1
|
Piccolotto N, Wallinger M, Miksch S, Bogl M. UnDRground Tubes: Exploring Spatial Data with Multidimensional Projections and Set Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:196-206. [PMID: 39250399 DOI: 10.1109/tvcg.2024.3456314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
In various scientific and industrial domains, analyzing multivariate spatial data, i.e., vectors associated with spatial locations, is common practice. To analyze those datasets, analysts may turn to methods such as Spatial Blind Source Separation (SBSS). Designed explicitly for spatial data analysis, SBSS finds latent components in the dataset and is superior to popular non-spatial methods, like PCA. However, when analysts try different tuning parameter settings, the amount of latent components complicates analytical tasks. Based on our years-long collaboration with SBSS researchers, we propose a visualization approach to tackle this challenge. The main component is UnDRground Tubes (UT), a general-purpose idiom combining ideas from set visualization and multidimensional projections. We describe the UT visualization pipeline and integrate UT into an interactive multiple-view system. We demonstrate its effectiveness through interviews with SBSS experts, a qualitative evaluation with visualization experts, and computational experiments. SBSS experts were excited about our approach. They saw many benefits for their work and potential applications for geostatistical data analysis more generally. UT was also well received by visualization experts. Our benchmarks show that UT projections and its heuristics are appropriate.
Collapse
|
2
|
He X, Tao Y, Yang S, Dai H, Lin H. voxel2vec: A Natural Language Processing Approach to Learning Distributed Representations for Scientific Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:4296-4311. [PMID: 35797320 DOI: 10.1109/tvcg.2022.3189094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Relationships in scientific data, such as the numerical and spatial distribution relations of features in univariate data, the scalar-value combinations' relations in multivariate data, and the association of volumes in time-varying and ensemble data, are intricate and complex. This paper presents voxel2vec, a novel unsupervised representation learning model, which is used to learn distributed representations of scalar values/scalar-value combinations in a low-dimensional vector space. Its basic assumption is that if two scalar values/scalar-value combinations have similar contexts, they usually have high similarity in terms of features. By representing scalar values/scalar-value combinations as symbols, voxel2vec learns the similarity between them in the context of spatial distribution and then allows us to explore the overall association between volumes by transfer prediction. We demonstrate the usefulness and effectiveness of voxel2vec by comparing it with the isosurface similarity map of univariate data and applying the learned distributed representations to feature classification for multivariate data and to association analysis for time-varying and ensemble data.
Collapse
|
3
|
Piccolotto N, Bögl M, Miksch S. Visual Parameter Space Exploration in Time and Space. COMPUTER GRAPHICS FORUM : JOURNAL OF THE EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS 2023; 42:e14785. [PMID: 38505647 PMCID: PMC10947302 DOI: 10.1111/cgf.14785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Computational models, such as simulations, are central to a wide range of fields in science and industry. Those models take input parameters and produce some output. To fully exploit their utility, relations between parameters and outputs must be understood. These include, for example, which parameter setting produces the best result (optimization) or which ranges of parameter settings produce a wide variety of results (sensitivity). Such tasks are often difficult to achieve for various reasons, for example, the size of the parameter space, and supported with visual analytics. In this paper, we survey visual parameter space exploration (VPSE) systems involving spatial and temporal data. We focus on interactive visualizations and user interfaces. Through thematic analysis of the surveyed papers, we identify common workflow steps and approaches to support them. We also identify topics for future work that will help enable VPSE on a greater variety of computational models.
Collapse
Affiliation(s)
- Nikolaus Piccolotto
- TU WienInstitute of Visual Computing and Human‐Centered TechnologyWienAustria
| | - Markus Bögl
- TU WienInstitute of Visual Computing and Human‐Centered TechnologyWienAustria
| | - Silvia Miksch
- TU WienInstitute of Visual Computing and Human‐Centered TechnologyWienAustria
| |
Collapse
|
4
|
Shi N, Xu J, Li H, Guo H, Woodring J, Shen HW. VDL-Surrogate: A View-Dependent Latent-based Model for Parameter Space Exploration of Ensemble Simulations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:820-830. [PMID: 36166538 DOI: 10.1109/tvcg.2022.3209413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We propose VDL-Surrogate, a view-dependent neural-network-latent-based surrogate model for parameter space exploration of ensemble simulations that allows high-resolution visualizations and user-specified visual mappings. Surrogate-enabled parameter space exploration allows domain scientists to preview simulation results without having to run a large number of computationally costly simulations. Limited by computational resources, however, existing surrogate models may not produce previews with sufficient resolution for visualization and analysis. To improve the efficient use of computational resources and support high-resolution exploration, we perform ray casting from different viewpoints to collect samples and produce compact latent representations. This latent encoding process reduces the cost of surrogate model training while maintaining the output quality. In the model training stage, we select viewpoints to cover the whole viewing sphere and train corresponding VDL-Surrogate models for the selected viewpoints. In the model inference stage, we predict the latent representations at previously selected viewpoints and decode the latent representations to data space. For any given viewpoint, we make interpolations over decoded data at selected viewpoints and generate visualizations with user-specified visual mappings. We show the effectiveness and efficiency of VDL-Surrogate in cosmological and ocean simulations with quantitative and qualitative evaluations. Source code is publicly available at https://github.com/trainsn/VDL-Surrogate.
