1
|
Mökander J, Sheth M, Watson DS, Floridi L. The Switch, the Ladder, and the Matrix: Models for Classifying AI Systems. Minds Mach (Dordr) 2023. [DOI: 10.1007/s11023-022-09620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AbstractOrganisations that design and deploy artificial intelligence (AI) systems increasingly commit themselves to high-level, ethical principles. However, there still exists a gap between principles and practices in AI ethics. One major obstacle organisations face when attempting to operationalise AI Ethics is the lack of a well-defined material scope. Put differently, the question to which systems and processes AI ethics principles ought to apply remains unanswered. Of course, there exists no universally accepted definition of AI, and different systems pose different ethical challenges. Nevertheless, pragmatic problem-solving demands that things should be sorted so that their grouping will promote successful actions for some specific end. In this article, we review and compare previous attempts to classify AI systems for the purpose of implementing AI governance in practice. We find that attempts to classify AI systems proposed in previous literature use one of three mental models: the Switch, i.e., a binary approach according to which systems either are or are not considered AI systems depending on their characteristics; the Ladder, i.e., a risk-based approach that classifies systems according to the ethical risks they pose; and the Matrix, i.e., a multi-dimensional classification of systems that take various aspects into account, such as context, input data, and decision-model. Each of these models for classifying AI systems comes with its own set of strengths and weaknesses. By conceptualising different ways of classifying AI systems into simple mental models, we hope to provide organisations that design, deploy, or regulate AI systems with the vocabulary needed to demarcate the material scope of their AI governance frameworks.
Collapse
|
2
|
Ye Z, Chen M. Visualizing Ensemble Predictions of Music Mood. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:864-874. [PMID: 36170399 DOI: 10.1109/tvcg.2022.3209379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Music mood classification has been a challenging problem in comparison with other music classification problems (e.g., genre, composer, or period). One solution for addressing this challenge is to use an ensemble of machine learning models. In this paper, we show that visualization techniques can effectively convey the popular prediction as well as uncertainty at different music sections along the temporal axis while enabling the analysis of individual ML models in conjunction with their application to different musical data. In addition to the traditional visual designs, such as stacked line graph, ThemeRiver, and pixel-based visualization, we introduce a new variant of ThemeRiver, called "dual-flux ThemeRiver", which allows viewers to observe and measure the most popular prediction more easily than stacked line graph and ThemeRiver. Together with pixel-based visualization, dual-flux ThemeRiver plots can also assist in model-development workflows, in addition to annotating music using ensemble model predictions.
Collapse
|
3
|
Vajiac C, Chau DH, Olligschlaeger A, Mackenzie R, Nair P, Lee MC, Li Y, Park N, Rabbany R, Faloutsos C. TRAFFICVIS: Visualizing Organized Activity and Spatio-Temporal Patterns for Detecting and Labeling Human Trafficking. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; PP:1-10. [PMID: 36201417 DOI: 10.1109/tvcg.2022.3209403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Law enforcement and domain experts can detect human trafficking (HT) in online escort websites by analyzing suspicious clusters of connected ads. How can we explain clustering results intuitively and interactively, visualizing potential evidence for experts to analyze? We present TRAFFICVIS, the first interface for cluster-level HT detection and labeling. Developed through months of participatory design with domain experts, TRAFFICVIS provides coordinated views in conjunction with carefully chosen backend algorithms to effectively show spatio-temporal and text patterns to a wide variety of anti-HT stakeholders. We build upon state-of-the-art text clustering algorithms by incorporating shared metadata as a signal of connected and possibly suspicious activity, then visualize the results. Domain experts can use TRAFFICVIS to label clusters as HT, or other, suspicious, but non-HT activity such as spam and scam, quickly creating labeled datasets to enable further HT research. Through domain expert feedback and a usage scenario, we demonstrate TRAFFICVIS's efficacy. The feedback was overwhelmingly positive, with repeated high praises for the usability and explainability of our tool, the latter being vital for indicting possible criminals.
