1
|
Mota R, Ferreira N, Silva JD, Horga M, Lage M, Ceferino L, Alim U, Sharlin E, Miranda F. A Comparison of Spatiotemporal Visualizations for 3D Urban Analytics. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:1277-1287. [PMID: 36166521 DOI: 10.1109/tvcg.2022.3209474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recent technological innovations have led to an increase in the availability of 3D urban data, such as shadow, noise, solar potential, and earthquake simulations. These spatiotemporal datasets create opportunities for new visualizations to engage experts from different domains to study the dynamic behavior of urban spaces in this under explored dimension. However, designing 3D spatiotemporal urban visualizations is challenging, as it requires visual strategies to support analysis of time-varying data referent to the city geometry. Although different visual strategies have been used in 3D urban visual analytics, the question of how effective these visual designs are at supporting spatiotemporal analysis on building surfaces remains open. To investigate this, in this paper we first contribute a series of analytical tasks elicited after interviews with practitioners from three urban domains. We also contribute a quantitative user study comparing the effectiveness of four representative visual designs used to visualize 3D spatiotemporal urban data: spatial juxtaposition, temporal juxtaposition, linked view, and embedded view. Participants performed a series of tasks that required them to identify extreme values on building surfaces over time. Tasks varied in granularity for both space and time dimensions. Our results demonstrate that participants were more accurate using plot-based visualizations (linked view, embedded view) but faster using color-coded visualizations (spatial juxtaposition, temporal juxtaposition). Our results also show that, with increasing task complexity, plot-based visualizations perform better in preserving efficiency (time, accuracy) compared to color-coded visualizations. Based on our findings, we present a set of takeaways with design recommendations for 3D spatiotemporal urban visualizations for researchers and practitioners. Lastly, we report on a series of interviews with four practitioners, and their feedback and suggestions for further work on the visualizations to support 3D spatiotemporal urban data analysis.
Collapse
|
2
|
Rydow E, Borgo R, Fang H, Torsney-Weir T, Swallow B, Porphyre T, Turkay C, Chen M. Development and Evaluation of Two Approaches of Visual Sensitivity Analysis to Support Epidemiological Modeling. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:1255-1265. [PMID: 36173770 DOI: 10.1109/tvcg.2022.3209464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Computational modeling is a commonly used technology in many scientific disciplines and has played a noticeable role in combating the COVID-19 pandemic. Modeling scientists conduct sensitivity analysis frequently to observe and monitor the behavior of a model during its development and deployment. The traditional algorithmic ranking of sensitivity of different parameters usually does not provide modeling scientists with sufficient information to understand the interactions between different parameters and model outputs, while modeling scientists need to observe a large number of model runs in order to gain actionable information for parameter optimization. To address the above challenge, we developed and compared two visual analytics approaches, namely: algorithm-centric and visualization-assisted, and visualization-centric and algorithm-assisted. We evaluated the two approaches based on a structured analysis of different tasks in visual sensitivity analysis as well as the feedback of domain experts. While the work was carried out in the context of epidemiological modeling, the two approaches developed in this work are directly applicable to a variety of modeling processes featuring time series outputs, and can be extended to work with models with other types of outputs.
Collapse
|
3
|
Tkachev G, Frey S, Ertl T. S4: Self-Supervised Learning of Spatiotemporal Similarity. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:4713-4727. [PMID: 34339374 DOI: 10.1109/tvcg.2021.3101418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We introduce an ML-driven approach that enables interactive example-based queries for similar behavior in ensembles of spatiotemporal scientific data. This addresses an important use case in the visual exploration of simulation and experimental data, where data is often large, unlabeled and has no meaningful similarity measures available. We exploit the fact that nearby locations often exhibit similar behavior and train a Siamese Neural Network in a self-supervised fashion, learning an expressive latent space for spatiotemporal behavior. This space can be used to find similar behavior with just a few user-provided examples. We evaluate this approach on several ensemble datasets and compare with multiple existing methods, showing both qualitative and quantitative results.
Collapse
|
4
|
Khalemsky A, Gelbard R. ExpanDrogram: Dynamic Visualization of Big Data Segmentation over Time. ACM JOURNAL OF DATA AND INFORMATION QUALITY 2021. [DOI: 10.1145/3434778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In dynamic and big data environments the visualization of a segmentation process over time often does not enable the user to simultaneously track entire pieces. The key points are sometimes incomparable, and the user is limited to a static visual presentation of a certain point. The proposed visualization concept, called ExpanDrogram, is designed to support dynamic classifiers that run in a big data environment subject to changes in data characteristics. It offers a wide range of features that seek to maximize the customization of a segmentation problem. The main goal of the ExpanDrogram visualization is to improve comprehensiveness by combining both the individual and segment levels, illustrating the dynamics of the segmentation process over time, providing “version control” that enables the user to observe the history of changes, and more. The method is illustrated using different datasets, with which we demonstrate multiple segmentation parameters, as well as multiple display layers, to highlight points such as new trend detection, outlier detection, tracking changes in original segments, and zoom in/out for more/less detail. The datasets vary in size from a small one to one of more than 12 million records.
