1
|
Humer C, Nicholls R, Heberle H, Heckmann M, Pühringer M, Wolf T, Lübbesmeyer M, Heinrich J, Hillenbrand J, Volpin G, Streit M. CIME4R: Exploring iterative, AI-guided chemical reaction optimization campaigns in their parameter space. J Cheminform 2024; 16:51. [PMID: 38730469 PMCID: PMC11636728 DOI: 10.1186/s13321-024-00840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
Chemical reaction optimization (RO) is an iterative process that results in large, high-dimensional datasets. Current tools allow for only limited analysis and understanding of parameter spaces, making it hard for scientists to review or follow changes throughout the process. With the recent emergence of using artificial intelligence (AI) models to aid RO, another level of complexity has been added. Helping to assess the quality of a model's prediction and understand its decision is critical to supporting human-AI collaboration and trust calibration. To address this, we propose CIME4R-an open-source interactive web application for analyzing RO data and AI predictions. CIME4R supports users in (i) comprehending a reaction parameter space, (ii) investigating how an RO process developed over iterations, (iii) identifying critical factors of a reaction, and (iv) understanding model predictions. This facilitates making informed decisions during the RO process and helps users to review a completed RO process, especially in AI-guided RO. CIME4R aids decision-making through the interaction between humans and AI by combining the strengths of expert experience and high computational precision. We developed and tested CIME4R with domain experts and verified its usefulness in three case studies. Using CIME4R the experts were able to produce valuable insights from past RO campaigns and to make informed decisions on which experiments to perform next. We believe that CIME4R is the beginning of an open-source community project with the potential to improve the workflow of scientists working in the reaction optimization domain. SCIENTIFIC CONTRIBUTION: To the best of our knowledge, CIME4R is the first open-source interactive web application tailored to the peculiar analysis requirements of reaction optimization (RO) campaigns. Due to the growing use of AI in RO, we developed CIME4R with a special focus on facilitating human-AI collaboration and understanding of AI models. We developed and evaluated CIME4R in collaboration with domain experts to verify its practical usefulness.
Collapse
Affiliation(s)
| | - Rachel Nicholls
- Division Crop Science, Bayer AG, Monheim am Rhein, 40789, Germany
| | - Henry Heberle
- Division Crop Science, Bayer AG, Monheim am Rhein, 40789, Germany
| | | | | | - Thomas Wolf
- Division Crop Science, Bayer AG, Frankfurt, 65926, Germany
| | | | - Julian Heinrich
- Division Crop Science, Bayer AG, Monheim am Rhein, 40789, Germany
| | | | - Giulio Volpin
- Division Crop Science, Bayer AG, Frankfurt, 65926, Germany.
| | - Marc Streit
- Johannes Kepler University Linz, Linz, 4040, Austria.
- datavisyn GmbH, Linz, 4040, Austria.
| |
Collapse
|
2
|
Oral E, Chawla R, Wijkstra M, Mahyar N, Dimara E. From Information to Choice: A Critical Inquiry Into Visualization Tools for Decision Making. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:359-369. [PMID: 37871054 DOI: 10.1109/tvcg.2023.3326593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
In the face of complex decisions, people often engage in a three-stage process that spans from (1) exploring and analyzing pertinent information (intelligence); (2) generating and exploring alternative options (design); and ultimately culminating in (3) selecting the optimal decision by evaluating discerning criteria (choice). We can fairly assume that all good visualizations aid in the "intelligence" stage by enabling data exploration and analysis. Yet, to what degree and how do visualization systems currently support the other decision making stages, namely "design" and "choice"? To further explore this question, we conducted a comprehensive review of decision-focused visualization tools by examining publications in major visualization journals and conferences, including VIS, EuroVis, and CHI, spanning all available years. We employed a deductive coding method and in-depth analysis to assess whether and how visualization tools support design and choice. Specifically, we examined each visualization tool by (i) its degree of visibility for displaying decision alternatives, criteria, and preferences, and (ii) its degree of flexibility for offering means to manipulate the decision alternatives, criteria, and preferences with interactions such as adding, modifying, changing mapping, and filtering. Our review highlights the opportunities and challenges that decision-focused visualization tools face in realizing their full potential to support all stages of the decision making process. It reveals a surprising scarcity of tools that support all stages, and while most tools excel in offering visibility for decision criteria and alternatives, the degree of flexibility to manipulate these elements is often limited, and the lack of tools that accommodate decision preferences and their elicitation is notable. Based on our findings, to better support the choice stage, future research could explore enhancing flexibility levels and variety, exploring novel visualization paradigms, increasing algorithmic support, and ensuring that this automation is user-controlled via the enhanced flexibility I evels. Our curated list of the 88 surveyed visualization tools is available in the OSF link (https://osf.io/nrasz/?view_only=b92a90a34ae241449b5f2cd33383bfcb).