Collapse
|
4
|
Dykes J, Abdul-Rahman A, Archambault D, Bach B, Borgo R, Chen M, Enright J, Fang H, Firat EE, Freeman E, Gönen T, Harris C, Jianu R, John NW, Khan S, Lahiff A, Laramee RS, Matthews L, Mohr S, Nguyen PH, Rahat AAM, Reeve R, Ritsos PD, Roberts JC, Slingsby A, Swallow B, Torsney-Weir T, Turkay C, Turner R, Vidal FP, Wang Q, Wood J, Xu K. Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210299. [PMID: 35965467 PMCID: PMC9376715 DOI: 10.1098/rsta.2021.0299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We report on an ongoing collaboration between epidemiological modellers and visualization researchers by documenting and reflecting upon knowledge constructs-a series of ideas, approaches and methods taken from existing visualization research and practice-deployed and developed to support modelling of the COVID-19 pandemic. Structured independent commentary on these efforts is synthesized through iterative reflection to develop: evidence of the effectiveness and value of visualization in this context; open problems upon which the research communities may focus; guidance for future activity of this type and recommendations to safeguard the achievements and promote, advance, secure and prepare for future collaborations of this kind. In describing and comparing a series of related projects that were undertaken in unprecedented conditions, our hope is that this unique report, and its rich interactive supplementary materials, will guide the scientific community in embracing visualization in its observation, analysis and modelling of data as well as in disseminating findings. Equally we hope to encourage the visualization community to engage with impactful science in addressing its emerging data challenges. If we are successful, this showcase of activity may stimulate mutually beneficial engagement between communities with complementary expertise to address problems of significance in epidemiology and beyond. See https://ramp-vis.github.io/RAMPVIS-PhilTransA-Supplement/. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.
Collapse
Affiliation(s)
| | | | | | | | | | - Min Chen
- University of Oxford, Oxford, UK
| | | | - Hui Fang
- Loughborough University, Loughborough, UK
| | | | | | | | - Claire Harris
- Biomathematics and Statistics Scotland, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Qiru Wang
- University of Nottingham, Nottingham, UK
| | - Jo Wood
- City, University of London, London, UK
| | - Kai Xu
- Middlesex University, London, UK
| |
Collapse
|
5
|
Dykes J, Abdul-Rahman A, Archambault D, Bach B, Borgo R, Chen M, Enright J, Fang H, Firat EE, Freeman E, Gönen T, Harris C, Jianu R, John NW, Khan S, Lahiff A, Laramee RS, Matthews L, Mohr S, Nguyen PH, Rahat AAM, Reeve R, Ritsos PD, Roberts JC, Slingsby A, Swallow B, Torsney-Weir T, Turkay C, Turner R, Vidal FP, Wang Q, Wood J, Xu K. Visualization for epidemiological modelling: challenges, solutions, reflections and recommendations. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022. [PMID: 35965467 DOI: 10.6084/m9.figshare.c.6080807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We report on an ongoing collaboration between epidemiological modellers and visualization researchers by documenting and reflecting upon knowledge constructs-a series of ideas, approaches and methods taken from existing visualization research and practice-deployed and developed to support modelling of the COVID-19 pandemic. Structured independent commentary on these efforts is synthesized through iterative reflection to develop: evidence of the effectiveness and value of visualization in this context; open problems upon which the research communities may focus; guidance for future activity of this type and recommendations to safeguard the achievements and promote, advance, secure and prepare for future collaborations of this kind. In describing and comparing a series of related projects that were undertaken in unprecedented conditions, our hope is that this unique report, and its rich interactive supplementary materials, will guide the scientific community in embracing visualization in its observation, analysis and modelling of data as well as in disseminating findings. Equally we hope to encourage the visualization community to engage with impactful science in addressing its emerging data challenges. If we are successful, this showcase of activity may stimulate mutually beneficial engagement between communities with complementary expertise to address problems of significance in epidemiology and beyond. See https://ramp-vis.github.io/RAMPVIS-PhilTransA-Supplement/. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.