Collapse
|
5
|
Rydow E, Borgo R, Fang H, Torsney-Weir T, Swallow B, Porphyre T, Turkay C, Chen M. Development and Evaluation of Two Approaches of Visual Sensitivity Analysis to Support Epidemiological Modeling. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:1255-1265. [PMID: 36173770 DOI: 10.1109/tvcg.2022.3209464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Computational modeling is a commonly used technology in many scientific disciplines and has played a noticeable role in combating the COVID-19 pandemic. Modeling scientists conduct sensitivity analysis frequently to observe and monitor the behavior of a model during its development and deployment. The traditional algorithmic ranking of sensitivity of different parameters usually does not provide modeling scientists with sufficient information to understand the interactions between different parameters and model outputs, while modeling scientists need to observe a large number of model runs in order to gain actionable information for parameter optimization. To address the above challenge, we developed and compared two visual analytics approaches, namely: algorithm-centric and visualization-assisted, and visualization-centric and algorithm-assisted. We evaluated the two approaches based on a structured analysis of different tasks in visual sensitivity analysis as well as the feedback of domain experts. While the work was carried out in the context of epidemiological modeling, the two approaches developed in this work are directly applicable to a variety of modeling processes featuring time series outputs, and can be extended to work with models with other types of outputs.
Collapse
|
6
|
Nipu N, Floricel C, Naghashzadeh N, Paoli R, Marai GE. Visual Analysis and Detection of Contrails in Aircraft Engine Simulations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:798-808. [PMID: 36166562 PMCID: PMC10621327 DOI: 10.1109/tvcg.2022.3209356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Contrails are condensation trails generated from emitted particles by aircraft engines, which perturb Earth's radiation budget. Simulation modeling is used to interpret the formation and development of contrails. These simulations are computationally intensive and rely on high-performance computing solutions, and the contrail structures are not well defined. We propose a visual computing system to assist in defining contrails and their characteristics, as well as in the analysis of parameters for computer-generated aircraft engine simulations. The back-end of our system leverages a contrail-formation criterion and clustering methods to detect contrails' shape and evolution and identify similar simulation runs. The front-end system helps analyze contrails and their parameters across multiple simulation runs. The evaluation with domain experts shows this approach successfully aids in contrail data investigation.
Collapse
|
7
|
Cakmak E, Jackle D, Schreck T, Keim DA, Fuchs J. Multiscale Visualization: A Structured Literature Analysis. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:4918-4929. [PMID: 34478370 DOI: 10.1109/tvcg.2021.3109387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multiscale visualizations are typically used to analyze multiscale processes and data in various application domains, such as the visual exploration of hierarchical genome structures in molecular biology. However, creating such multiscale visualizations remains challenging due to the plethora of existing work and the expression ambiguity in visualization research. Up to today, there has been little work to compare and categorize multiscale visualizations to understand their design practices. In this article, we present a structured literature analysis to provide an overview of common design practices in multiscale visualization research. We systematically reviewed and categorized 122 published journal or conference articles between 1995 and 2020. We organized the reviewed articles in a taxonomy that reveals common design factors. Researchers and practitioners can use our taxonomy to explore existing work to create new multiscale navigation and visualization techniques. Based on the reviewed articles, we examine research trends and highlight open research challenges.