Collapse
|
3
|
Piccolotto N, Bogl M, Muehlmann C, Nordhausen K, Filzmoser P, Schmidt J, Miksch S. Data Type Agnostic Visual Sensitivity Analysis. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; PP:1-11. [PMID: 37922175 DOI: 10.1109/tvcg.2023.3327203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Modern science and industry rely on computational models for simulation, prediction, and data analysis. Spatial blind source separation (SBSS) is a model used to analyze spatial data. Designed explicitly for spatial data analysis, it is superior to popular non-spatial methods, like PCA. However, a challenge to its practical use is setting two complex tuning parameters, which requires parameter space analysis. In this paper, we focus on sensitivity analysis (SA). SBSS parameters and outputs are spatial data, which makes SA difficult as few SA approaches in the literature assume such complex data on both sides of the model. Based on the requirements in our design study with statistics experts, we developed a visual analytics prototype for data type agnostic visual sensitivity analysis that fits SBSS and other contexts. The main advantage of our approach is that it requires only dissimilarity measures for parameter settings and outputs (Fig. 1). We evaluated the prototype heuristically with visualization experts and through interviews with two SBSS experts. In addition, we show the transferability of our approach by applying it to microclimate simulations. Study participants could confirm suspected and known parameter-output relations, find surprising associations, and identify parameter subspaces to examine in the future. During our design study and evaluation, we identified challenging future research opportunities.
Collapse
|
4
|
Jin Y, Koesten L, Moller T. Exploring the Design Space of Three Criteria Decision Making. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2023; 43:26-38. [PMID: 37607155 DOI: 10.1109/mcg.2023.3303672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
This article presents different interface designs of sliders to support decision-making problems with three criteria. We present an exploration of the design space through an iterative development process with eight prototypes and the results of several evaluation studies with visualization experts and nonexperts. Our findings show three candidates for consideration: a standard ternary triangular slider, a novel circular slider, and a standard basic slider displayed three times. All three were considered intuitive and easy to use. The triangular slider is best for exploration with vague user intuition, the circular slider performs best for preference comparisons, and the parallel slider is best for direct preference setting.
Collapse
|
5
|
Piccolotto N, Bögl M, Miksch S. Visual Parameter Space Exploration in Time and Space. COMPUTER GRAPHICS FORUM : JOURNAL OF THE EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS 2023; 42:e14785. [PMID: 38505647 PMCID: PMC10947302 DOI: 10.1111/cgf.14785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Computational models, such as simulations, are central to a wide range of fields in science and industry. Those models take input parameters and produce some output. To fully exploit their utility, relations between parameters and outputs must be understood. These include, for example, which parameter setting produces the best result (optimization) or which ranges of parameter settings produce a wide variety of results (sensitivity). Such tasks are often difficult to achieve for various reasons, for example, the size of the parameter space, and supported with visual analytics. In this paper, we survey visual parameter space exploration (VPSE) systems involving spatial and temporal data. We focus on interactive visualizations and user interfaces. Through thematic analysis of the surveyed papers, we identify common workflow steps and approaches to support them. We also identify topics for future work that will help enable VPSE on a greater variety of computational models.
Collapse
Affiliation(s)
- Nikolaus Piccolotto
- TU WienInstitute of Visual Computing and Human‐Centered TechnologyWienAustria
| | - Markus Bögl
- TU WienInstitute of Visual Computing and Human‐Centered TechnologyWienAustria
| | - Silvia Miksch
- TU WienInstitute of Visual Computing and Human‐Centered TechnologyWienAustria
| |
Collapse
|
6
|
Younesy H, Pober J, Möller T, Karimi MM. ModEx: a general purpose computer model exploration system. FRONTIERS IN BIOINFORMATICS 2023; 3:1153800. [PMID: 37304402 PMCID: PMC10249055 DOI: 10.3389/fbinf.2023.1153800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
We present a general purpose visual analysis system that can be used for exploring parameters of a variety of computer models. Our proposed system offers key components of a visual parameter analysis framework including parameter sampling, deriving output summaries, and an exploration interface. It also provides an API for rapid development of parameter space exploration solutions as well as the flexibility to support custom workflows for different application domains. We evaluate the effectiveness of our system by demonstrating it in three domains: data mining, machine learning and specific application in bioinformatics.