Collapse
Affiliation(s)
| | | | | | | | | | - Min Chen
- University of Oxford, Oxford, UK
| | | | - Hui Fang
- Loughborough University, Loughborough, UK
| | | | | | | | - Claire Harris
- Biomathematics and Statistics Scotland, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Qiru Wang
- University of Nottingham, Nottingham, UK
| | - Jo Wood
- City, University of London, London, UK
| | - Kai Xu
- Middlesex University, London, UK
| |
Collapse
|
6
|
Chen M, Abdul-Rahman A, Archambault D, Dykes J, Ritsos P, Slingsby A, Torsney-Weir T, Turkay C, Bach B, Borgo R, Brett A, Fang H, Jianu R, Khan S, Laramee R, Matthews L, Nguyen P, Reeve R, Roberts J, Vidal F, Wang Q, Wood J, Xu K. RAMPVIS: Answering the challenges of building visualisation capabilities for large-scale emergency responses. Epidemics 2022; 39:100569. [PMID: 35597098 PMCID: PMC9045880 DOI: 10.1016/j.epidem.2022.100569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 01/09/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
|
7
|
A Bounded Measure for Estimating the Benefit of Visualization (Part II): Case Studies and Empirical Evaluation. ENTROPY 2022; 24:e24020282. [PMID: 35205574 PMCID: PMC8871169 DOI: 10.3390/e24020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/04/2022]
Abstract
Many visual representations, such as volume-rendered images and metro maps, feature a noticeable amount of information loss due to a variety of many-to-one mappings. At a glance, there seem to be numerous opportunities for viewers to misinterpret the data being visualized, hence, undermining the benefits of these visual representations. In practice, there is little doubt that these visual representations are useful. The recently-proposed information-theoretic measure for analyzing the cost–benefit ratio of visualization processes can explain such usefulness experienced in practice and postulate that the viewers’ knowledge can reduce the potential distortion (e.g., misinterpretation) due to information loss. This suggests that viewers’ knowledge can be estimated by comparing the potential distortion without any knowledge and the actual distortion with some knowledge. However, the existing cost–benefit measure consists of an unbounded divergence term, making the numerical measurements difficult to interpret. This is the second part of a two-part paper, which aims to improve the existing cost–benefit measure. Part I of the paper provided a theoretical discourse about the problem of unboundedness, reported a conceptual analysis of nine candidate divergence measures for resolving the problem, and eliminated three from further consideration. In this Part II, we describe two groups of case studies for evaluating the remaining six candidate measures empirically. In particular, we obtained instance data for (i) supporting the evaluation of the remaining candidate measures and (ii) demonstrating their applicability in practical scenarios for estimating the cost–benefit of visualization processes as well as the impact of human knowledge in the processes. The real world data about visualization provides practical evidence for evaluating the usability and intuitiveness of the candidate measures. The combination of the conceptual analysis in Part I and the empirical evaluation in this part allows us to select the most appropriate bounded divergence measure for improving the existing cost–benefit measure.
Collapse
|
8
|
Mishra P, Kumar S, Chaube MK. Classifying Chart Based on Structural Dissimilarities using Improved Regularized Loss Function. Neural Process Lett 2022. [DOI: 10.1007/s11063-021-10735-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
A Bounded Measure for Estimating the Benefit of Visualization (Part I): Theoretical Discourse and Conceptual Evaluation. ENTROPY 2022; 24:e24020228. [PMID: 35205522 PMCID: PMC8870844 DOI: 10.3390/e24020228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/10/2022]
Abstract
Information theory can be used to analyze the cost–benefit of visualization processes. However, the current measure of benefit contains an unbounded term that is neither easy to estimate nor intuitive to interpret. In this work, we propose to revise the existing cost–benefit measure by replacing the unbounded term with a bounded one. We examine a number of bounded measures that include the Jenson–Shannon divergence, its square root, and a new divergence measure formulated as part of this work. We describe the rationale for proposing a new divergence measure. In the first part of this paper, we focus on the conceptual analysis of the mathematical properties of these candidate measures. We use visualization to support the multi-criteria comparison, narrowing the search down to several options with better mathematical properties. The theoretical discourse and conceptual evaluation in this part provides the basis for further data-driven evaluation based on synthetic and experimental case studies that are reported in the second part of this paper.