Collapse
|
8
|
PEViz: an in situ progressive visual analytics system for ocean ensemble data. J Vis (Tokyo) 2022. [DOI: 10.1007/s12650-022-00883-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Shi N, Xu J, Wurster SW, Guo H, Woodring J, Van Roekel LP, Shen HW. GNN-Surrogate: A Hierarchical and Adaptive Graph Neural Network for Parameter Space Exploration of Unstructured-Mesh Ocean Simulations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:2301-2313. [PMID: 35389867 DOI: 10.1109/tvcg.2022.3165345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We propose GNN-Surrogate, a graph neural network-based surrogate model to explore the parameter space of ocean climate simulations. Parameter space exploration is important for domain scientists to understand the influence of input parameters (e.g., wind stress) on the simulation output (e.g., temperature). The exploration requires scientists to exhaust the complicated parameter space by running a batch of computationally expensive simulations. Our approach improves the efficiency of parameter space exploration with a surrogate model that predicts the simulation outputs accurately and efficiently. Specifically, GNN-Surrogate predicts the output field with given simulation parameters so scientists can explore the simulation parameter space with visualizations from user-specified visual mappings. Moreover, our graph-based techniques are designed for unstructured meshes, making the exploration of simulation outputs on irregular grids efficient. For efficient training, we generate hierarchical graphs and use adaptive resolutions. We give quantitative and qualitative evaluations on the MPAS-Ocean simulation to demonstrate the effectiveness and efficiency of GNN-Surrogate. Source code is publicly available at https://github.com/trainsn/GNN-Surrogate.
Collapse
|
10
|
Dimara E, Stasko J. A Critical Reflection on Visualization Research: Where Do Decision Making Tasks Hide? IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:1128-1138. [PMID: 34587049 DOI: 10.1109/tvcg.2021.3114813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It has been widely suggested that a key goal of visualization systems is to assist decision making, but is this true? We conduct a critical investigation on whether the activity of decision making is indeed central to the visualization domain. By approaching decision making as a user task, we explore the degree to which decision tasks are evident in visualization research and user studies. Our analysis suggests that decision tasks are not commonly found in current visualization task taxonomies and that the visualization field has yet to leverage guidance from decision theory domains on how to study such tasks. We further found that the majority of visualizations addressing decision making were not evaluated based on their ability to assist decision tasks. Finally, to help expand the impact of visual analytics in organizational as well as casual decision making activities, we initiate a research agenda on how decision making assistance could be elevated throughout visualization research.
Collapse
|
11
|
Abstract
We present a comprehensive, detailed review of time-series data analysis, with emphasis on deep time-series clustering (DTSC), and a case study in the context of movement behavior clustering utilizing the deep clustering method. Specifically, we modified the DCAE architectures to suit time-series data at the time of our prior deep clustering work. Lately, several works have been carried out on deep clustering of time-series data. We also review these works and identify state-of-the-art, as well as present an outlook on this important field of DTSC from five important perspectives.
Collapse
|
12
|
Visualization Framework for High-Dimensional Spatio-Temporal Hydrological Gridded Datasets using Machine-Learning Techniques. WATER 2020. [DOI: 10.3390/w12020590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Numerical modelling increasingly generates massive, high-dimensional spatio-temporal datasets. Exploring such datasets relies on effective visualization. This study presents a generic workflow to (i) project high-dimensional spatio-temporal data on a two-dimensional (2D) plane accurately (ii) compare dimensionality reduction techniques (DRTs) in terms of resolution and computational efficiency (iii) represent 2D projection spatially using a 2D perceptually uniform background color map. Machine learning (ML) based DRTs for data visualization i.e., principal component analysis (PCA), generative topographic mapping (GTM), t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projection (UMAP) are compared in terms of accuracy, resolution and computational efficiency to handle massive datasets. The accuracy of visualization is evaluated using a quality metric based on a co-ranking framework. The workflow is applied to an output of an Australian Water Resource Assessment (AWRA) model for Tasmania, Australia. The dataset consists of daily time series of nine components of the water balance at a 5 km grid cell resolution for the year 2017. The case study shows that PCA allows rapid visualization of global data structures, while t-SNE and UMAP allows more accurate representation of local trends. Furthermore, UMAP is computationally more efficient than t-SNE and least affected by the outliers compared to GTM.
Collapse
|
13
|
Hazarika S, Li H, Wang KC, Shen HW, Chou CS. NNVA: Neural Network Assisted Visual Analysis of Yeast Cell Polarization Simulation. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:34-44. [PMID: 31425114 DOI: 10.1109/tvcg.2019.2934591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Complex computational models are often designed to simulate real-world physical phenomena in many scientific disciplines. However, these simulation models tend to be computationally very expensive and involve a large number of simulation input parameters, which need to be analyzed and properly calibrated before the models can be applied for real scientific studies. We propose a visual analysis system to facilitate interactive exploratory analysis of high-dimensional input parameter space for a complex yeast cell polarization simulation. The proposed system can assist the computational biologists, who designed the simulation model, to visually calibrate the input parameters by modifying the parameter values and immediately visualizing the predicted simulation outcome without having the need to run the original expensive simulation for every instance. Our proposed visual analysis system is driven by a trained neural network-based surrogate model as the backend analysis framework. In this work, we demonstrate the advantage of using neural networks as surrogate models for visual analysis by incorporating some of the recent advances in the field of uncertainty quantification, interpretability and explainability of neural network-based models. We utilize the trained network to perform interactive parameter sensitivity analysis of the original simulation as well as recommend optimal parameter configurations using the activation maximization framework of neural networks. We also facilitate detail analysis of the trained network to extract useful insights about the simulation model, learned by the network, during the training process. We performed two case studies, and discovered multiple new parameter configurations, which can trigger high cell polarization results in the original simulation model. We evaluated our results by comparing with the original simulation model outcomes as well as the findings from previous parameter analysis performed by our experts.
