1
|
Quadri GJ, Nieves JA, Wiernik BM, Rosen P. Automatic Scatterplot Design Optimization for Clustering Identification. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:4312-4327. [PMID: 35816525 DOI: 10.1109/tvcg.2022.3189883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Scatterplots are among the most widely used visualization techniques. Compelling scatterplot visualizations improve understanding of data by leveraging visual perception to boost awareness when performing specific visual analytic tasks. Design choices in scatterplots, such as graphical encodings or data aspects, can directly impact decision-making quality for low-level tasks like clustering. Hence, constructing frameworks that consider both the perceptions of the visual encodings and the task being performed enables optimizing visualizations to maximize efficacy. In this article, we propose an automatic tool to optimize the design factors of scatterplots to reveal the most salient cluster structure. Our approach leverages the merge tree data structure to identify the clusters and optimize the choice of subsampling algorithm, sampling rate, marker size, and marker opacity used to generate a scatterplot image. We validate our approach with user and case studies that show it efficiently provides high-quality scatterplot designs from a large parameter space.
Collapse
|
2
|
Liu Q, Ren Y, Zhu Z, Li D, Ma X, Li Q. RankAxis: Towards a Systematic Combination of Projection and Ranking in Multi-Attribute Data Exploration. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:701-711. [PMID: 36155453 DOI: 10.1109/tvcg.2022.3209463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Projection and ranking are frequently used analysis techniques in multi-attribute data exploration. Both families of techniques help analysts with tasks such as identifying similarities between observations and determining ordered subgroups, and have shown good performances in multi-attribute data exploration. However, they often exhibit problems such as distorted projection layouts, obscure semantic interpretations, and non-intuitive effects produced by selecting a subset of (weighted) attributes. Moreover, few studies have attempted to combine projection and ranking into the same exploration space to complement each other's strengths and weaknesses. For this reason, we propose RankAxis, a visual analytics system that systematically combines projection and ranking to facilitate the mutual interpretation of these two techniques and jointly support multi-attribute data exploration. A real-world case study, expert feedback, and a user study demonstrate the efficacy of RankAxis.
Collapse
|
3
|
Li J, Zhou CQ. Incorporation of Human Knowledge into Data Embeddings to Improve Pattern Significance and Interpretability. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:723-733. [PMID: 36155441 DOI: 10.1109/tvcg.2022.3209382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Embedding is a common technique for analyzing multi-dimensional data. However, the embedding projection cannot always form significant and interpretable visual structures that foreshadow underlying data patterns. We propose an approach that incorporates human knowledge into data embeddings to improve pattern significance and interpretability. The core idea is (1) externalizing tacit human knowledge as explicit sample labels and (2) adding a classification loss in the embedding network to encode samples' classes. The approach pulls samples of the same class with similar data features closer in the projection, leading to more compact (significant) and class-consistent (interpretable) visual structures. We give an embedding network with a customized classification loss to implement the idea and integrate the network into a visualization system to form a workflow that supports flexible class creation and pattern exploration. Patterns found on open datasets in case studies, subjects' performance in a user study, and quantitative experiment results illustrate the general usability and effectiveness of the approach.
Collapse
|
4
|
iHELP: interactive hierarchical linear projections for interpreting non-linear projections. J Vis (Tokyo) 2022. [DOI: 10.1007/s12650-022-00900-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Ghosh A, Nashaat M, Miller J, Quader S. VisExPreS: A Visual Interactive Toolkit for User-Driven Evaluations of Embeddings. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:2791-2807. [PMID: 33211658 DOI: 10.1109/tvcg.2020.3039106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although popularly used in big-data analytics, dimensionality reduction is a complex, black-box technique whose outcome is difficult to interpret and evaluate. In recent years, a number of quantitative and visual methods have been proposed for analyzing low-dimensional embeddings. On the one hand, quantitative methods associate numeric identifiers to qualitative characteristics of these embeddings; and, on the other hand, visual techniques allow users to interactively explore these embeddings and make decisions. However, in the former case, users do not have control over the analysis, while in the latter case. assessment decisions are entirely dependent on the user's perception and expertise. In order to bridge the gap between the two, in this article, we present VisExPreS, a visual interactive toolkit that enables a user-driven assessment of low-dimensional embeddings. VisExPreS is based on three novel techniques namely PG-LAPS, PG-GAPS, and RepSubset, that generate interpretable explanations of the preserved local and global structures in embeddings. In the first two techniques, the VisExPreS system proactively guides users during every step of the analysis. We demonstrate the utility of VisExPreS in interpreting, analyzing, and evaluating embeddings from different dimensionality reduction algorithms using multiple case studies and an extensive user study.