Collapse
|
10
|
Nardini P, Chen M, Samsel F, Bujack R, Bottinger M, Scheuermann G. The Making of Continuous Colormaps. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:3048-3063. [PMID: 31870986 DOI: 10.1109/tvcg.2019.2961674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Continuous colormaps are integral parts of many visualization techniques, such as heat-maps, surface plots, and flow visualization. Despite that the critiques of rainbow colormaps have been around and well-acknowledged for three decades, rainbow colormaps are still widely used today. One reason behind the resilience of rainbow colormaps is the lack of tools for users to create a continuous colormap that encodes semantics specific to the application concerned. In this paper, we present a web-based software system, CCC-Tool (short for Charting Continuous Colormaps) under the URL https://ccctool.com, for creating, editing, and analyzing such application-specific colormaps. We introduce the notion of "colormap specification (CMS)" that maintains the essential semantics required for defining a color mapping scheme. We provide users with a set of advanced utilities for constructing CMS's with various levels of complexity, examining their quality attributes using different plots, and exporting them to external application software. We present two case studies, demonstrating that the CCC-Tool can help domain scientists as well as visualization experts in designing semantically-rich colormaps.
Collapse
|
11
|
Streeb D, El-Assady M, Keim DA, Chen M. Why Visualize? Untangling a Large Network of Arguments. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:2220-2236. [PMID: 31514139 DOI: 10.1109/tvcg.2019.2940026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Visualization has been deemed a useful technique by researchers and practitioners, alike, leaving a trail of arguments behind that reason why visualization works. In addition, examples of misleading usages of visualizations in information communication have occasionally been pointed out. Thus, to contribute to the fundamental understanding of our discipline, we require a comprehensive collection of arguments on "why visualize?" (or "why not?"), untangling the rationale behind positive and negative viewpoints. In this paper, we report a theoretical study to understand the underlying reasons of various arguments; their relationships (e.g., built-on, and conflict); and their respective dependencies on tasks, users, and data. We curated an argumentative network based on a collection of arguments from various fields, including information visualization, cognitive science, psychology, statistics, philosophy, and others. Our work proposes several categorizations for the arguments, and makes their relations explicit. We contribute the first comprehensive and systematic theoretical study of the arguments on visualization. Thereby, we provide a roadmap towards building a foundation for visualization theory and empirical research as well as for practical application in the critique and design of visualizations. In addition, we provide our argumentation network and argument collection online at https://whyvis.dbvis.de, supported by an interactive visualization.
Collapse
|
12
|
Heine C. Towards Modeling Visualization Processes as Dynamic Bayesian Networks. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1000-1010. [PMID: 33074817 DOI: 10.1109/tvcg.2020.3030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Visualization designs typically need to be evaluated with user studies, because their suitability for a particular task is hard to predict. What the field of visualization is currently lacking are theories and models that can be used to explain why certain designs work and others do not. This paper outlines a general framework for modeling visualization processes that can serve as the first step towards such a theory. It surveys related research in mathematical and computational psychology and argues for the use of dynamic Bayesian networks to describe these time-dependent, probabilistic processes. It is discussed how these models could be used to aid in design evaluation. The development of concrete models will be a long process. Thus, the paper outlines a research program sketching how to develop prototypes and their extensions from existing models, controlled experiments, and observational studies.
