1
|
Li G, Liu Y, Shan G, Cheng S, Cao W, Wang J, Wang KC. ParamsDrag: Interactive Parameter Space Exploration via Image-Space Dragging. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:624-634. [PMID: 39250408 DOI: 10.1109/tvcg.2024.3456338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Numerical simulation serves as a cornerstone in scientific modeling, yet the process of fine-tuning simulation parameters poses significant challenges. Conventionally, parameter adjustment relies on extensive numerical simulations, data analysis, and expert insights, resulting in substantial computational costs and low efficiency. The emergence of deep learning in recent years has provided promising avenues for more efficient exploration of parameter spaces. However, existing approaches often lack intuitive methods for precise parameter adjustment and optimization. To tackle these challenges, we introduce ParamsDrag, a model that facilitates parameter space exploration through direct interaction with visualizations. Inspired by DragGAN, our ParamsDrag model operates in three steps. First, the generative component of ParamsDrag generates visualizations based on the input simulation parameters. Second, by directly dragging structure-related features in the visualizations, users can intuitively understand the controlling effect of different parameters. Third, with the understanding from the earlier step, users can steer ParamsDrag to produce dynamic visual outcomes. Through experiments conducted on real-world simulations and comparisons with state-of-the-art deep learning-based approaches, we demonstrate the efficacy of our solution.
Collapse
|
2
|
Zhang M, Li Q, Chen L, Yuan X, Yong J. EnConVis: A Unified Framework for Ensemble Contour Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:2067-2079. [PMID: 34982686 DOI: 10.1109/tvcg.2021.3140153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ensemble simulation is a crucial method to handle potential uncertainty in modern simulation and has been widely applied in many disciplines. Many ensemble contour visualization methods have been introduced to facilitate ensemble data analysis. On the basis of deep exploration and summarization of existing techniques and domain requirements, we propose a unified framework of ensemble contour visualization, EnConVis (Ensemble Contour Visualization), which systematically combines state-of-the-art methods. We model ensemble contour visualization as a four-step pipeline consisting of four essential procedures: member filtering, point-wise modeling, uncertainty band extraction, and visual mapping. For each of the four essential procedures, we compare different methods they use, analyze their pros and cons, highlight research gaps, and attempt to fill them. Specifically, we add Kernel Density Estimation in the point-wise modeling procedure and multi-layer extraction in the uncertainty band extraction procedure. This step shows the ensemble data's details accurately and provides abstract levels. We also analyze existing methods from a global perspective. We investigate their mechanisms and compare their effects, on the basis of which, we offer selection guidelines for them. From the overall perspective of this framework, we find choices and combinations that have not been tried before, which can be well compensated by our method. Synthetic data and real-world data are leveraged to verify the efficacy of our method. Domain experts' feedback suggests that our approach helps them better understand ensemble data analysis.
Collapse
|
3
|
Nipu N, Floricel C, Naghashzadeh N, Paoli R, Marai GE. Visual Analysis and Detection of Contrails in Aircraft Engine Simulations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:798-808. [PMID: 36166562 PMCID: PMC10621327 DOI: 10.1109/tvcg.2022.3209356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Contrails are condensation trails generated from emitted particles by aircraft engines, which perturb Earth's radiation budget. Simulation modeling is used to interpret the formation and development of contrails. These simulations are computationally intensive and rely on high-performance computing solutions, and the contrail structures are not well defined. We propose a visual computing system to assist in defining contrails and their characteristics, as well as in the analysis of parameters for computer-generated aircraft engine simulations. The back-end of our system leverages a contrail-formation criterion and clustering methods to detect contrails' shape and evolution and identify similar simulation runs. The front-end system helps analyze contrails and their parameters across multiple simulation runs. The evaluation with domain experts shows this approach successfully aids in contrail data investigation.
Collapse
|
4
|
Kamal A, Dhakal P, Javaid AY, Devabhaktuni VK, Kaur D, Zaientz J, Marinier R. Recent advances and challenges in uncertainty visualization: a survey. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-021-00755-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Zhang M, Chen L, Li Q, Yuan X, Yong J. Uncertainty-Oriented Ensemble Data Visualization and Exploration using Variable Spatial Spreading. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1808-1818. [PMID: 33048703 DOI: 10.1109/tvcg.2020.3030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As an important method of handling potential uncertainties in numerical simulations, ensemble simulation has been widely applied in many disciplines. Visualization is a promising and powerful ensemble simulation analysis method. However, conventional visualization methods mainly aim at data simplification and highlighting important information based on domain expertise instead of providing a flexible data exploration and intervention mechanism. Trial-and-error procedures have to be repeatedly conducted by such approaches. To resolve this issue, we propose a new perspective of ensemble data analysis using the attribute variable dimension as the primary analysis dimension. Particularly, we propose a variable uncertainty calculation method based on variable spatial spreading. Based on this method, we design an interactive ensemble analysis framework that provides a flexible interactive exploration of the ensemble data. Particularly, the proposed spreading curve view, the region stability heat map view, and the temporal analysis view, together with the commonly used 2D map view, jointly support uncertainty distribution perception, region selection, and temporal analysis, as well as other analysis requirements. We verify our approach by analyzing a real-world ensemble simulation dataset. Feedback collected from domain experts confirms the efficacy of our framework.
