1
|
Yu D, Ian O, Jie L, Xiaoru Y, Vinh NQ. User-centered visual explorer of in-process comparison in spatiotemporal space. J Vis (Tokyo) 2023; 26:403-421. [PMID: 36406961 PMCID: PMC9645334 DOI: 10.1007/s12650-022-00882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/13/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022]
Abstract
Abstract We propose a user-centered visual explorer (UcVE) for progressive comparing multiple visualization units in spatiotemporal space. We create unique unit visualization with the customizable aggregated view based on the visual metaphor of flower bursts. Each visualization unit is encoded with the abstraction of spatiotemporal properties. To reduce user cognition load, UcVE allows users to visualize, save, and track in-the-process exploration results. In coordination of storage sequence and block tracking views, UcVE can facilitate comparison with multiple visualization units concurrently, selected from historical and current exploration results. UcVE offers a flexible geo-based layout, with aggregation functions and temporal views of the timeline with categorized events, to maximize the user's exploration capabilities. Finally, we demonstrate the usefulness by using COVID-19 datasets, case studies with different user scenarios, and expert feedback. Graphical abstract
Collapse
Affiliation(s)
- Dong Yu
- School of Computer Science, University of Technology Sydney, Ultimo, Australia
| | - Oppermann Ian
- School of Computer Science, University of Technology Sydney, Ultimo, Australia
| | - Liang Jie
- School of Computer Science, University of Technology Sydney, Ultimo, Australia
| | - Yuan Xiaoru
- Key Laboratory of Machine Perception (Ministry of Education), and School of AI, Peking University, Beijing, China
- National Engineering Laboratory for Big Data Analysis and Application, Peking University, Beijing, China
| | - Nguyen Quang Vinh
- School of Computing, Engineering and Mathematics, Western Sydney University, Sydney, Australia
| |
Collapse
|
2
|
TriPlan: an interactive visual analytics approach for better tourism route planning. J Vis (Tokyo) 2023; 26:231-248. [PMID: 35992626 PMCID: PMC9380984 DOI: 10.1007/s12650-022-00861-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/21/2022] [Accepted: 06/14/2022] [Indexed: 02/03/2023]
Abstract
Abstract Continuous research and development of novel tourism routes is necessary for tourism service providers to improve the tourist experience and industrial competitiveness. However, the route planning is cumbersome due to the time-consuming, extensive, and costly field study. Most of the existing route planning studies focus on recommending tourism routes for users based on attraction characteristics or tourist behavior features, which are generally unexplainable due to the black-box approaches they use. Other solutions allow users to customize itineraries through an interactive interface but often lack guidance from the aspect of route evaluation or destination image perception. In this paper, we thoroughly discuss the requirements and design tasks with domain experts and propose TriPlan, an interactive visual analytics system that provides intuitive planning guidance for tourism product developers. We design and improve multiple coordinated visualizations to facilitate analysis from the perspectives of overall route pattern and individual destination image. We also develop a hierarchical planning view to display the structural information of a plan. In addition, we introduce an automatic route optimization algorithm and multiple interactions to assist users in optimizing and adjusting the itineraries. Finally, we evaluate the usability and effectiveness of our system through three case studies and quantitative and qualitative interviews with the domain experts on real-world datasets. Graphical abstract
Collapse
|
3
|
Wu Y, Deng D, Xie X, He M, Xu J, Zhang H, Zhang H, Wu Y. OBTracker: Visual Analytics of Off-ball Movements in Basketball. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:929-939. [PMID: 36166529 DOI: 10.1109/tvcg.2022.3209373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In a basketball play, players who are not in possession of the ball (i.e., off-ball players) can still effectively contribute to the team's offense, such as making a sudden move to create scoring opportunities. Analyzing the movements of off-ball players can thus facilitate the development of effective strategies for coaches. However, common basketball statistics (e.g., points and assists) primarily focus on what happens around the ball and are mostly result-oriented, making it challenging to objectively assess and fully understand the contributions of off-ball movements. To address these challenges, we collaborate closely with domain experts and summarize the multi-level requirements for off-ball movement analysis in basketball. We first establish an assessment model to quantitatively evaluate the offensive contribution of an off-ball movement considering both the position of players and the team cooperation. Based on the model, we design and develop a visual analytics system called OBTracker to support the multifaceted analysis of off-ball movements. OBTracker enables users to identify the frequency and effectiveness of off-ball movement patterns and learn the performance of different off-ball players. A tailored visualization based on the Voronoi diagram is proposed to help users interpret the contribution of off-ball movements from a temporal perspective. We conduct two case studies based on the tracking data from NBA games and demonstrate the effectiveness and usability of OBTracker through expert feedback.