Collapse
|
13
|
Karer B, Hagen H, Lehmann DJ. Insight Beyond Numbers: The Impact of Qualitative Factors on Visual Data Analysis. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1011-1021. [PMID: 33108287 DOI: 10.1109/tvcg.2020.3030376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As of today, data analysis focuses primarily on the findings to be made inside the data and concentrates less on how those findings relate to the domain of investigation. Contemporary visualization as a field of research shows a strong tendency to adopt this data-centrism. Despite their decisive influence on the analysis result, qualitative aspects of the analysis process such as the structure, soundness, and complexity of the applied reasoning strategy are rarely discussed explicitly. We argue that if the purpose of visualization is the provision of domain insight rather than the depiction of data analysis results, a holistic perspective requires a qualitative component to to be added to the discussion of quantitative and human factors. To support this point, we demonstrate how considerations of qualitative factors in visual analysis can be applied to obtain explanations and possible solutions for a number of practical limitations inherent to the data-centric perspective on analysis. Based on this discussion of what we call qualitative visual analysis, we develop an inside-outside principle of nested levels of context that can serve as a conceptual basis for the development of visualization systems that optimally support the emergence of insight during analysis.
Collapse
|
14
|
Krak I, Barmak O, Manziuk E. Using visual analytics to develop human and machine‐centric models: A review of approaches and proposed information technology. Comput Intell 2020. [DOI: 10.1111/coin.12289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Iurii Krak
- Department of Theoretical CyberneticsTaras Shevchenko National University of Kyiv Kyiv Ukraine
| | - Olexander Barmak
- Department of Computer Science and Information TechnologiesNational University of Khmelnytskyi Khmelnytskyi Ukraine
| | - Eduard Manziuk
- Department of Computer Science and Information TechnologiesNational University of Khmelnytskyi Khmelnytskyi Ukraine
| |
Collapse
|
15
|
Khayat M, Karimzadeh M, Ebert DS, Ghafoor A. The Validity, Generalizability and Feasibility of Summative Evaluation Methods in Visual Analytics. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:353-363. [PMID: 31425085 DOI: 10.1109/tvcg.2019.2934264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many evaluation methods have been used to assess the usefulness of Visual Analytics (VA) solutions. These methods stem from a variety of origins with different assumptions and goals, which cause confusion about their proofing capabilities. Moreover, the lack of discussion about the evaluation processes may limit our potential to develop new evaluation methods specialized for VA. In this paper, we present an analysis of evaluation methods that have been used to summatively evaluate VA solutions. We provide a survey and taxonomy of the evaluation methods that have appeared in the VAST literature in the past two years. We then analyze these methods in terms of validity and generalizability of their findings, as well as the feasibility of using them. We propose a new metric called summative quality to compare evaluation methods according to their ability to prove usefulness, and make recommendations for selecting evaluation methods based on their summative quality in the VA domain.
Collapse
|
16
|
Behrisch M, Streeb D, Stoffel F, Seebacher D, Matejek B, Weber SH, Mittelstadt S, Pfister H, Keim D. Commercial Visual Analytics Systems-Advances in the Big Data Analytics Field. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2019; 25:3011-3031. [PMID: 30059307 DOI: 10.1109/tvcg.2018.2859973] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Five years after the first state-of-the-art report on Commercial Visual Analytics Systems we present a reevaluation of the Big Data Analytics field. We build on the success of the 2012 survey, which was influential even beyond the boundaries of the InfoVis and Visual Analytics (VA) community. While the field has matured significantly since the original survey, we find that innovation and research-driven development are increasingly sacrificed to satisfy a wide range of user groups. We evaluate new product versions on established evaluation criteria, such as available features, performance, and usability, to extend on and assure comparability with the previous survey. We also investigate previously unavailable products to paint a more complete picture of the commercial VA landscape. Furthermore, we introduce novel measures, like suitability for specific user groups and the ability to handle complex data types, and undertake a new case study to highlight innovative features. We explore the achievements in the commercial sector in addressing VA challenges and propose novel developments that should be on systems' roadmaps in the coming years.
