1
|
Künzel S, Munz-Körner T, Tilli P, Schäfer N, Vidyapu S, Thang Vu N, Weiskopf D. Visual explainable artificial intelligence for graph-based visual question answering and scene graph curation. Vis Comput Ind Biomed Art 2025; 8:9. [PMID: 40192956 PMCID: PMC11977082 DOI: 10.1186/s42492-025-00185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 01/02/2025] [Indexed: 04/10/2025] Open
Abstract
This study presents a novel visualization approach to explainable artificial intelligence for graph-based visual question answering (VQA) systems. The method focuses on identifying false answer predictions by the model and offers users the opportunity to directly correct mistakes in the input space, thus facilitating dataset curation. The decision-making process of the model is demonstrated by highlighting certain internal states of a graph neural network (GNN). The proposed system is built on top of a GraphVQA framework that implements various GNN-based models for VQA trained on the GQA dataset. The authors evaluated their tool through the demonstration of identified use cases, quantitative measures, and a user study conducted with experts from machine learning, visualization, and natural language processing domains. The authors' findings highlight the prominence of their implemented features in supporting the users with incorrect prediction identification and identifying the underlying issues. Additionally, their approach is easily extendable to similar models aiming at graph-based question answering.
Collapse
Affiliation(s)
| | | | - Pascal Tilli
- IMS, University of Stuttgart, Stuttgart, 70569, Germany
| | - Noel Schäfer
- VISUS, University of Stuttgart, Stuttgart, 70569, Germany
| | | | - Ngoc Thang Vu
- IMS, University of Stuttgart, Stuttgart, 70569, Germany
| | | |
Collapse
|
2
|
Kahng M, Tenney I, Pushkarna M, Liu MX, Wexler J, Reif E, Kallarackal K, Chang M, Terry M, Dixon L. LLM Comparator: Interactive Analysis of Side-by-Side Evaluation of Large Language Models. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:503-513. [PMID: 39255096 DOI: 10.1109/tvcg.2024.3456354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Evaluating large language models (LLMs) presents unique challenges. While automatic side-by-side evaluation, also known as LLM-as-a-judge, has become a promising solution, model developers and researchers face difficulties with scalability and interpretability when analyzing these evaluation outcomes. To address these challenges, we introduce LLM Comparator, a new visual analytics tool designed for side-by-side evaluations of LLMs. This tool provides analytical workflows that help users understand when and why one LLM outperforms or underperforms another, and how their responses differ. Through close collaboration with practitioners developing LLMs at Google, we have iteratively designed, developed, and refined the tool. Qualitative feedback from these users highlights that the tool facilitates in-depth analysis of individual examples while enabling users to visually overview and flexibly slice data. This empowers users to identify undesirable patterns, formulate hypotheses about model behavior, and gain insights for model improvement. LLM Comparator has been integrated into Google's LLM evaluation platforms and open-sourced.
Collapse
|
3
|
Deng D, Zhang C, Zheng H, Pu Y, Ji S, Wu Y. AdversaFlow: Visual Red Teaming for Large Language Models with Multi-Level Adversarial Flow. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:492-502. [PMID: 39283796 DOI: 10.1109/tvcg.2024.3456150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Large Language Models (LLMs) are powerful but also raise significant security concerns, particularly regarding the harm they can cause, such as generating fake news that manipulates public opinion on social media and providing responses to unethical activities. Traditional red teaming approaches for identifying AI vulnerabilities rely on manual prompt construction and expertise. This paper introduces AdversaFlow, a novel visual analytics system designed to enhance LLM security against adversarial attacks through human-AI collaboration. AdversaFlow involves adversarial training between a target model and a red model, featuring unique multi-level adversarial flow and fluctuation path visualizations. These features provide insights into adversarial dynamics and LLM robustness, enabling experts to identify and mitigate vulnerabilities effectively. We present quantitative evaluations and case studies validating our system's utility and offering insights for future AI security solutions. Our method can enhance LLM security, supporting downstream scenarios like social media regulation by enabling more effective detection, monitoring, and mitigation of harmful content and behaviors.