Collapse
|
6
|
Wang J, Hazarika S, Li C, Shen HW. Visualization and Visual Analysis of Ensemble Data: A Survey. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2019; 25:2853-2872. [PMID: 29994615 DOI: 10.1109/tvcg.2018.2853721] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Over the last decade, ensemble visualization has witnessed a significant development due to the wide availability of ensemble data, and the increasing visualization needs from a variety of disciplines. From the data analysis point of view, it can be observed that many ensemble visualization works focus on the same facet of ensemble data, use similar data aggregation or uncertainty modeling methods. However, the lack of reflections on those essential commonalities and a systematic overview of those works prevents visualization researchers from effectively identifying new or unsolved problems and planning for further developments. In this paper, we take a holistic perspective and provide a survey of ensemble visualization. Specifically, we study ensemble visualization works in the recent decade, and categorize them from two perspectives: (1) their proposed visualization techniques; and (2) their involved analytic tasks. For the first perspective, we focus on elaborating how conventional visualization techniques (e.g., surface, volume visualization techniques) have been adapted to ensemble data; for the second perspective, we emphasize how analytic tasks (e.g., comparison, clustering) have been performed differently for ensemble data. From the study of ensemble visualization literature, we have also identified several research trends, as well as some future research opportunities.
Collapse
|
7
|
Kappe CP, Bottinger M, Leitte H. Exploring Variability within Ensembles of Decadal Climate Predictions. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2019; 25:1499-1512. [PMID: 29994584 DOI: 10.1109/tvcg.2018.2810919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ensemble simulations are used in climate research to account for natural variability. For medium-term decadal predictions, each simulation run is initialized with real observations from a different day resulting in a set of possible climatic futures. Understanding the variability and the predictive power in this wealth of data is still a challenging task. In this paper, we introduce a visual analytics system to explore variability within ensembles of decadal climate predictions. We propose a new interactive visualization technique (clustering timeline) based on the Sankey diagram, which conveys a concise summary of data similarity and its changes over time. We augment the system with two additional visualizations, filled contour maps and heatmaps, to provide analysts with additional information relating the new diagram to raw data and automatic clustering results. The usefulness of the technique is demonstrated by case studies and user interviews.
Collapse
|
8
|
Rautenhaus M, Bottinger M, Siemen S, Hoffman R, Kirby RM, Mirzargar M, Rober N, Westermann R. Visualization in Meteorology-A Survey of Techniques and Tools for Data Analysis Tasks. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:3268-3296. [PMID: 29990196 DOI: 10.1109/tvcg.2017.2779501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This article surveys the history and current state of the art of visualization in meteorology, focusing on visualization techniques and tools used for meteorological data analysis. We examine characteristics of meteorological data and analysis tasks, describe the development of computer graphics methods for visualization in meteorology from the 1960s to today, and visit the state of the art of visualization techniques and tools in operational weather forecasting and atmospheric research. We approach the topic from both the visualization and the meteorological side, showing visualization techniques commonly used in meteorological practice, and surveying recent studies in visualization research aimed at meteorological applications. Our overview covers visualization techniques from the fields of display design, 3D visualization, flow dynamics, feature-based visualization, comparative visualization and data fusion, uncertainty and ensemble visualization, interactive visual analysis, efficient rendering, and scalability and reproducibility. We discuss demands and challenges for visualization research targeting meteorological data analysis, highlighting aspects in demonstration of benefit, interactive visual analysis, seamless visualization, ensemble visualization, 3D visualization, and technical issues.
Collapse
|
9
|
Hazarika S, Biswas A, Shen HW. Uncertainty Visualization Using Copula-Based Analysis in Mixed Distribution Models. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:934-943. [PMID: 28866523 DOI: 10.1109/tvcg.2017.2744099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Distributions are often used to model uncertainty in many scientific datasets. To preserve the correlation among the spatially sampled grid locations in the dataset, various standard multivariate distribution models have been proposed in visualization literature. These models treat each grid location as a univariate random variable which models the uncertainty at that location. Standard multivariate distributions (both parametric and nonparametric) assume that all the univariate marginals are of the same type/family of distribution. But in reality, different grid locations show different statistical behavior which may not be modeled best by the same type of distribution. In this paper, we propose a new multivariate uncertainty modeling strategy to address the needs of uncertainty modeling in scientific datasets. Our proposed method is based on a statistically sound multivariate technique called Copula, which makes it possible to separate the process of estimating the univariate marginals and the process of modeling dependency, unlike the standard multivariate distributions. The modeling flexibility offered by our proposed method makes it possible to design distribution fields which can have different types of distribution (Gaussian, Histogram, KDE etc.) at the grid locations, while maintaining the correlation structure at the same time. Depending on the results of various standard statistical tests, we can choose an optimal distribution representation at each location, resulting in a more cost efficient modeling without significantly sacrificing on the analysis quality. To demonstrate the efficacy of our proposed modeling strategy, we extract and visualize uncertain features like isocontours and vortices in various real world datasets. We also study various modeling criterion to help users in the task of univariate model selection.
Collapse
|