Collapse
|
17
|
Nonato LG, Aupetit M. Multidimensional Projection for Visual Analytics: Linking Techniques with Distortions, Tasks, and Layout Enrichment. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2019; 25:2650-2673. [PMID: 29994258 DOI: 10.1109/tvcg.2018.2846735] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Visual analysis of multidimensional data requires expressive and effective ways to reduce data dimensionality to encode them visually. Multidimensional projections (MDP) figure among the most important visualization techniques in this context, transforming multidimensional data into scatter plots whose visual patterns reflect some notion of similarity in the original data. However, MDP come with distortions that make these visual patterns not trustworthy, hindering users to infer actual data characteristics. Moreover, the patterns present in the scatter plots might not be enough to allow a clear understanding of multidimensional data, motivating the development of layout enrichment methodologies to operate together with MDP. This survey attempts to cover the main aspects of MDP as a visualization and visual analytic tool. It provides detailed analysis and taxonomies as to the organization of MDP techniques according to their main properties and traits, discussing the impact of such properties for visual perception and other human factors. The survey also approaches the different types of distortions that can result from MDP mappings and it overviews existing mechanisms to quantitatively evaluate such distortions. A qualitative analysis of the impact of distortions on the different analytic tasks performed by users when exploring multidimensional data through MDP is also presented. Guidelines for choosing the best MDP for an intended task are also provided as a result of this analysis. Finally, layout enrichment schemes to debunk MDP distortions and/or reveal relevant information not directly inferable from the scatter plot are reviewed and discussed in the light of new taxonomies. We conclude the survey providing future research axes to fill discovered gaps in this domain.
Collapse
|
18
|
Bruckner S, Isenberg T, Ropinski T, Wiebel A. A Model of Spatial Directness in Interactive Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2019; 25:2514-2528. [PMID: 29994478 DOI: 10.1109/tvcg.2018.2848906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We discuss the concept of directness in the context of spatial interaction with visualization. In particular, we propose a model that allows practitioners to analyze and describe the spatial directness of interaction techniques, ultimately to be able to better understand interaction issues that may affect usability. To reach these goals, we distinguish between different types of directness. Each type of directness depends on a particular mapping between different spaces, for which we consider the data space, the visualization space, the output space, the user space, the manipulation space, and the interaction space. In addition to the introduction of the model itself, we also show how to apply it to several real-world interaction scenarios in visualization, and thus discuss the resulting types of spatial directness, without recommending either more direct or more indirect interaction techniques. In particular, we will demonstrate descriptive and evaluative usage of the proposed model, and also briefly discuss its generative usage.
Collapse
|
19
|
Guo F, Gu T, Chen W, Wu F, Wang Q, Shi L, Qu H. Visual Exploration of Air Quality Data with a Time-correlation-partitioning Tree Based on Information Theory. ACM T INTERACT INTEL 2019. [DOI: 10.1145/3182187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
<?tight?>Discovering the correlations among variables of air quality data is challenging, because the correlation time series are long-lasting, multi-faceted, and information-sparse. In this article, we propose a novel visual representation, called Time-correlation-partitioning (TCP) tree, that compactly characterizes correlations of multiple air quality variables and their evolutions. A TCP tree is generated by partitioning the information-theoretic correlation time series into pieces with respect to the variable hierarchy and temporal variations, and reorganizing these pieces into a hierarchically nested structure. The visual exploration of a TCP tree provides a sparse data traversal of the correlation variations and a situation-aware analysis of correlations among variables. This can help meteorologists understand the correlations among air quality variables better. We demonstrate the efficiency of our approach in a real-world air quality investigation scenario.