Collapse
|
4
|
Boggust A, Sivaraman V, Assogba Y, Ren D, Moritz D, Hohman F. Compress and Compare: Interactively Evaluating Efficiency and Behavior Across ML Model Compression Experiments. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:809-819. [PMID: 39255121 DOI: 10.1109/tvcg.2024.3456371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
To deploy machine learning models on-device, practitioners use compression algorithms to shrink and speed up models while maintaining their high-quality output. A critical aspect of compression in practice is model comparison, including tracking many compression experiments, identifying subtle changes in model behavior, and negotiating complex accuracy-efficiency trade-offs. However, existing compression tools poorly support comparison, leading to tedious and, sometimes, incomplete analyses spread across disjoint tools. To support real-world comparative workflows, we develop an interactive visual system called COMPRESS AND COMPARE. Within a single interface, COMPRESS AND COMPARE surfaces promising compression strategies by visualizing provenance relationships between compressed models and reveals compression-induced behavior changes by comparing models' predictions, weights, and activations. We demonstrate how COMPRESS AND COMPARE supports common compression analysis tasks through two case studies, debugging failed compression on generative language models and identifying compression artifacts in image classification models. We further evaluate COMPRESS AND COMPARE in a user study with eight compression experts, illustrating its potential to provide structure to compression workflows, help practitioners build intuition about compression, and encourage thorough analysis of compression's effect on model behavior. Through these evaluations, we identify compression-specific challenges that future visual analytics tools should consider and COMPRESS AND COMPARE visualizations that may generalize to broader model comparison tasks.
Collapse
|
5
|
Lee S, Kang M. A Data-Driven Approach to Predicting Recreational Activity Participation Using Machine Learning. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024; 95:873-885. [PMID: 38875156 DOI: 10.1080/02701367.2024.2343815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/07/2024] [Indexed: 06/16/2024]
Abstract
Purpose: With the popularity of recreational activities, the study aimed to develop prediction models for recreational activity participation and explore the key factors affecting participation in recreational activities. Methods: A total of 12,712 participants, excluding individuals under 20, were selected from the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2018. The mean age of the sample was 46.86 years (±16.97), with a gender distribution of 6,721 males and 5,991 females. The variables included demographic, physical-related variables, and lifestyle variables. This study developed 42 prediction models using six machine learning methods, including logistic regression, Support Vector Machine (SVM), decision tree, random forest, eXtreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM). The relative importance of each variable was evaluated by permutation feature importance. Results: The results illustrated that the LightGBM was the most effective algorithm for predicting recreational activity participation (accuracy: .838, precision: .783, recall: .967, F1-score: .865, AUC: .826). In particular, prediction performance increased when the demographic and lifestyle datasets were used together. Next, as the result of the permutation feature importance based on the top models, education level and moderate-vigorous physical activity (MVPA) were found to be essential variables. Conclusion: These findings demonstrated the potential of a data-driven approach utilizing machine learning in a recreational discipline. Furthermore, this study interpreted the prediction model through feature importance analysis to overcome the limitation of machine learning interpretability.
Collapse
|
6
|
Li G, Wang J, Wang Y, Shan G, Zhao Y. An In-Situ Visual Analytics Framework for Deep Neural Networks. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:6770-6786. [PMID: 38051629 DOI: 10.1109/tvcg.2023.3339585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The past decade has witnessed the superior power of deep neural networks (DNNs) in applications across various domains. However, training a high-quality DNN remains a non-trivial task due to its massive number of parameters. Visualization has shown great potential in addressing this situation, as evidenced by numerous recent visualization works that aid in DNN training and interpretation. These works commonly employ a strategy of logging training-related data and conducting post-hoc analysis. Based on the results of offline analysis, the model can be further trained or fine-tuned. This strategy, however, does not cope with the increasing complexity of DNNs, because (1) the time-series data collected over the training are usually too large to be stored entirely; (2) the huge I/O overhead significantly impacts the training efficiency; (3) post-hoc analysis does not allow rapid human-interventions (e.g., stop training with improper hyper-parameter settings to save computational resources). To address these challenges, we propose an in-situ visualization and analysis framework for the training of DNNs. Specifically, we employ feature extraction algorithms to reduce the size of training-related data in-situ and use the reduced data for real-time visual analytics. The states of model training are disclosed to model designers in real-time, enabling human interventions on demand to steer the training. Through concrete case studies, we demonstrate how our in-situ framework helps deep learning experts optimize DNNs and improve their analysis efficiency.