Collapse
Affiliation(s)
- Hamid Younesy
- School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
| | | | - Torsten Möller
- Research Network Data Science and Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Mohammad M. Karimi
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
7
|
Liu Q, Ren Y, Zhu Z, Li D, Ma X, Li Q. RankAxis: Towards a Systematic Combination of Projection and Ranking in Multi-Attribute Data Exploration. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:701-711. [PMID: 36155453 DOI: 10.1109/tvcg.2022.3209463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Projection and ranking are frequently used analysis techniques in multi-attribute data exploration. Both families of techniques help analysts with tasks such as identifying similarities between observations and determining ordered subgroups, and have shown good performances in multi-attribute data exploration. However, they often exhibit problems such as distorted projection layouts, obscure semantic interpretations, and non-intuitive effects produced by selecting a subset of (weighted) attributes. Moreover, few studies have attempted to combine projection and ranking into the same exploration space to complement each other's strengths and weaknesses. For this reason, we propose RankAxis, a visual analytics system that systematically combines projection and ranking to facilitate the mutual interpretation of these two techniques and jointly support multi-attribute data exploration. A real-world case study, expert feedback, and a user study demonstrate the efficacy of RankAxis.
Collapse
|
8
|
Dimara E, Zhang H, Tory M, Franconeri S. The Unmet Data Visualization Needs of Decision Makers Within Organizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:4101-4112. [PMID: 33872153 DOI: 10.1109/tvcg.2021.3074023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
When an organization chooses one course of action over alternatives, this task typically falls on a decision maker with relevant knowledge, experience, and understanding of context. Decision makers rely on data analysis, which is either delegated to analysts, or done on their own. Often the decision maker combines data, likely uncertain or incomplete, with non-formalized knowledge within a multi-objective problem space, weighing the recommendations of analysts within broader contexts and goals. As most past research in visual analytics has focused on understanding the needs and challenges of data analysts, less is known about the tasks and challenges of organizational decision makers, and how visualization support tools might help. Here we characterize the decision maker as a domain expert, review relevant literature in management theories, and report the results of an empirical survey and interviews with people who make organizational decisions. We identify challenges and opportunities for novel visualization tools, including trade-off overviews, scenario-based analysis, interrogation tools, flexible data input and collaboration support. Our findings stress the need to expand visualization design beyond data analysis into tools for information management.
Collapse
|
9
|
Dy B, Ibrahim N, Poorthuis A, Joyce S. Improving Visualization Design for Effective Multi-Objective Decision Making. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:3405-3416. [PMID: 33690120 DOI: 10.1109/tvcg.2021.3065126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Decision-makers across many professions are often required to make multi-objective decisions over increasingly larger volumes of data with several competing criteria. Data visualization is a powerful tool for exploring these complex 'solution spaces', but there is limited research on its ability to support multi-objective decisions. In this article, we explore the effects of chart complexity and data volume on decision quality in multi-objective scenarios with complex trade-offs. We look at the impact of four common multidimensional chart types (scatter plot matrices, parallel coordinates plots, heat maps, radar charts), the number of options and dimensions and participant chart usage experience on decision time and accuracy when selecting the 'optimal option'. As objectively evaluating the quality of multi-objective decisions and the trade-offs involved is challenging, we employ rank- and score-based accuracy metrics. While heat maps demonstrate a time advantage, our findings show no strong performance benefit for one chart type over another for accuracy. We find mixed evidence for the impact of chart complexity on performance, with our results suggesting the existence of a 'ceiling' in the number of dimensions considered by participants. This points to a potential limit to data complexity that is useful for decision making. Lastly, participants who use charts frequently performed better, suggesting that users can potentially be trained to effectively use complex visualizations in their decision-making.