Collapse
|
4
|
Deng Z, Weng D, Liu S, Tian Y, Xu M, Wu Y. A survey of urban visual analytics: Advances and future directions. COMPUTATIONAL VISUAL MEDIA 2022; 9:3-39. [PMID: 36277276 PMCID: PMC9579670 DOI: 10.1007/s41095-022-0275-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/08/2022] [Indexed: 06/16/2023]
Abstract
Developing effective visual analytics systems demands care in characterization of domain problems and integration of visualization techniques and computational models. Urban visual analytics has already achieved remarkable success in tackling urban problems and providing fundamental services for smart cities. To promote further academic research and assist the development of industrial urban analytics systems, we comprehensively review urban visual analytics studies from four perspectives. In particular, we identify 8 urban domains and 22 types of popular visualization, analyze 7 types of computational method, and categorize existing systems into 4 types based on their integration of visualization techniques and computational models. We conclude with potential research directions and opportunities.
Collapse
Affiliation(s)
- Zikun Deng
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| | - Di Weng
- Microsoft Research Asia, Beijing, 100080 China
| | - Shuhan Liu
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| | - Yuan Tian
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| | - Mingliang Xu
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001 China
| | - Yingcai Wu
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
5
|
Hou Y, Wang C, Wang J, Xue X, Zhang XL, Zhu J, Wang D, Chen S. Visual Evaluation for Autonomous Driving. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:1030-1039. [PMID: 34723804 DOI: 10.1109/tvcg.2021.3114777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Autonomous driving technologies often use state-of-the-art artificial intelligence algorithms to understand the relationship between the vehicle and the external environment, to predict the changes of the environment, and then to plan and control the behaviors of the vehicle accordingly. The complexity of such technologies makes it challenging to evaluate the performance of autonomous driving systems and to find ways to improve them. The current approaches to evaluating such autonomous driving systems largely use a single score to indicate the overall performance of a system, but domain experts have difficulties in understanding how individual components or algorithms in an autonomous driving system may contribute to the score. To address this problem, we collaborate with domain experts on autonomous driving algorithms, and propose a visual evaluation method for autonomous driving. Our method considers the data generated in all components during the whole process of autonomous driving, including perception results, planning routes, prediction of obstacles, various controlling parameters, and evaluation of comfort. We develop a visual analytics workflow to integrate an evaluation mathematical model with adjustable parameters, support the evaluation of the system from the level of the overall performance to the level of detailed measures of individual components, and to show both evaluation scores and their contributing factors. Our implemented visual analytics system provides an overview evaluation score at the beginning and shows the animation of the dynamic change of the scores at each period. Experts can interactively explore the specific component at different time periods and identify related factors. With our method, domain experts not only learn about the performance of an autonomous driving system, but also identify and access the problematic parts of each component. Our visual evaluation system can be applied to the autonomous driving simulation system and used for various evaluation cases. The results of using our system in some simulation cases and the feedback from involved domain experts confirm the usefulness and efficiency of our method in helping people gain in-depth insight into autonomous driving systems.