Collapse
Affiliation(s)
- A. Khalemsky
- Information Systems Program, Graduate School of Business Administration, Bar-Ilan University, Ramat Gan, Israel
| | - R. Gelbard
- Information Systems Program, Graduate School of Business Administration, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
5
|
Kamal A, Dhakal P, Javaid AY, Devabhaktuni VK, Kaur D, Zaientz J, Marinier R. Recent advances and challenges in uncertainty visualization: a survey. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-021-00755-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Wang J, Hazarika S, Li C, Shen HW. Visualization and Visual Analysis of Ensemble Data: A Survey. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2019; 25:2853-2872. [PMID: 29994615 DOI: 10.1109/tvcg.2018.2853721] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Over the last decade, ensemble visualization has witnessed a significant development due to the wide availability of ensemble data, and the increasing visualization needs from a variety of disciplines. From the data analysis point of view, it can be observed that many ensemble visualization works focus on the same facet of ensemble data, use similar data aggregation or uncertainty modeling methods. However, the lack of reflections on those essential commonalities and a systematic overview of those works prevents visualization researchers from effectively identifying new or unsolved problems and planning for further developments. In this paper, we take a holistic perspective and provide a survey of ensemble visualization. Specifically, we study ensemble visualization works in the recent decade, and categorize them from two perspectives: (1) their proposed visualization techniques; and (2) their involved analytic tasks. For the first perspective, we focus on elaborating how conventional visualization techniques (e.g., surface, volume visualization techniques) have been adapted to ensemble data; for the second perspective, we emphasize how analytic tasks (e.g., comparison, clustering) have been performed differently for ensemble data. From the study of ensemble visualization literature, we have also identified several research trends, as well as some future research opportunities.
Collapse
|
7
|
Ma B, Entezari A. An Interactive Framework for Visualization of Weather Forecast Ensembles. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:1091-1101. [PMID: 30130213 DOI: 10.1109/tvcg.2018.2864815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Numerical Weather Prediction (NWP) ensembles are commonly used to assess the uncertainty and confidence in weather forecasts. Spaghetti plots are conventional tools for meteorologists to directly examine the uncertainty exhibited by ensembles, where they simultaneously visualize isocontours of all ensemble members. To avoid visual clutter in practical usages, one needs to select a small number of informative isovalues for visual analysis. Moreover, due to the complex topology and variation of ensemble isocontours, it is often a challenging task to interpret the spaghetti plot for even a single isovalue in large ensembles. In this paper, we propose an interactive framework for uncertainty visualization of weather forecast ensembles that significantly improves and expands the utility of spaghetti plots in ensemble analysis. Complementary to state-of-the-art methods, our approach provides a complete framework for visual exploration of ensemble isocontours, including isovalue selection, interactive isocontour variability exploration, and interactive sub-region selection and re-analysis. Our framework is built upon the high-density clustering paradigm, where the mode structure of the density function is represented as a hierarchy of nested subsets of the data. We generalize the high-density clustering for isocontours and propose a bandwidth selection method for estimating the density function of ensemble isocontours. We present novel visualizations based on high-density clustering results, called the mode plot and the simplified spaghetti plot. The proposed mode plot visually encodes the structure provided by the high-density clustering result and summarizes the distribution of ensemble isocontours. It also enables the selection of subsets of interesting isocontours, which are interactively highlighted in a linked spaghetti plot for providing spatial context. To provide an interpretable overview of the positional variability of isocontours, our system allows for selection of informative isovalues from the simplified spaghetti plot. Due to the spatial variability of ensemble isocontours, the system allows for interactive selection and focus on sub-regions for local uncertainty and clustering re-analysis. We examine a number of ensemble datasets to establish the utility of our approach and discuss its advantages over state-of-the-art visual analysis tools for ensemble data.
Collapse
|
8
|
Xu K, Xia M, Mu X, Wang Y, Cao N. EnsembleLens: Ensemble-based Visual Exploration of Anomaly Detection Algorithms with Multidimensional Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:109-119. [PMID: 30130216 DOI: 10.1109/tvcg.2018.2864825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The results of anomaly detection are sensitive to the choice of detection algorithms as they are specialized for different properties of data, especially for multidimensional data. Thus, it is vital to select the algorithm appropriately. To systematically select the algorithms, ensemble analysis techniques have been developed to support the assembly and comparison of heterogeneous algorithms. However, challenges remain due to the absence of the ground truth, interpretation, or evaluation of these anomaly detectors. In this paper, we present a visual analytics system named EnsembleLens that evaluates anomaly detection algorithms based on the ensemble analysis process. The system visualizes the ensemble processes and results by a set of novel visual designs and multiple coordinated contextual views to meet the requirements of correlation analysis, assessment and reasoning of anomaly detection algorithms. We also introduce an interactive analysis workflow that dynamically produces contextualized and interpretable data summaries that allow further refinements of exploration results based on user feedback. We demonstrate the effectiveness of EnsembleLens through a quantitative evaluation, three case studies with real-world data and interviews with two domain experts.