Collapse
|
10
|
Dunne M, Mohammadi H, Challenor P, Borgo R, Porphyre T, Vernon I, Firat EE, Turkay C, Torsney-Weir T, Goldstein M, Reeve R, Fang H, Swallow B. Complex model calibration through emulation, a worked example for a stochastic epidemic model. Epidemics 2022; 39:100574. [PMID: 35617882 PMCID: PMC9109972 DOI: 10.1016/j.epidem.2022.100574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 12/03/2022] Open
Abstract
Uncertainty quantification is a formal paradigm of statistical estimation that aims to account for all uncertainties inherent in the modelling process of real-world complex systems. The methods are directly applicable to stochastic models in epidemiology, however they have thus far not been widely used in this context. In this paper, we provide a tutorial on uncertainty quantification of stochastic epidemic models, aiming to facilitate the use of the uncertainty quantification paradigm for practitioners with other complex stochastic simulators of applied systems. We provide a formal workflow including the important decisions and considerations that need to be taken, and illustrate the methods over a simple stochastic epidemic model of UK SARS-CoV-2 transmission and patient outcome. We also present new approaches to visualisation of outputs from sensitivity analyses and uncertainty quantification more generally in high input and/or output dimensions.
Collapse
Affiliation(s)
- Michael Dunne
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Hossein Mohammadi
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Peter Challenor
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Rita Borgo
- Department of Informatics, King's College London, London, UK
| | - Thibaud Porphyre
- Laboratoire de Biométrie et Biologie Evolutive, VetAgro Sup, Marcy l'Etoile, France
| | - Ian Vernon
- Department of Mathematical Sciences, Durham University, Durham, UK
| | - Elif E Firat
- Department of Computer Science, University of Nottingham, Nottingham, UK
| | - Cagatay Turkay
- Centre for Interdisciplinary Methodologies, University of Warwick, Coventry, UK
| | - Thomas Torsney-Weir
- VRVis Zentrum für Virtual Reality und Visualisierung Forschungs-GmbH, Vienna, Austria
| | | | - Richard Reeve
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Hui Fang
- Department of Computer Science, Loughborough University, Loughborough, UK
| | - Ben Swallow
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK.
| |
Collapse
|
11
|
Cao Y, Qu Y, Guo L. Identifying critical eco-innovation practices in circular supply chain management: evidence from the textile and clothing industry. INTERNATIONAL JOURNAL OF LOGISTICS-RESEARCH AND APPLICATIONS 2022. [DOI: 10.1080/13675567.2022.2076817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yue Cao
- School of Economics and Management, Dalian University of Technology, Dalian, People’s Republic of China
| | - Ying Qu
- School of Economics and Management, Dalian University of Technology, Dalian, People’s Republic of China
| | - Lingling Guo
- School of Economics and Management, Dalian University of Technology, Dalian, People’s Republic of China
| |
Collapse
|
12
|
Victor VS, Schmeiser A, Leitte H, Gramsch S. Visual Parameter Space Analysis for Optimizing the Quality of Industrial Nonwovens. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2022; 42:56-67. [PMID: 35239477 DOI: 10.1109/mcg.2022.3155867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Technical textiles, in particular, nonwovens used, for example, in medical masks, have become increasingly important in our daily lives. The quality of these textiles depends on the manufacturing process parameters that cannot be easily optimized in live settings. In this article, we present a visual analytics framework that enables interactive parameter space exploration and parameter optimization in industrial production processes of nonwovens. Therefore, we survey analysis strategies used in optimizing industrial production processes of nonwovens and support them in our tool. To enable real-time interaction, we augment the digital twin with a machine learning surrogate model for rapid quality computations. In addition, we integrate mechanisms for sensitivity analysis that ensure consistent product quality under mild parameter changes. In our case study, we explore the finding of optimal parameter sets, investigate the input-output relationship between parameters, and conduct a sensitivity analysis to find settings that result in robust quality.
Collapse
|
13
|
Cibulski L, Schmidt J, Aigner W. Reflections on Visualization Research Projects in the Manufacturing Industry. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2022; 42:21-32. [PMID: 35254980 DOI: 10.1109/mcg.2022.3156846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The rise of Industry 4.0 and cyber-physical systems has led to an abundance of large amounts of data, particularly in the manufacturing industry. Visualization and visual analytics play essential roles in harnessing this data. They have already been acknowledged as being among the key enabling technologies in the fourth industrial revolution. However, there are many challenges attached to applying visualization successfully, both from the manufacturing industry and visualization research perspectives. As members of research institutions involved in several applied research projects dealing with visualization in manufacturing, we characterized and analyzed our experiences for a detailed qualitative view, to distill important lessons learned, and to identify research gaps. With this article, we aim to provide added value and guidance for both manufacturing engineers and visualization researchers to avoid pitfalls and make such interdisciplinary endeavors more successful.