Collapse
|
6
|
Jeon H, Ko HK, Jo J, Kim Y, Seo J. Measuring and Explaining the Inter-Cluster Reliability of Multidimensional Projections. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:551-561. [PMID: 34587063 DOI: 10.1109/tvcg.2021.3114833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We propose Steadiness and Cohesiveness, two novel metrics to measure the inter-cluster reliability of multidimensional projection (MDP), specifically how well the inter-cluster structures are preserved between the original high-dimensional space and the low-dimensional projection space. Measuring inter-cluster reliability is crucial as it directly affects how well inter-cluster tasks (e.g., identifying cluster relationships in the original space from a projected view) can be conducted; however, despite the importance of inter-cluster tasks, we found that previous metrics, such as Trustworthiness and Continuity, fail to measure inter-cluster reliability. Our metrics consider two aspects of the inter-cluster reliability: Steadiness measures the extent to which clusters in the projected space form clusters in the original space, and Cohesiveness measures the opposite. They extract random clusters with arbitrary shapes and positions in one space and evaluate how much the clusters are stretched or dispersed in the other space. Furthermore, our metrics can quantify pointwise distortions, allowing for the visualization of inter-cluster reliability in a projection, which we call a reliability map. Through quantitative experiments, we verify that our metrics precisely capture the distortions that harm inter-cluster reliability while previous metrics have difficulty capturing the distortions. A case study also demonstrates that our metrics and the reliability map 1) support users in selecting the proper projection techniques or hyperparameters and 2) prevent misinterpretation while performing inter-cluster tasks, thus allow an adequate identification of inter-cluster structure.
Collapse
|
7
|
Ali M, Borgo R, Jones MW. Concurrent time-series selections using deep learning and dimension reduction. Knowl Based Syst 2021. [DOI: 10.1016/j.knosys.2021.107507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Sun L, Zhang X, Pan X, Liu Y, Yu W, Xu T, Liu F, Chen W, Wang Y, Su W, Zhou Z. Visual analytics of genealogy with attribute-enhanced topological clustering. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-021-00802-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Visual selection of standard wells for large scale logging data via discrete choice model. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.01.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Zhao Y, Jiang H, Chen Q, Qin Y, Xie H, Wu Y, Liu S, Zhou Z, Xia J, Zhou F. Preserving Minority Structures in Graph Sampling. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1698-1708. [PMID: 33048731 DOI: 10.1109/tvcg.2020.3030428] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sampling is a widely used graph reduction technique to accelerate graph computations and simplify graph visualizations. By comprehensively analyzing the literature on graph sampling, we assume that existing algorithms cannot effectively preserve minority structures that are rare and small in a graph but are very important in graph analysis. In this work, we initially conduct a pilot user study to investigate representative minority structures that are most appealing to human viewers. We then perform an experimental study to evaluate the performance of existing graph sampling algorithms regarding minority structure preservation. Results confirm our assumption and suggest key points for designing a new graph sampling approach named mino-centric graph sampling (MCGS). In this approach, a triangle-based algorithm and a cut-point-based algorithm are proposed to efficiently identify minority structures. A set of importance assessment criteria are designed to guide the preservation of important minority structures. Three optimization objectives are introduced into a greedy strategy to balance the preservation between minority and majority structures and suppress the generation of new minority structures. A series of experiments and case studies are conducted to evaluate the effectiveness of the proposed MCGS.
Collapse
|
11
|
Yuan J, Xiang S, Xia J, Yu L, Liu S. Evaluation of Sampling Methods for Scatterplots. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1720-1730. [PMID: 33074820 DOI: 10.1109/tvcg.2020.3030432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Given a scatterplot with tens of thousands of points or even more, a natural question is which sampling method should be used to create a small but "good" scatterplot for a better abstraction. We present the results of a user study that investigates the influence of different sampling strategies on multi-class scatterplots. The main goal of this study is to understand the capability of sampling methods in preserving the density, outliers, and overall shape of a scatterplot. To this end, we comprehensively review the literature and select seven typical sampling strategies as well as eight representative datasets. We then design four experiments to understand the performance of different strategies in maintaining: 1) region density; 2) class density; 3) outliers; and 4) overall shape in the sampling results. The results show that: 1) random sampling is preferred for preserving region density; 2) blue noise sampling and random sampling have comparable performance with the three multi-class sampling strategies in preserving class density; 3) outlier biased density based sampling, recursive subdivision based sampling, and blue noise sampling perform the best in keeping outliers; and 4) blue noise sampling outperforms the others in maintaining the overall shape of a scatterplot.