Collapse
Affiliation(s)
| | - Tianlong Gu
- Guilin University of Electronic Technology, P.R. China
| | - Wei Chen
- Zhejiang University, Zhejiang, P.R. China
| | - Feiran Wu
- Zhejiang University, Zhejiang, P.R. China
| | - Qi Wang
- Zhejiang University, Zhejiang, P.R. China
| | - Lei Shi
- Institute of Software Chinese Academy of Sciences, Beijing, P.R. China
| | - Huamin Qu
- Hong Kong University of Science and Technology, Hong Kong, P.R. China
| |
Collapse
|
20
|
Sbert M, Chen M, Poch J, Bardera A. Some Order Preserving Inequalities for Cross Entropy and Kullback-Leibler Divergence. ENTROPY 2018; 20:e20120959. [PMID: 33266683 PMCID: PMC7512543 DOI: 10.3390/e20120959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/02/2018] [Accepted: 12/08/2018] [Indexed: 11/16/2022]
Abstract
Cross entropy and Kullback–Leibler (K-L) divergence are fundamental quantities of information theory, and they are widely used in many fields. Since cross entropy is the negated logarithm of likelihood, minimizing cross entropy is equivalent to maximizing likelihood, and thus, cross entropy is applied for optimization in machine learning. K-L divergence also stands independently as a commonly used metric for measuring the difference between two distributions. In this paper, we introduce new inequalities regarding cross entropy and K-L divergence by using the fact that cross entropy is the negated logarithm of the weighted geometric mean. We first apply the well-known rearrangement inequality, followed by a recent theorem on weighted Kolmogorov means, and, finally, we introduce a new theorem that directly applies to inequalities between K-L divergences. To illustrate our results, we show numerical examples of distributions.
Collapse
Affiliation(s)
- Mateu Sbert
- College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
- Graphics and Imaging Laboratory, University of Girona, Campus Montilivi, 17003 Girona, Spain
- Correspondence:
| | - Min Chen
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Jordi Poch
- Graphics and Imaging Laboratory, University of Girona, Campus Montilivi, 17003 Girona, Spain
| | - Anton Bardera
- Graphics and Imaging Laboratory, University of Girona, Campus Montilivi, 17003 Girona, Spain
| |
Collapse
|
21
|
Hierarchical Information Entropy System Model for TWfMS. ENTROPY 2018; 20:e20100732. [PMID: 33265821 PMCID: PMC7512295 DOI: 10.3390/e20100732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/17/2018] [Accepted: 09/22/2018] [Indexed: 11/17/2022]
Abstract
Under the infrastructure of three gradually deepening layers consisting of System, Service and Software, the information entropy of the Trustworthy Workflow Management System (TWfMS) will evolve from being more precise to more undetermined, due to a series of exception event X occurring on certain components (ExCs), along with the life cycle of TWfMS, experienced in its phased original, as-is, to-be, and agile-consistent stages, and recover, more precisely again, by turning back to the original state from the agile-consistent stage, due to its self-autonomous improvement. With a special emphasis on the system layer, to assure the trustworthiness of WfMS, this paper firstly introduces the preliminary knowledge of the hierarchical information entropy model with correlation theories. After illustrating the fundamental principle, the transformation rule is deduced, step by step, followed by a case study, which is conducive to generating discussions and conclusions in the different research areas of TWfMS. Overall, in this paper, we argue that the trustworthiness maintenance of WfMS could be analyzed and computational, through the viewpoint that all the various states of TWfMS can be considered as the transformation between WfMS and its trustworthiness compensate components, whose information entropy fluctuate repeatedly and comply with the law of the dissipative structure system.