Collapse
|
14
|
Dimara E, Stasko J. A Critical Reflection on Visualization Research: Where Do Decision Making Tasks Hide? IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:1128-1138. [PMID: 34587049 DOI: 10.1109/tvcg.2021.3114813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It has been widely suggested that a key goal of visualization systems is to assist decision making, but is this true? We conduct a critical investigation on whether the activity of decision making is indeed central to the visualization domain. By approaching decision making as a user task, we explore the degree to which decision tasks are evident in visualization research and user studies. Our analysis suggests that decision tasks are not commonly found in current visualization task taxonomies and that the visualization field has yet to leverage guidance from decision theory domains on how to study such tasks. We further found that the majority of visualizations addressing decision making were not evaluated based on their ability to assist decision tasks. Finally, to help expand the impact of visual analytics in organizational as well as casual decision making activities, we initiate a research agenda on how decision making assistance could be elevated throughout visualization research.
Collapse
|
15
|
Ma Y, Medini PCP, Nelson JR, Wei R, Grubesic TH, Sefair JA, Maciejewski R. A Visual Analytics System for Oil Spill Response and Recovery. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2021; 41:91-100. [PMID: 32746085 DOI: 10.1109/mcg.2020.3004321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Extensive research has been done on oil spill simulation techniques, spatial optimization models, and oil spill cleanup strategies. This article presents a visual analytics system that integrates the independent facets of spill modeling techniques and spatial optimization to enable inspection, exploration, and decision making for offshore oil spill response.
Collapse
|
16
|
Abstract
Abstract
In the present study, we explore potential effects of visual saliency on decision quality in context of multi-criteria decision-making (MCDM). We compare two visualization techniques: parallel coordinates (PC) and scatterplot matrices (SPM). We investigate the impact of saliency facilitated by means of either color or size. The saliency and visualization techniques were factors in our analysis, and effects were evaluated in terms of decision quality, attention, time on task, and confidence. Results show that the quality of choice and attention were comparable for all saliency conditions when SPM was used. For PC, we found a positive effect of color saliency both on the quality of choice and on attention. Different forms of saliency led to varying times on task in both PC and SPM; however, those variations were not significant. A comparison of PC and SPM shows, users spent less time on the task, obtained better decision quality, and were more confident with their decision when using PC. To summarize, our findings suggest that saliency can increase attention and decision quality in MCDM for certain visualization techniques and forms of saliency. Another contribution of this work is the novel suggestion of the method to elicit of users’ preferences; its potential benefits are discussed in the end of the paper.
Graphic abstract
Collapse
|
17
|
|
18
|
Lyu Y, Gao F, Wu IS, Lim BY. Imma Sort by Two or More Attributes With Interpretable Monotonic Multi-Attribute Sorting. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:2369-2384. [PMID: 33296304 DOI: 10.1109/tvcg.2020.3043487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many choice problems often involve multiple attributes which are mentally challenging, because only one attribute is neatly sorted while others could be randomly arranged. We hypothesize that perceiving approximately monotonic trends across multiple attributes is key to the overall interpretability of sorted results, because users can easily predict the attribute values of the next items. We extend a ranking principal curve model to tune monotonic trends in attributes and present Imma Sort to sort items by multiple attributes simultaneously by trading-off the monotonicity in the primary sorted attribute to increase the human predictability for other attributes. We characterize how it performs for varying attribute correlations, attribute preferences, list lengths and number of attributes. We further extend Imma Sort with ImmaAnchor and ImmaCenter to improve the learnability and efficiency to search sorted items with conflicting attributes. We demonstrate usage scenarios for two applications and evaluate its learnability, usability, interpretability, and user performance in prediction and search tasks. We find that Imma Sort improves the interpretability and satisfaction of sorting by ≥ 2 attributes. We discuss why, when, where, and how to deploy Imma Sort for real-world applications.
Collapse
|
19
|
Dimara E, Franconeri S, Plaisant C, Bezerianos A, Dragicevic P. A Task-Based Taxonomy of Cognitive Biases for Information Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:1413-1432. [PMID: 30281459 DOI: 10.1109/tvcg.2018.2872577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Information visualization designers strive to design data displays that allow for efficient exploration, analysis, and communication of patterns in data, leading to informed decisions. Unfortunately, human judgment and decision making are imperfect and often plagued by cognitive biases. There is limited empirical research documenting how these biases affect visual data analysis activities. Existing taxonomies are organized by cognitive theories that are hard to associate with visualization tasks. Based on a survey of the literature we propose a task-based taxonomy of 154 cognitive biases organized in 7 main categories. We hope the taxonomy will help visualization researchers relate their design to the corresponding possible biases, and lead to new research that detects and addresses biased judgment and decision making in data visualization.