Collapse
|
12
|
Ma Y, Maciejewski R. Visual Analysis of Class Separations With Locally Linear Segments. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:241-253. [PMID: 32746282 DOI: 10.1109/tvcg.2020.3011155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High-dimensional labeled data widely exists in many real-world applications such as classification and clustering. One main task in analyzing such datasets is to explore class separations and class boundaries derived from machine learning models. Dimension reduction techniques are commonly applied to support analysts in exploring the underlying decision boundary structures by depicting a low-dimensional representation of the data distributions from multiple classes. However, such projection-based analyses are limited due to their lack of ability to show separations in complex non-linear decision boundary structures and can suffer from heavy distortion and low interpretability. To overcome these issues of separability and interpretability, we propose a visual analysis approach that utilizes the power of explainability from linear projections to support analysts when exploring non-linear separation structures. Our approach is to extract a set of locally linear segments that approximate the original non-linear separations. Unlike traditional projection-based analysis where the data instances are mapped to a single scatterplot, our approach supports the exploration of complex class separations through multiple local projection results. We conduct case studies on two labeled datasets to demonstrate the effectiveness of our approach.
Collapse
|
13
|
Zhou F, Zhao Y, Chen W, Tan Y, Xu Y, Chen Y, Liu C, Zhao Y. Reverse-engineering bar charts using neural networks. J Vis (Tokyo) 2020. [DOI: 10.1007/s12650-020-00702-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Ma Y, Tung AKH, Wang W, Gao X, Pan Z, Chen W. ScatterNet: A Deep Subjective Similarity Model for Visual Analysis of Scatterplots. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:1562-1576. [PMID: 30334762 DOI: 10.1109/tvcg.2018.2875702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Similarity measuring methods are widely adopted in a broad range of visualization applications. In this work, we address the challenge of representing human perception in the visual analysis of scatterplots by introducing a novel deep-learning-based approach, ScatterNet, captures perception-driven similarities of such plots. The approach exploits deep neural networks to extract semantic features of scatterplot images for similarity calculation. We create a large labeled dataset consisting of similar and dissimilar images of scatterplots to train the deep neural network. We conduct a set of evaluations including performance experiments and a user study to demonstrate the effectiveness and efficiency of our approach. The evaluations confirm that the learned features capture the human perception of scatterplot similarity effectively. We describe two scenarios to show how ScatterNet can be applied in visual analysis applications.
Collapse
|
15
|
|
16
|
Mei H, Chen W, Wei Y, Hu Y, Zhou S, Lin B, Zhao Y, Xia J. RSATree: Distribution-Aware Data Representation of Large-Scale Tabular Datasets for Flexible Visual Query. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:1161-1171. [PMID: 31443022 DOI: 10.1109/tvcg.2019.2934800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Analysts commonly investigate the data distributions derived from statistical aggregations of data that are represented by charts, such as histograms and binned scatterplots, to visualize and analyze a large-scale dataset. Aggregate queries are implicitly executed through such a process. Datasets are constantly extremely large; thus, the response time should be accelerated by calculating predefined data cubes. However, the queries are limited to the predefined binning schema of preprocessed data cubes. Such limitation hinders analysts' flexible adjustment of visual specifications to investigate the implicit patterns in the data effectively. Particularly, RSATree enables arbitrary queries and flexible binning strategies by leveraging three schemes, namely, an R-tree-based space partitioning scheme to catch the data distribution, a locality-sensitive hashing technique to achieve locality-preserving random access to data items, and a summed area table scheme to support interactive query of aggregated values with a linear computational complexity. This study presents and implements a web-based visual query system that supports visual specification, query, and exploration of large-scale tabular data with user-adjustable granularities. We demonstrate the efficiency and utility of our approach by performing various experiments on real-world datasets and analyzing time and space complexity.