Collapse
|
14
|
Chen C, Wang C, Bai X, Zhang P, Li C. GenerativeMap: Visualization and Exploration of Dynamic Density Maps via Generative Learning Model. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:216-226. [PMID: 31443026 DOI: 10.1109/tvcg.2019.2934806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The density map is widely used for data sampling, time-varying detection, ensemble representation, etc. The visualization of dynamic evolution is a challenging task when exploring spatiotemporal data. Many approaches have been provided to explore the variation of data patterns over time, which commonly need multiple parameters and preprocessing works. Image generation is a well-known topic in deep learning, and a variety of generating models have been promoted in recent years. In this paper, we introduce a general pipeline called GenerativeMap to extract dynamics of density maps by generating interpolation information. First, a trained generative model comprises an important part of our approach, which can generate nonlinear and natural results by implementing a few parameters. Second, a visual presentation is proposed to show the density change, which is combined with the level of detail and blue noise sampling for a better visual effect. Third, for dynamic visualization of large-scale density maps, we extend this approach to show the evolution in regions of interest, which costs less to overcome the drawback of the learning-based generative model. We demonstrate our method on different types of cases, and we evaluate and compare the approach from multiple aspects. The results help identify the effectiveness of our approach and confirm its applicability in different scenarios.
Collapse
|
15
|
He W, Wang J, Guo H, Wang KC, Shen HW, Raj M, Nashed YSG, Peterka T. InSituNet: Deep Image Synthesis for Parameter Space Exploration of Ensemble Simulations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:23-33. [PMID: 31425097 DOI: 10.1109/tvcg.2019.2934312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We propose InSituNet, a deep learning based surrogate model to support parameter space exploration for ensemble simulations that are visualized in situ. In situ visualization, generating visualizations at simulation time, is becoming prevalent in handling large-scale simulations because of the I/O and storage constraints. However, in situ visualization approaches limit the flexibility of post-hoc exploration because the raw simulation data are no longer available. Although multiple image-based approaches have been proposed to mitigate this limitation, those approaches lack the ability to explore the simulation parameters. Our approach allows flexible exploration of parameter space for large-scale ensemble simulations by taking advantage of the recent advances in deep learning. Specifically, we design InSituNet as a convolutional regression model to learn the mapping from the simulation and visualization parameters to the visualization results. With the trained model, users can generate new images for different simulation parameters under various visualization settings, which enables in-depth analysis of the underlying ensemble simulations. We demonstrate the effectiveness of InSituNet in combustion, cosmology, and ocean simulations through quantitative and qualitative evaluations.
Collapse
|
16
|
Wang J, Hazarika S, Li C, Shen HW. Visualization and Visual Analysis of Ensemble Data: A Survey. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2019; 25:2853-2872. [PMID: 29994615 DOI: 10.1109/tvcg.2018.2853721] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Over the last decade, ensemble visualization has witnessed a significant development due to the wide availability of ensemble data, and the increasing visualization needs from a variety of disciplines. From the data analysis point of view, it can be observed that many ensemble visualization works focus on the same facet of ensemble data, use similar data aggregation or uncertainty modeling methods. However, the lack of reflections on those essential commonalities and a systematic overview of those works prevents visualization researchers from effectively identifying new or unsolved problems and planning for further developments. In this paper, we take a holistic perspective and provide a survey of ensemble visualization. Specifically, we study ensemble visualization works in the recent decade, and categorize them from two perspectives: (1) their proposed visualization techniques; and (2) their involved analytic tasks. For the first perspective, we focus on elaborating how conventional visualization techniques (e.g., surface, volume visualization techniques) have been adapted to ensemble data; for the second perspective, we emphasize how analytic tasks (e.g., comparison, clustering) have been performed differently for ensemble data. From the study of ensemble visualization literature, we have also identified several research trends, as well as some future research opportunities.