Collapse
|
20
|
Dasgupta A, Wang H, O'Brien N, Burrows S. Separating the Wheat from the Chaff: Comparative Visual Cues for Transparent Diagnostics of Competing Models. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:1043-1053. [PMID: 31478858 DOI: 10.1109/tvcg.2019.2934540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Experts in data and physical sciences have to regularly grapple with the problem of competing models. Be it analytical or physics-based models, a cross-cutting challenge for experts is to reliably diagnose which model outcomes appropriately predict or simulate real-world phenomena. Expert judgment involves reconciling information across many, and often, conflicting criteria that describe the quality of model outcomes. In this paper, through a design study with climate scientists, we develop a deeper understanding of the problem and solution space of model diagnostics, resulting in the following contributions: i) a problem and task characterization using which we map experts' model diagnostics goals to multi-way visual comparison tasks, ii) a design space of comparative visual cues for letting experts quickly understand the degree of disagreement among competing models and gauge the degree of stability of model outputs with respect to alternative criteria, and iii) design and evaluation of MyriadCues, an interactive visualization interface for exploring alternative hypotheses and insights about good and bad models by leveraging comparative visual cues. We present case studies and subjective feedback by experts, which validate how MyriadCues enables more transparent model diagnostic mechanisms, as compared to the state of the art.
Collapse
|
21
|
Zhao Y, Wang L, Li S, Zhou F, Lin X, Lu Q, Ren L. A Visual Analysis Approach for Understanding Durability Test Data of Automotive Products. ACM T INTEL SYST TEC 2019. [DOI: 10.1145/3345640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
People face data-rich manufacturing environments in Industry 4.0. As an important technology for explaining and understanding complex data, visual analytics has been increasingly introduced into industrial data analysis scenarios. With the durability test of automotive starters as background, this study proposes a visual analysis approach for understanding large-scale and long-term durability test data. Guided by detailed scenario and requirement analyses, we first propose a migration-adapted clustering algorithm that utilizes a segmentation strategy and a group of matching-updating operations to achieve an efficient and accurate clustering analysis of the data for starting mode identification and abnormal test detection. We then design and implement a visual analysis system that provides a set of user-friendly visual designs and lightweight interactions to help people gain data insights into the test process overview, test data patterns, and durability performance dynamics. Finally, we conduct a quantitative algorithm evaluation, case study, and user interview by using real-world starter durability test datasets. The results demonstrate the effectiveness of the approach and its possible inspiration for the durability test data analysis of other similar industrial products.
Collapse
Affiliation(s)
- Ying Zhao
- Central South University, Changsha, Hunan, China
| | - Lei Wang
- Central South University, Changsha, Hunan, China
| | - Shijie Li
- Central South University, Changsha, Hunan, China
| | | | - Xiaoru Lin
- Central South University, Changsha, Hunan, China
| | - Qiang Lu
- Hefei University of Technology 8 China and Anhui Province Key Laboratory of Industry Safety and Emergency Technology, Hefei, Anhui, China
| | - Lei Ren
- Beihang University, Beijing, China
| |
Collapse
|
22
|
Zhou F, Lin X, Liu C, Zhao Y, Xu P, Ren L, Xue T, Ren L. A survey of visualization for smart manufacturing. J Vis (Tokyo) 2018. [DOI: 10.1007/s12650-018-0530-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
|
24
|
Dimara E, Bailly G, Bezerianos A, Franconeri S. Mitigating the Attraction Effect with Visualizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:850-860. [PMID: 30137000 DOI: 10.1109/tvcg.2018.2865233] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Human decisions are prone to biases, and this is no less true for decisions made within data visualizations. Bias mitigation strategies often focus on the person, by educating people about their biases, typically with little success. We focus instead on the system, presenting the first evidence that altering the design of an interactive visualization tool can mitigate a strong bias - the attraction effect. Participants viewed 2D scatterplots where choices between superior alternatives were affected by the placement of other suboptimal points. We found that highlighting the superior alternatives weakened the bias, but did not eliminate it. We then tested an interactive approach where participants completely removed locally dominated points from the view, inspired by the elimination by aspects strategy in the decision-making literature. This approach strongly decreased the bias, leading to a counterintuitive suggestion: tools that allow removing inappropriately salient or distracting data from a view may help lead users to make more rational decisions.