Collapse
|
6
|
Jamonnak S, Zhao Y, Huang X, Amiruzzaman M. Geo-Context Aware Study of Vision-Based Autonomous Driving Models and Spatial Video Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:1019-1029. [PMID: 34596546 DOI: 10.1109/tvcg.2021.3114853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Vision-based deep learning (DL) methods have made great progress in learning autonomous driving models from large-scale crowd-sourced video datasets. They are trained to predict instantaneous driving behaviors from video data captured by on-vehicle cameras. In this paper, we develop a geo-context aware visualization system for the study of Autonomous Driving Model (ADM) predictions together with large-scale ADM video data. The visual study is seamlessly integrated with the geographical environment by combining DL model performance with geospatial visualization techniques. Model performance measures can be studied together with a set of geospatial attributes over map views. Users can also discover and compare prediction behaviors of multiple DL models in both city-wide and street-level analysis, together with road images and video contents. Therefore, the system provides a new visual exploration platform for DL model designers in autonomous driving. Use cases and domain expert evaluation show the utility and effectiveness of the visualization system.
Collapse
|
7
|
Shi L, Huang C, Liu M, Yan J, Jiang T, Tan Z, Hu Y, Chen W, Zhang X. UrbanMotion: Visual Analysis of Metropolitan-Scale Sparse Trajectories. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:3881-3899. [PMID: 32386157 DOI: 10.1109/tvcg.2020.2992200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Visualizing massive scale human movement in cities plays an important role in solving many of the problems that modern cities face (e.g., traffic optimization, business site configuration). In this article, we study a big mobile location dataset that covers millions of city residents, but is temporally sparse on the trajectory of individual user. Mapping sparse trajectories to illustrate population movement poses several challenges from both analysis and visualization perspectives. In the literature, there are a few techniques designed for sparse trajectory visualization; yet they do not consider trajectories collected from mobile apps that possess long-tailed sparsity with record intervals as long as hours. This article introduces UrbanMotion, a visual analytics system that extends the original wind map design by supporting map-matched local movements, multi-directional population flows, and population distributions. Effective methods are proposed to extract and aggregate population movements from dense parts of the trajectories leveraging their long-tailed sparsity. Both characteristic and anomalous patterns are discovered and visualized. We conducted three case studies, one comparative experiment, and collected expert feedback in the application domains of commuting analysis, event detection, and business site configuration. The study result demonstrates the significance and effectiveness of our system in helping to complete key analytics tasks for urban users.
Collapse
|
8
|
Nonato LG, do Carmo FP, Silva CT. GLoG: Laplacian of Gaussian for Spatial Pattern Detection in Spatio-Temporal Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:3481-3492. [PMID: 32149640 DOI: 10.1109/tvcg.2020.2978847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Boundary detection has long been a fundamental tool for image processing and computer vision, supporting the analysis of static and time-varying data. In this work, we built upon the theory of Graph Signal Processing to propose a novel boundary detection filter in the context of graphs, having as main application scenario the visual analysis of spatio-temporal data. More specifically, we propose the equivalent for graphs of the so-called Laplacian of Gaussian edge detection filter, which is widely used in image processing. The proposed filter is able to reveal interesting spatial patterns while still enabling the definition of entropy of time slices. The entropy reveals the degree of randomness of a time slice, helping users to identify expected and unexpected phenomena over time. The effectiveness of our approach appears in applications involving synthetic and real data sets, which show that the proposed methodology is able to uncover interesting spatial and temporal phenomena. The provided examples and case studies make clear the usefulness of our approach as a mechanism to support visual analytic tasks involving spatio-temporal data.
Collapse
|
9
|
Weng D, Zheng C, Deng Z, Ma M, Bao J, Zheng Y, Xu M, Wu Y. Towards Better Bus Networks: A Visual Analytics Approach. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:817-827. [PMID: 33048743 DOI: 10.1109/tvcg.2020.3030458] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bus routes are typically updated every 3-5 years to meet constantly changing travel demands. However, identifying deficient bus routes and finding their optimal replacements remain challenging due to the difficulties in analyzing a complex bus network and the large solution space comprising alternative routes. Most of the automated approaches cannot produce satisfactory results in real-world settings without laborious inspection and evaluation of the candidates. The limitations observed in these approaches motivate us to collaborate with domain experts and propose a visual analytics solution for the performance analysis and incremental planning of bus routes based on an existing bus network. Developing such a solution involves three major challenges, namely, a) the in-depth analysis of complex bus route networks, b) the interactive generation of improved route candidates, and c) the effective evaluation of alternative bus routes. For challenge a, we employ an overview-to-detail approach by dividing the analysis of a complex bus network into three levels to facilitate the efficient identification of deficient routes. For challenge b, we improve a route generation model and interpret the performance of the generation with tailored visualizations. For challenge c, we incorporate a conflict resolution strategy in the progressive decision-making process to assist users in evaluating the alternative routes and finding the most optimal one. The proposed system is evaluated with two usage scenarios based on real-world data and received positive feedback from the experts. Index Terms-Bus route planning, spatial decision-making, urban data visual analytics.