Collapse
|
17
|
Rautenhaus M, Bottinger M, Siemen S, Hoffman R, Kirby RM, Mirzargar M, Rober N, Westermann R. Visualization in Meteorology-A Survey of Techniques and Tools for Data Analysis Tasks. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:3268-3296. [PMID: 29990196 DOI: 10.1109/tvcg.2017.2779501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This article surveys the history and current state of the art of visualization in meteorology, focusing on visualization techniques and tools used for meteorological data analysis. We examine characteristics of meteorological data and analysis tasks, describe the development of computer graphics methods for visualization in meteorology from the 1960s to today, and visit the state of the art of visualization techniques and tools in operational weather forecasting and atmospheric research. We approach the topic from both the visualization and the meteorological side, showing visualization techniques commonly used in meteorological practice, and surveying recent studies in visualization research aimed at meteorological applications. Our overview covers visualization techniques from the fields of display design, 3D visualization, flow dynamics, feature-based visualization, comparative visualization and data fusion, uncertainty and ensemble visualization, interactive visual analysis, efficient rendering, and scalability and reproducibility. We discuss demands and challenges for visualization research targeting meteorological data analysis, highlighting aspects in demonstration of benefit, interactive visual analysis, seamless visualization, ensemble visualization, 3D visualization, and technical issues.
Collapse
|
18
|
Ma B, Entezari A. An Interactive Framework for Visualization of Weather Forecast Ensembles. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:1091-1101. [PMID: 30130213 DOI: 10.1109/tvcg.2018.2864815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Numerical Weather Prediction (NWP) ensembles are commonly used to assess the uncertainty and confidence in weather forecasts. Spaghetti plots are conventional tools for meteorologists to directly examine the uncertainty exhibited by ensembles, where they simultaneously visualize isocontours of all ensemble members. To avoid visual clutter in practical usages, one needs to select a small number of informative isovalues for visual analysis. Moreover, due to the complex topology and variation of ensemble isocontours, it is often a challenging task to interpret the spaghetti plot for even a single isovalue in large ensembles. In this paper, we propose an interactive framework for uncertainty visualization of weather forecast ensembles that significantly improves and expands the utility of spaghetti plots in ensemble analysis. Complementary to state-of-the-art methods, our approach provides a complete framework for visual exploration of ensemble isocontours, including isovalue selection, interactive isocontour variability exploration, and interactive sub-region selection and re-analysis. Our framework is built upon the high-density clustering paradigm, where the mode structure of the density function is represented as a hierarchy of nested subsets of the data. We generalize the high-density clustering for isocontours and propose a bandwidth selection method for estimating the density function of ensemble isocontours. We present novel visualizations based on high-density clustering results, called the mode plot and the simplified spaghetti plot. The proposed mode plot visually encodes the structure provided by the high-density clustering result and summarizes the distribution of ensemble isocontours. It also enables the selection of subsets of interesting isocontours, which are interactively highlighted in a linked spaghetti plot for providing spatial context. To provide an interpretable overview of the positional variability of isocontours, our system allows for selection of informative isovalues from the simplified spaghetti plot. Due to the spatial variability of ensemble isocontours, the system allows for interactive selection and focus on sub-regions for local uncertainty and clustering re-analysis. We examine a number of ensemble datasets to establish the utility of our approach and discuss its advantages over state-of-the-art visual analysis tools for ensemble data.
Collapse
|
19
|
Orban D, Keefe DF, Biswas A, Ahrens J, Rogers D. Drag and Track: A Direct Manipulation Interface for Contextualizing Data Instances within a Continuous Parameter Space. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:256-266. [PMID: 30136980 DOI: 10.1109/tvcg.2018.2865051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present a direct manipulation technique that allows material scientists to interactively highlight relevant parameterized simulation instances located in dimensionally reduced spaces, enabling a user-defined understanding of a continuous parameter space. Our goals are two-fold: first, to build a user-directed intuition of dimensionally reduced data, and second, to provide a mechanism for creatively exploring parameter relationships in parameterized simulation sets, called ensembles. We start by visualizing ensemble data instances in dimensionally reduced scatter plots. To understand these abstract views, we employ user-defined virtual data instances that, through direct manipulation, search an ensemble for similar instances. Users can create multiple of these direct manipulation queries to visually annotate the spaces with sets of highlighted ensemble data instances. User-defined goals are therefore translated into custom illustrations that are projected onto the dimensionally reduced spaces. Combined forward and inverse searches of the parameter space follow naturally allowing for continuous parameter space prediction and visual query comparison in the context of an ensemble. The potential for this visualization technique is confirmed via expert user feedback for a shock physics application and synthetic model analysis.
Collapse
|
20
|
|