Collapse
|
25
|
Orban D, Keefe DF, Biswas A, Ahrens J, Rogers D. Drag and Track: A Direct Manipulation Interface for Contextualizing Data Instances within a Continuous Parameter Space. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:256-266. [PMID: 30136980 DOI: 10.1109/tvcg.2018.2865051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present a direct manipulation technique that allows material scientists to interactively highlight relevant parameterized simulation instances located in dimensionally reduced spaces, enabling a user-defined understanding of a continuous parameter space. Our goals are two-fold: first, to build a user-directed intuition of dimensionally reduced data, and second, to provide a mechanism for creatively exploring parameter relationships in parameterized simulation sets, called ensembles. We start by visualizing ensemble data instances in dimensionally reduced scatter plots. To understand these abstract views, we employ user-defined virtual data instances that, through direct manipulation, search an ensemble for similar instances. Users can create multiple of these direct manipulation queries to visually annotate the spaces with sets of highlighted ensemble data instances. User-defined goals are therefore translated into custom illustrations that are projected onto the dimensionally reduced spaces. Combined forward and inverse searches of the parameter space follow naturally allowing for continuous parameter space prediction and visual query comparison in the context of an ensemble. The potential for this visualization technique is confirmed via expert user feedback for a shock physics application and synthetic model analysis.
Collapse
|
26
|
Stitz H, Gratzl S, Piringer H, Zichner T, Streit M. KnowledgePearls: Provenance-Based Visualization Retrieval. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:120-130. [PMID: 30136970 DOI: 10.1109/tvcg.2018.2865024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Storing analytical provenance generates a knowledge base with a large potential for recalling previous results and guiding users in future analyses. However, without extensive manual creation of meta information and annotations by the users, search and retrieval of analysis states can become tedious. We present KnowledgePearls, a solution for efficient retrieval of analysis states that are structured as provenance graphs containing automatically recorded user interactions and visualizations. As a core component, we describe a visual interface for querying and exploring analysis states based on their similarity to a partial definition of a requested analysis state. Depending on the use case, this definition may be provided explicitly by the user by formulating a search query or inferred from given reference states. We explain our approach using the example of efficient retrieval of demographic analyses by Hans Rosling and discuss our implementation for a fast look-up of previous states. Our approach is independent of the underlying visualization framework. We discuss the applicability for visualizations which are based on the declarative grammar Vega and we use a Vega-based implementation of Gapminder as guiding example. We additionally present a biomedical case study to illustrate how KnowledgePearls facilitates the exploration process by recalling states from earlier analyses.
Collapse
|
27
|
Abstract
We present an algorithmic and visual grouping of participants and eye-tracking metrics derived from recorded eye-tracking data. Our method utilizes two well-established visualization concepts. First, parallel coordinates are used to provide an overview of the used metrics, their interactions, and similarities, which helps select suitable metrics that describe characteristics of the eye-tracking data. Furthermore, parallel coordinates plots enable an analyst to test the effects of creating a combination of a subset of metrics resulting in a newly derived eye-tracking metric. Second, a similarity matrix visualization is used to visually represent the affine combination of metrics utilizing an algorithmic grouping of subjects that leads to distinct visual groups of similar behavior. To keep the diagrams of the matrix visualization simple and understandable, we visually encode our eyetracking data into the cells of a similarity matrix of participants. The algorithmic grouping is performed with a clustering based on the affine combination of metrics, which is also the basis for the similarity value computation of the similarity matrix. To illustrate the usefulness of our visualization, we applied it to an eye-tracking data set involving the reading behavior of metro maps of up to 40 participants. Finally, we discuss limitations and scalability issues of the approach focusing on visual and perceptual issues.
Collapse
|
28
|
Muhlbacher T, Linhardt L, Moller T, Piringer H. TreePOD: Sensitivity-Aware Selection of Pareto-Optimal Decision Trees. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:174-183. [PMID: 28866575 DOI: 10.1109/tvcg.2017.2745158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Balancing accuracy gains with other objectives such as interpretability is a key challenge when building decision trees. However, this process is difficult to automate because it involves know-how about the domain as well as the purpose of the model. This paper presents TreePOD, a new approach for sensitivity-aware model selection along trade-offs. TreePOD is based on exploring a large set of candidate trees generated by sampling the parameters of tree construction algorithms. Based on this set, visualizations of quantitative and qualitative tree aspects provide a comprehensive overview of possible tree characteristics. Along trade-offs between two objectives, TreePOD provides efficient selection guidance by focusing on Pareto-optimal tree candidates. TreePOD also conveys the sensitivities of tree characteristics on variations of selected parameters by extending the tree generation process with a full-factorial sampling. We demonstrate how TreePOD supports a variety of tasks involved in decision tree selection and describe its integration in a holistic workflow for building and selecting decision trees. For evaluation, we illustrate a case study for predicting critical power grid states, and we report qualitative feedback from domain experts in the energy sector. This feedback suggests that TreePOD enables users with and without statistical background a confident and efficient identification of suitable decision trees.