Collapse
|
10
|
Jin Z, Cao N, Shi Y, Wu W, Wu Y. EcoLens: visual analysis of ecological regions in urban contexts using traffic data. J Vis (Tokyo) 2020. [DOI: 10.1007/s12650-020-00707-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Dai H, Tao Y, Lin H. Visual analytics of urban transportation from a bike-sharing and taxi perspective. J Vis (Tokyo) 2020. [DOI: 10.1007/s12650-020-00673-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Zhang Y, Shi H, Zhou F, Hu Y, Yin B. Visual analysis method for abnormal passenger flow on urban metro network. J Vis (Tokyo) 2020. [DOI: 10.1007/s12650-020-00674-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
A Change of Theme: The Role of Generalization in Thematic Mapping. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2020. [DOI: 10.3390/ijgi9060371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cartographic generalization research has focused almost exclusively in recent years on topographic mapping, and has thereby gained an incorrect reputation for having to do only with reference or positional data. The generalization research community needs to broaden its scope to include thematic cartography and geovisualization. Generalization is not new to these areas of cartography, and has in fact always been involved in thematic geographic visualization, despite rarely being acknowledged. We illustrate this involvement with several examples of famous, public-audience thematic maps, noting the generalization procedures involved in drawing each, both across their basemap and thematic layers. We also consider, for each map example we note, which generalization operators were crucial to the formation of the map’s thematic message. The many incremental gains made by the cartographic generalization research community while treating reference data can be brought to bear on thematic cartography in the same way they were used implicitly on the well-known thematic maps we highlight here as examples.
Collapse
|
14
|
Sîrbu A, Andrienko G, Andrienko N, Boldrini C, Conti M, Giannotti F, Guidotti R, Bertoli S, Kim J, Muntean CI, Pappalardo L, Passarella A, Pedreschi D, Pollacci L, Pratesi F, Sharma R. Human migration: the big data perspective. INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS 2020. [DOI: 10.1007/s41060-020-00213-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractHow can big data help to understand the migration phenomenon? In this paper, we try to answer this question through an analysis of various phases of migration, comparing traditional and novel data sources and models at each phase. We concentrate on three phases of migration, at each phase describing the state of the art and recent developments and ideas. The first phase includes the journey, and we study migration flows and stocks, providing examples where big data can have an impact. The second phase discusses the stay, i.e. migrant integration in the destination country. We explore various data sets and models that can be used to quantify and understand migrant integration, with the final aim of providing the basis for the construction of a novel multi-level integration index. The last phase is related to the effects of migration on the source countries and the return of migrants.
Collapse
|
15
|
An OD Flow Clustering Method Based on Vector Constraints: A Case Study for Beijing Taxi Origin-Destination Data. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2020. [DOI: 10.3390/ijgi9020128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Origin-destination (OD) flow pattern mining is an important research method of urban dynamics, in which OD flow clustering analysis discovers the activity patterns of urban residents and mine the coupling relationship of urban subspace and dynamic causes. The existing flow clustering methods are limited by the spatial constraints of OD points, rely on the spatial similarity of geographical points, and lack in-depth analysis of high-dimensional flow characteristics, and therefore it is difficult to find irregular flow clusters. In this paper, we propose an OD flow clustering method based on vector constraints (ODFCVC), which defines OD flow event point and OD flow vector to express the spatial location relationship and geometric flow behavior characteristics of OD flow. First, the OD flow vector coordinate system is normalized by the Euclidean distance-based OD flow event point spatial clustering, and then the OD flow clusters with similar flow patterns are mined using adjusted cosine similarity-based OD flow vector feature clustering. The transformation of OD data from point set space to vector space is realized by constraining the vector coordinate system and vector similarity through two-step clustering, which simplifies the calculation of high-dimensional similarity of OD flow and helps mining representative OD flow clusters in flow space. Due to the OD flow cluster property, the k-means algorithm is selected as the basic clustering logic in the two-step clustering method, and a sum of squared error perceptually important points algorithm considering silhouette coefficients (SSEPIP) is adopted to automatically extract the optimal cluster number without defining any parameters. Tested by origin-destination flow data in Beijing, China, new traffic flow communities based on traffic hubs are obtained by using the ODFCVC method, and irregular traffic flow clusters (including cluster mode, divergence mode, and convergence mode) with representative travel trends are found.