Collapse
|
9
|
Luciani T, Burks A, Sugiyama C, Komperda J, Marai GE. Details-First, Show Context, Overview Last: Supporting Exploration of Viscous Fingers in Large-Scale Ensemble Simulations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:10.1109/TVCG.2018.2864849. [PMID: 30136949 PMCID: PMC6382591 DOI: 10.1109/tvcg.2018.2864849] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Visualization research often seeks designs that first establish an overview of the data, in accordance to the information seeking mantra: "Overview first, zoom and filter, then details on demand". However, in computational fluid dynamics (CFD), as well as in other domains, there are many situations where such a spatial overview is not relevant or practical for users, for example when the experts already have a good mental overview of the data, or when an analysis of a large overall structure may not be related to the specific, information-driven tasks of users. Using scientific workflow theory and, as a vehicle, the problem of viscous finger evolution, we advocate an alternative model that allows domain experts to explore features of interest first, then explore the context around those features, and finally move to a potentially unfamiliar summarization overview. In a model instantiation, we show how a computational back-end can identify and track over time low-level, small features, then be used to filter the context of those features while controlling the complexity of the visualization, and finally to summarize and compare simulations. We demonstrate the effectiveness of this approach with an online web-based exploration of a total volume of data approaching half a billion seven-dimensional data points, and report supportive feedback provided by domain experts with respect to both the instantiation and the theoretical model.
Collapse
Affiliation(s)
- Timothy Luciani
- Electronic Visualization Laboratory, University of Illinois at Chicago.
| | - Andrew Burks
- Electronic Visualization Laboratory, University of Illinois at Chicago.
| | | | - Jonathan Komperda
- Department of Mechanical & Industrial Engineering, University of Illinois at Chicago
| | | |
Collapse
|
10
|
Wang J, Liu X, Shen HW, Lin G. Multi-Resolution Climate Ensemble Parameter Analysis with Nested Parallel Coordinates Plots. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:81-90. [PMID: 27875136 DOI: 10.1109/tvcg.2016.2598830] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Due to the uncertain nature of weather prediction, climate simulations are usually performed multiple times with different spatial resolutions. The outputs of simulations are multi-resolution spatial temporal ensembles. Each simulation run uses a unique set of values for multiple convective parameters. Distinct parameter settings from different simulation runs in different resolutions constitute a multi-resolution high-dimensional parameter space. Understanding the correlation between the different convective parameters, and establishing a connection between the parameter settings and the ensemble outputs are crucial to domain scientists. The multi-resolution high-dimensional parameter space, however, presents a unique challenge to the existing correlation visualization techniques. We present Nested Parallel Coordinates Plot (NPCP), a new type of parallel coordinates plots that enables visualization of intra-resolution and inter-resolution parameter correlations. With flexible user control, NPCP integrates superimposition, juxtaposition and explicit encodings in a single view for comparative data visualization and analysis. We develop an integrated visual analytics system to help domain scientists understand the connection between multi-resolution convective parameters and the large spatial temporal ensembles. Our system presents intricate climate ensembles with a comprehensive overview and on-demand geographic details. We demonstrate NPCP, along with the climate ensemble visualization system, based on real-world use-cases from our collaborators in computational and predictive science.
Collapse
|
11
|
Biswas A, Lin G, Liu X, Shen HW. Visualization of Time-Varying Weather Ensembles across Multiple Resolutions. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2017; 23:841-850. [PMID: 27875198 DOI: 10.1109/tvcg.2016.2598869] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Uncertainty quantification in climate ensembles is an important topic for the domain scientists, especially for decision making in the real-world scenarios. With powerful computers, simulations now produce time-varying and multi-resolution ensemble data sets. It is of extreme importance to understand the model sensitivity given the input parameters such that more computation power can be allocated to the parameters with higher influence on the output. Also, when ensemble data is produced at different resolutions, understanding the accuracy of different resolutions helps the total time required to produce a desired quality solution with improved storage and computation cost. In this work, we propose to tackle these non-trivial problems on the Weather Research and Forecasting (WRF) model output. We employ a moment independent sensitivity measure to quantify and analyze parameter sensitivity across spatial regions and time domain. A comparison of clustering structures across three resolutions enables the users to investigate the sensitivity variation over the spatial regions of the five input parameters. The temporal trend in the sensitivity values is explored via an MDS view linked with a line chart for interactive brushing. The spatial and temporal views are connected to provide a full exploration system for complete spatio-temporal sensitivity analysis. To analyze the accuracy across varying resolutions, we formulate a Bayesian approach to identify which regions are better predicted at which resolutions compared to the observed precipitation. This information is aggregated over the time domain and finally encoded in an output image through a custom color map that guides the domain experts towards an adaptive grid implementation given a cost model. Users can select and further analyze the spatial and temporal error patterns for multi-resolution accuracy analysis via brushing and linking on the produced image. In this work, we collaborate with a domain expert whose feedback shows the effectiveness of our proposed exploration work-flow.
Collapse
|