Collapse
|
29
|
Dimara E, Bezerianos A, Dragicevic P. Conceptual and Methodological Issues in Evaluating Multidimensional Visualizations for Decision Support. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:749-759. [PMID: 28866571 DOI: 10.1109/tvcg.2017.2745138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We explore how to rigorously evaluate multidimensional visualizations for their ability to support decision making. We first define multi-attribute choice tasks, a type of decision task commonly performed with such visualizations. We then identify which of the existing multidimensional visualizations are compatible with such tasks, and set out to evaluate three elementary visualizations: parallel coordinates, scatterplot matrices and tabular visualizations. Our method consists in first giving participants low-level analytic tasks, in order to ensure that they properly understood the visualizations and their interactions. Participants are then given multi-attribute choice tasks consisting of choosing holiday packages. We assess decision support through multiple objective and subjective metrics, including a decision accuracy metric based on the consistency between the choice made and self-reported preferences for attributes. We found the three visualizations to be comparable on most metrics, with a slight advantage for tabular visualizations. In particular, tabular visualizations allow participants to reach decisions faster. Thus, although decision time is typically not central in assessing decision support, it can be used as a tie-breaker when visualizations achieve similar decision accuracy. Our results also suggest that indirect methods for assessing choice confidence may allow to better distinguish between visualizations than direct ones. We finally discuss the limitations of our methods and directions for future work, such as the need for more sensitive metrics of decision support.
Collapse
|
30
|
Zhao X, Wu Y, Cui W, Du X, Chen Y, Wang Y, Lee DL, Qu H. SkyLens: Visual Analysis of Skyline on Multi-Dimensional Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:246-255. [PMID: 28866558 DOI: 10.1109/tvcg.2017.2744738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Skyline queries have wide-ranging applications in fields that involve multi-criteria decision making, including tourism, retail industry, and human resources. By automatically removing incompetent candidates, skyline queries allow users to focus on a subset of superior data items (i.e., the skyline), thus reducing the decision-making overhead. However, users are still required to interpret and compare these superior items manually before making a successful choice. This task is challenging because of two issues. First, people usually have fuzzy, unstable, and inconsistent preferences when presented with multiple candidates. Second, skyline queries do not reveal the reasons for the superiority of certain skyline points in a multi-dimensional space. To address these issues, we propose SkyLens, a visual analytic system aiming at revealing the superiority of skyline points from different perspectives and at different scales to aid users in their decision making. Two scenarios demonstrate the usefulness of SkyLens on two datasets with a dozen of attributes. A qualitative study is also conducted to show that users can efficiently accomplish skyline understanding and comparison tasks with SkyLens.
Collapse
|
31
|
Bernard J, Hutter M, Zeppelzauer M, Fellner D, Sedlmair M. Comparing Visual-Interactive Labeling with Active Learning: An Experimental Study. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:298-308. [PMID: 28866560 DOI: 10.1109/tvcg.2017.2744818] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Labeling data instances is an important task in machine learning and visual analytics. Both fields provide a broad set of labeling strategies, whereby machine learning (and in particular active learning) follows a rather model-centered approach and visual analytics employs rather user-centered approaches (visual-interactive labeling). Both approaches have individual strengths and weaknesses. In this work, we conduct an experiment with three parts to assess and compare the performance of these different labeling strategies. In our study, we (1) identify different visual labeling strategies for user-centered labeling, (2) investigate strengths and weaknesses of labeling strategies for different labeling tasks and task complexities, and (3) shed light on the effect of using different visual encodings to guide the visual-interactive labeling process. We further compare labeling of single versus multiple instances at a time, and quantify the impact on efficiency. We systematically compare the performance of visual interactive labeling with that of active learning. Our main findings are that visual-interactive labeling can outperform active learning, given the condition that dimension reduction separates well the class distributions. Moreover, using dimension reduction in combination with additional visual encodings that expose the internal state of the learning model turns out to improve the performance of visual-interactive labeling.
Collapse
|
32
|
|