592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper presents a visual analytics approach to analyzing a full picture of relevant topics discussed in multiple sources, such as news, blogs, or micro-blogs. The full picture consists of a number of common topics covered by multiple sources, as well as distinctive topics from each source. Our approach models each textual corpus as a topic graph. These graphs are then matched using a consistent graph matching method. Next, we develop a level-of-detail (LOD) visualization that balances both readability and stability. Accordingly, the resulting visualization enhances the ability of users to understand and analyze the matched graph from multiple perspectives. By incorporating metric learning and feature selection into the graph matching algorithm, we allow users to interactively modify the graph matching result based on their information needs. We have applied our approach to various types of data, including news articles, tweets, and blog data. Quantitative evaluation and real-world case studies demonstrate the promise of our approach, especially in support of examining a topic-graph-based full picture at different levels of detail.
Collapse
|