Collapse
|
16
|
Huang Z, Zhao Y, Chen W, Gao S, Yu K, Xu W, Tang M, Zhu M, Xu M. A Natural-language-based Visual Query Approach of Uncertain Human Trajectories. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:1256-1266. [PMID: 31443013 DOI: 10.1109/tvcg.2019.2934671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Visual querying is essential for interactively exploring massive trajectory data. However, the data uncertainty imposes profound challenges to fulfill advanced analytics requirements. On the one hand, many underlying data does not contain accurate geographic coordinates, e.g., positions of a mobile phone only refer to the regions (i.e., mobile cell stations) in which it resides, instead of accurate GPS coordinates. On the other hand, domain experts and general users prefer a natural way, such as using a natural language sentence, to access and analyze massive movement data. In this paper, we propose a visual analytics approach that can extract spatial-temporal constraints from a textual sentence and support an effective query method over uncertain mobile trajectory data. It is built up on encoding massive, spatially uncertain trajectories by the semantic information of the POls and regions covered by them, and then storing the trajectory documents in text database with an effective indexing scheme. The visual interface facilitates query condition specification, situation-aware visualization, and semantic exploration of large trajectory data. Usage scenarios on real-world human mobility datasets demonstrate the effectiveness of our approach.
Collapse
|
17
|
Seebacher D, Miller M, Polk T, Fuchs J, Keim DA. Visual Analytics of Volunteered Geographic Information: Detection and Investigation of Urban Heat Islands. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2019; 39:83-95. [PMID: 31265386 DOI: 10.1109/mcg.2019.2926242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Urban heat islands are local areas where the temperature is much higher than in the vicinity and are a modern phenomenon that occurs mainly in highly developed areas, such as large cities. This effect has a negative impact on energy management in buildings, and also has a direct impact on human health, especially for elderly people. With the advent of volunteered geographic information from private weather station networks, more high-resolution data are now available within cities to better analyze this effect. However, such datasets are large and have heterogeneous characteristics requiring visual-interactive applications to support further analysis. We use machine learning methods to predict urban heat islands occurrences and utilize temporal and spatio-temporal visualizations to contextualize the emergence of urban heat islands to comprehend the influencing causes and their effects. Subsequently, we demonstrate the analysis capabilities of our application by presenting two use cases.
Collapse
|
18
|
Diverse Visualization Techniques and Methods of Moving-Object-Trajectory Data: A Review. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2019. [DOI: 10.3390/ijgi8020063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Trajectory big data have significant applications in many areas, such as traffic management, urban planning and military reconnaissance. Traditional visualization methods, which are represented by contour maps, shading maps and hypsometric maps, are mainly based on the spatiotemporal information of trajectories, which can macroscopically study the spatiotemporal conditions of the entire trajectory set and microscopically analyze the individual movement of each trajectory; such methods are widely used in screen display and flat mapping. With the improvement of trajectory data quality, these data can generally describe information in the spatial and temporal dimensions and involve many other attributes (e.g., speed, orientation, and elevation) with large data amounts and high dimensions. Additionally, these data have relatively complicated internal relationships and regularities, whose analysis could cause many troubles; the traditional approaches can no longer fully meet the requirements of visualizing trajectory data and mining hidden information. Therefore, diverse visualization methods that present the value of massive trajectory information are currently a hot research topic. This paper summarizes the research status of trajectory data-visualization techniques in recent years and extracts common contemporary trajectory data-visualization methods to comprehensively cognize and understand the fundamental characteristics and diverse achievements of trajectory-data visualization.