Collapse
|
17
|
Wei Y, Mei H, Zhao Y, Zhou S, Lin B, Jiang H, Chen W. Evaluating Perceptual Bias During Geometric Scaling of Scatterplots. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:321-331. [PMID: 31403425 DOI: 10.1109/tvcg.2019.2934208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Scatterplots are frequently scaled to fit display areas in multi-view and multi-device data analysis environments. A common method used for scaling is to enlarge or shrink the entire scatterplot together with the inside points synchronously and proportionally. This process is called geometric scaling. However, geometric scaling of scatterplots may cause a perceptual bias, that is, the perceived and physical values of visual features may be dissociated with respect to geometric scaling. For example, if a scatterplot is projected from a laptop to a large projector screen, then observers may feel that the scatterplot shown on the projector has fewer points than that viewed on the laptop. This paper presents an evaluation study on the perceptual bias of visual features in scatterplots caused by geometric scaling. The study focuses on three fundamental visual features (i.e., numerosity, correlation, and cluster separation) and three hypotheses that are formulated on the basis of our experience. We carefully design three controlled experiments by using well-prepared synthetic data and recruit participants to complete the experiments on the basis of their subjective experience. With a detailed analysis of the experimental results, we obtain a set of instructive findings. First, geometric scaling causes a bias that has a linear relationship with the scale ratio. Second, no significant difference exists between the biases measured from normally and uniformly distributed scatterplots. Third, changing the point radius can correct the bias to a certain extent. These findings can be used to inspire the design decisions of scatterplots in various scenarios.
Collapse
|
18
|
Zhao Y, Luo X, Lin X, Wang H, Kui X, Zhou F, Wang J, Chen Y, Chen W. Visual Analytics for Electromagnetic Situation Awareness in Radio Monitoring and Management. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:590-600. [PMID: 31443001 DOI: 10.1109/tvcg.2019.2934655] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Traditional radio monitoring and management largely depend on radio spectrum data analysis, which requires considerable domain experience and heavy cognition effort and frequently results in incorrect signal judgment and incomprehensive situation awareness. Faced with increasingly complicated electromagnetic environments, radio supervisors urgently need additional data sources and advanced analytical technologies to enhance their situation awareness ability. This paper introduces a visual analytics approach for electromagnetic situation awareness. Guided by a detailed scenario and requirement analysis, we first propose a signal clustering method to process radio signal data and a situation assessment model to obtain qualitative and quantitative descriptions of the electromagnetic situations. We then design a two-module interface with a set of visualization views and interactions to help radio supervisors perceive and understand the electromagnetic situations by a joint analysis of radio signal data and radio spectrum data. Evaluations on real-world data sets and an interview with actual users demonstrate the effectiveness of our prototype system. Finally, we discuss the limitations of the proposed approach and provide future work directions.
Collapse
|
19
|
Zhao Y, Wang L, Li S, Zhou F, Lin X, Lu Q, Ren L. A Visual Analysis Approach for Understanding Durability Test Data of Automotive Products. ACM T INTEL SYST TEC 2019. [DOI: 10.1145/3345640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
People face data-rich manufacturing environments in Industry 4.0. As an important technology for explaining and understanding complex data, visual analytics has been increasingly introduced into industrial data analysis scenarios. With the durability test of automotive starters as background, this study proposes a visual analysis approach for understanding large-scale and long-term durability test data. Guided by detailed scenario and requirement analyses, we first propose a migration-adapted clustering algorithm that utilizes a segmentation strategy and a group of matching-updating operations to achieve an efficient and accurate clustering analysis of the data for starting mode identification and abnormal test detection. We then design and implement a visual analysis system that provides a set of user-friendly visual designs and lightweight interactions to help people gain data insights into the test process overview, test data patterns, and durability performance dynamics. Finally, we conduct a quantitative algorithm evaluation, case study, and user interview by using real-world starter durability test datasets. The results demonstrate the effectiveness of the approach and its possible inspiration for the durability test data analysis of other similar industrial products.
