Jadhav S, Torkaman M, Tannenbaum A, Nadeem S, Kaufman AE. Volume Exploration Using Multidimensional Bhattacharyya Flow.
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023;
29:1651-1663. [PMID:
34780328 PMCID:
PMC9594946 DOI:
10.1109/tvcg.2021.3127918]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present a novel approach for volume exploration that is versatile yet effective in isolating semantic structures in both noisy and clean data. Specifically, we describe a hierarchical active contours approach based on Bhattacharyya gradient flow which is easier to control, robust to noise, and can incorporate various types of statistical information to drive an edge-agnostic exploration process. To facilitate a time-bound user-driven volume exploration process that is applicable to a wide variety of data sources, we present an efficient multi-GPU implementation that (1) is approximately 400 times faster than a single thread CPU implementation, (2) allows hierarchical exploration of 2D and 3D images, (3) supports customization through multidimensional attribute spaces, and (4) is applicable to a variety of data sources and semantic structures. The exploration system follows a 2-step process. It first applies active contours to isolate semantically meaningful subsets of the volume. It then applies transfer functions to the isolated regions locally to produce clear and clutter-free visualizations. We show the effectiveness of our approach in isolating and visualizing structures-of-interest without needing any specialized segmentation methods on a variety of data sources, including 3D optical microscopy, multi-channel optical volumes, abdominal and chest CT, micro-CT, MRI, simulation, and synthetic data. We also gathered feedback from a medical trainee regarding the usefulness of our approach and discussion on potential applications in clinical workflows.
Collapse