Collapse
|
19
|
|
20
|
Liu D, Xu P, Ren L. TPFlow: Progressive Partition and Multidimensional Pattern Extraction for Large-Scale Spatio-Temporal Data Analysis. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:1-11. [PMID: 30136965 DOI: 10.1109/tvcg.2018.2865018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Consider a multi-dimensional spatio-temporal (ST) dataset where each entry is a numerical measure defined by the corresponding temporal, spatial and other domain-specific dimensions. A typical approach to explore such data utilizes interactive visualizations with multiple coordinated views. Each view displays the aggregated measures along one or two dimensions. By brushing on the views, analysts can obtain detailed information. However, this approach often cannot provide sufficient guidance for analysts to identify patterns hidden within subsets of data. Without a priori hypotheses, analysts need to manually select and iterate through different slices to search for patterns, which can be a tedious and lengthy process. In this work, we model multidimensional ST data as tensors and propose a novel piecewise rank-one tensor decomposition algorithm which supports automatically slicing the data into homogeneous partitions and extracting the latent patterns in each partition for comparison and visual summarization. The algorithm optimizes a quantitative measure about how faithfully the extracted patterns visually represent the original data. Based on the algorithm we further propose a visual analytics framework that supports a top-down, progressive partitioning workflow for level-of-detail multidimensional ST data exploration. We demonstrate the general applicability and effectiveness of our technique on three datasets from different application domains: regional sales trend analysis, customer traffic analysis in department stores, and taxi trip analysis with origin-destination (OD) data. We further interview domain experts to verify the usability of the prototype.
Collapse
|
21
|
Andrienko N, Andrienko G, Garcia JMC, Scarlatti D. Analysis of Flight Variability: a Systematic Approach. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:54-64. [PMID: 30130209 DOI: 10.1109/tvcg.2018.2864811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In movement data analysis, there exists a problem of comparing multiple trajectories of moving objects to common or distinct reference trajectories. We introduce a general conceptual framework for comparative analysis of trajectories and an analytical procedure, which consists of (1) finding corresponding points in pairs of trajectories, (2) computation of pairwise difference measures, and (3) interactive visual analysis of the distributions of the differences with respect to space, time, set of moving objects, trajectory structures, and spatio-temporal context. We propose a combination of visualisation, interaction, and data transformation techniques supporting the analysis and demonstrate the use of our approach for solving a challenging problem from the aviation domain.
Collapse
|
22
|
Zhou Z, Meng L, Tang C, Zhao Y, Guo Z, Hu M, Chen W. Visual Abstraction of Large Scale Geospatial Origin-Destination Movement Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:43-53. [PMID: 30130199 DOI: 10.1109/tvcg.2018.2864503] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A variety of human movement datasets are represented in an Origin-Destination(OD) form, such as taxi trips, mobile phone locations, etc. As a commonly-used method to visualize OD data, flow map always fails to discover patterns of human mobility, due to massive intersections and occlusions of lines on a 2D geographical map. A large number of techniques have been proposed to reduce visual clutter of flow maps, such as filtering, clustering and edge bundling, but the correlations of OD flows are often neglected, which makes the simplified OD flow map present little semantic information. In this paper, a characterization of OD flows is established based on an analogy between OD flows and natural language processing (NPL) terms. Then, an iterative multi-objective sampling scheme is designed to select OD flows in a vectorized representation space. To enhance the readability of sampled OD flows, a set of meaningful visual encodings are designed to present the interactions of OD flows. We design and implement a visual exploration system that supports visual inspection and quantitative evaluation from a variety of perspectives. Case studies based on real-world datasets and interviews with domain experts have demonstrated the effectiveness of our system in reducing the visual clutter and enhancing correlations of OD flows.
Collapse
|