Collapse
Affiliation(s)
- Ying Zhao
- Central South University, Changsha, Hunan, China
| | - Lei Wang
- Central South University, Changsha, Hunan, China
| | - Shijie Li
- Central South University, Changsha, Hunan, China
| | | | - Xiaoru Lin
- Central South University, Changsha, Hunan, China
| | - Qiang Lu
- Hefei University of Technology 8 China and Anhui Province Key Laboratory of Industry Safety and Emergency Technology, Hefei, Anhui, China
| | - Lei Ren
- Beihang University, Beijing, China
| |
Collapse
|
20
|
FuzzyRadar: visualization for understanding fuzzy clusters. J Vis (Tokyo) 2019. [DOI: 10.1007/s12650-019-00577-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Xie X, Cai X, Zhou J, Cao N, Wu Y. A Semantic-Based Method for Visualizing Large Image Collections. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2019; 25:2362-2377. [PMID: 29993720 DOI: 10.1109/tvcg.2018.2835485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Interactive visualization of large image collections is important and useful in many applications, such as personal album management and user profiling on images. However, most prior studies focus on using low-level visual features of images, such as texture and color histogram, to create visualizations without considering the more important semantic information embedded in images. This paper proposes a novel visual analytic system to analyze images in a semantic-aware manner. The system mainly comprises two components: a semantic information extractor and a visual layout generator. The semantic information extractor employs an image captioning technique based on convolutional neural network (CNN) to produce descriptive captions for images, which can be transformed into semantic keywords. The layout generator employs a novel co-embedding model to project images and the associated semantic keywords to the same 2D space. Inspired by the galaxy metaphor, we further turn the projected 2D space to a galaxy visualization of images, in which semantic keywords and images are visually encoded as stars and planets. Our system naturally supports multi-scale visualization and navigation, in which users can immediately see a semantic overview of an image collection and drill down for detailed inspection of a certain group of images. Users can iteratively refine the visual layout by integrating their domain knowledge into the co-embedding process. Two task-based evaluations are conducted to demonstrate the effectiveness of our system.
Collapse
|
22
|
Luo X, Yuan Y, Zhang K, Xia J, Zhou Z, Chang L, Gu T. Enhancing statistical charts: toward better data visualization and analysis. J Vis (Tokyo) 2019. [DOI: 10.1007/s12650-019-00569-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Zhou F, Lin X, Liu C, Zhao Y, Xu P, Ren L, Xue T, Ren L. A survey of visualization for smart manufacturing. J Vis (Tokyo) 2018. [DOI: 10.1007/s12650-018-0530-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
|
25
|
Yang B, Cao W, Tian C. Visual analysis of occurrence and control of forest pests with multi-view collaboration. J Vis (Tokyo) 2018. [DOI: 10.1007/s12650-018-0515-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Exploring linear projections for revealing clusters, outliers, and trends in subsets of multi-dimensional datasets. JOURNAL OF VISUAL LANGUAGES AND COMPUTING 2018. [DOI: 10.1016/j.jvlc.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Zhou Z, Shi C, Hu M, Liu Y. Visual ranking of academic influence via paper citation. JOURNAL OF VISUAL LANGUAGES AND COMPUTING 2018. [DOI: 10.1016/j.jvlc.2018.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Wu X, Chen Z, Gu Y, Chen W, Fang ME. Illustrative visualization of time-varying features in spatio-temporal data. JOURNAL OF VISUAL LANGUAGES AND COMPUTING 2018. [DOI: 10.1016/j.jvlc.2018.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Zhao Y, Luo F, Chen M, Wang Y, Xia J, Zhou F, Wang Y, Chen Y, Chen W. Evaluating Multi-Dimensional Visualizations for Understanding Fuzzy Clusters. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:12-21. [PMID: 30136966 DOI: 10.1109/tvcg.2018.2865020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fuzzy clustering assigns a probability of membership for a datum to a cluster, which veritably reflects real-world clustering scenarios but significantly increases the complexity of understanding fuzzy clusters. Many studies have demonstrated that visualization techniques for multi-dimensional data are beneficial to understand fuzzy clusters. However, no empirical evidence exists on the effectiveness and efficiency of these visualization techniques in solving analytical tasks featured by fuzzy clusters. In this paper, we conduct a controlled experiment to evaluate the ability of fuzzy clusters analysis to use four multi-dimensional visualization techniques, namely, parallel coordinate plot, scatterplot matrix, principal component analysis, and Radviz. First, we define the analytical tasks and their representative questions specific to fuzzy clusters analysis. Then, we design objective questionnaires to compare the accuracy, time, and satisfaction in using the four techniques to solve the questions. We also design subjective questionnaires to collect the experience of the volunteers with the four techniques in terms of ease of use, informativeness, and helpfulness. With a complete experiment process and a detailed result analysis, we test against four hypotheses that are formulated on the basis of our experience, and provide instructive guidance for analysts in selecting appropriate and efficient visualization techniques to analyze fuzzy clusters.
Collapse
|
30
|
Zhou Z, Zhu X, Liu Y, Ren Q, Wang C, Gu T. VisUPI: visual analytics for University Personality Inventory data. J Vis (Tokyo) 2018. [DOI: 10.1007/s12650-018-0499-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|