Collapse
|
22
|
Luciani T, Burks A, Sugiyama C, Komperda J, Marai GE. Details-First, Show Context, Overview Last: Supporting Exploration of Viscous Fingers in Large-Scale Ensemble Simulations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:10.1109/TVCG.2018.2864849. [PMID: 30136949 PMCID: PMC6382591 DOI: 10.1109/tvcg.2018.2864849] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Visualization research often seeks designs that first establish an overview of the data, in accordance to the information seeking mantra: "Overview first, zoom and filter, then details on demand". However, in computational fluid dynamics (CFD), as well as in other domains, there are many situations where such a spatial overview is not relevant or practical for users, for example when the experts already have a good mental overview of the data, or when an analysis of a large overall structure may not be related to the specific, information-driven tasks of users. Using scientific workflow theory and, as a vehicle, the problem of viscous finger evolution, we advocate an alternative model that allows domain experts to explore features of interest first, then explore the context around those features, and finally move to a potentially unfamiliar summarization overview. In a model instantiation, we show how a computational back-end can identify and track over time low-level, small features, then be used to filter the context of those features while controlling the complexity of the visualization, and finally to summarize and compare simulations. We demonstrate the effectiveness of this approach with an online web-based exploration of a total volume of data approaching half a billion seven-dimensional data points, and report supportive feedback provided by domain experts with respect to both the instantiation and the theoretical model.
Collapse
Affiliation(s)
- Timothy Luciani
- Electronic Visualization Laboratory, University of Illinois at Chicago.
| | - Andrew Burks
- Electronic Visualization Laboratory, University of Illinois at Chicago.
| | | | - Jonathan Komperda
- Department of Mechanical & Industrial Engineering, University of Illinois at Chicago
| | | |
Collapse
|
23
|
Chen M, Gaither K, John NW, McCann B. An Information-Theoretic Approach to the Cost-benefit Analysis of Visualization in Virtual Environments. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:32-42. [PMID: 30136971 DOI: 10.1109/tvcg.2018.2865025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Visualization and virtual environments (VEs) have been two interconnected parallel strands in visual computing for decades. Some VEs have been purposely developed for visualization applications, while many visualization applications are exemplary showcases in general-purpose VEs. Because of the development and operation costs of VEs, the majority of visualization applications in practice have yet to benefit from the capacity of VEs. In this paper, we examine this status quo from an information-theoretic perspective. Our objectives are to conduct cost-benefit analysis on typical VE systems (including augmented and mixed reality, theater-based systems, and large powerwalls), to explain why some visualization applications benefit more from VEs than others, and to sketch out pathways for the future development of visualization applications in VEs. We support our theoretical propositions and analysis using theories and discoveries in the literature of cognitive sciences and the practical evidence reported in the literatures of visualization and VEs.
Collapse
|
24
|
Sacha D, Kraus M, Keim DA, Chen M. VIS4ML: An Ontology for Visual Analytics Assisted Machine Learning. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:385-395. [PMID: 30130221 DOI: 10.1109/tvcg.2018.2864838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
While many VA workflows make use of machine-learned models to support analytical tasks, VA workflows have become increasingly important in understanding and improving Machine Learning (ML) processes. In this paper, we propose an ontology (VIS4ML) for a subarea of VA, namely "VA-assisted ML". The purpose of VIS4ML is to describe and understand existing VA workflows used in ML as well as to detect gaps in ML processes and the potential of introducing advanced VA techniques to such processes. Ontologies have been widely used to map out the scope of a topic in biology, medicine, and many other disciplines. We adopt the scholarly methodologies for constructing VIS4ML, including the specification, conceptualization, formalization, implementation, and validation of ontologies. In particular, we reinterpret the traditional VA pipeline to encompass model-development workflows. We introduce necessary definitions, rules, syntaxes, and visual notations for formulating VIS4ML and make use of semantic web technologies for implementing it in the Web Ontology Language (OWL). VIS4ML captures the high-level knowledge about previous workflows where VA is used to assist in ML. It is consistent with the established VA concepts and will continue to evolve along with the future developments in VA and ML. While this ontology is an effort for building the theoretical foundation of VA, it can be used by practitioners in real-world applications to optimize model-development workflows by systematically examining the potential benefits that can be brought about by either machine or human capabilities. Meanwhile, VIS4ML is intended to be extensible and will continue to be updated to reflect future advancements in using VA for building high-quality data-analytical models or for building such models rapidly.
Collapse
|
25
|
What you see is what you can change: Human-centered machine learning by interactive visualization. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2017.01.105] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|