Collapse
|
7
|
Cálem J, Moreira C, Jorge J. Intelligent systems in healthcare: A systematic survey of explainable user interfaces. Comput Biol Med 2024; 180:108908. [PMID: 39067152 DOI: 10.1016/j.compbiomed.2024.108908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
With radiology shortages affecting over half of the global population, the potential of artificial intelligence to revolutionize medical diagnosis and treatment is ever more important. However, lacking trust from medical professionals hinders the widespread adoption of AI models in health sciences. Explainable AI (XAI) aims to increase trust and understanding of black box models by identifying biases and providing transparent explanations. This is the first survey that explores explainable user interfaces (XUI) from a medical domain perspective, analysing the visualization and interaction methods employed in current medical XAI systems. We analysed 42 explainable interfaces following the PRISMA methodology, emphasizing the critical role of effectively conveying information to users as part of the explanation process. We contribute a taxonomy of interface design properties and identify five distinct clusters of research papers. Future research directions include contestability in medical decision support, counterfactual explanations for images, and leveraging Large Language Models to enhance XAI interfaces in healthcare.
Collapse
Affiliation(s)
- João Cálem
- Instituto Superior Técnico, Universidade de Lisboa, Portugal; INESC-ID, Portugal.
| | - Catarina Moreira
- Data Science Institute, University of Technology Sydney, Australia; INESC-ID, Portugal
| | - Joaquim Jorge
- Instituto Superior Técnico, Universidade de Lisboa, Portugal; INESC-ID, Portugal
| |
Collapse
|
8
|
Hong J, Maciejewski R, Trubuil A, Isenberg T. Visualizing and Comparing Machine Learning Predictions to Improve Human-AI Teaming on the Example of Cell Lineage. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:1956-1969. [PMID: 37665712 DOI: 10.1109/tvcg.2023.3302308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
We visualize the predictions of multiple machine learning models to help biologists as they interactively make decisions about cell lineage-the development of a (plant) embryo from a single ovum cell. Based on a confocal microscopy dataset, traditionally biologists manually constructed the cell lineage, starting from this observation and reasoning backward in time to establish their inheritance. To speed up this tedious process, we make use of machine learning (ML) models trained on a database of manually established cell lineages to assist the biologist in cell assignment. Most biologists, however, are not familiar with ML, nor is it clear to them which model best predicts the embryo's development. We thus have developed a visualization system that is designed to support biologists in exploring and comparing ML models, checking the model predictions, detecting possible ML model mistakes, and deciding on the most likely embryo development. To evaluate our proposed system, we deployed our interface with six biologists in an observational study. Our results show that the visual representations of machine learning are easily understandable, and our tool, LineageD+, could potentially increase biologists' working efficiency and enhance the understanding of embryos.
Collapse
|
9
|
Xia L, Meng F. Integrated prediction and control of mobility changes of young talents in the field of science and technology based on convolutional neural network. Heliyon 2024; 10:e25950. [PMID: 38434033 PMCID: PMC10906157 DOI: 10.1016/j.heliyon.2024.e25950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
As the scientific and technological levels continue to rise, the dynamics of young talent within these fields are increasingly significant. Currently, there is a lack of comprehensive models for predicting the movement of young professionals in science and technology. To address this gap, this study introduces an integrated approach to forecasting and managing the flow of these talents, leveraging the power of convolutional neural networks (CNNs). The performance test of the proposed method shows that the prediction accuracy of this method is 76.98%, which is superior to the two comparison methods. In addition, the results showed that the average error of the model was 0.0285 lower than that of the model based on the recurrent prediction error (RPE) algorithm learning algorithm, and the average time was 41.6 s lower than that of the model based on the backpropagation (BP) learning algorithm. In predicting the flow of young talent, the study uses flow characteristics including personal characteristics, occupational characteristics, organizational characteristics and network characteristics. Through the above results, the study found that convolutional neural network can effectively use these features to predict the flow of young talents, and its model is superior to other commonly used models in processing speed and accuracy. The above results indicate that the model can provide organizations and government agencies with useful information about the flow trend of young talents, and help them to formulate better talent management strategies.
Collapse
Affiliation(s)
- Lianfeng Xia
- Henan Polytechnic, Zhengzhou, 450046, China
- Mongolian University of Life Sciences, Ulaanbaatar, 17024, Mongolia
| | - Fanshuai Meng
- Henan Polytechnic, Zhengzhou, 450046, China
- Mongolian University of Life Sciences, Ulaanbaatar, 17024, Mongolia
| |
Collapse
|
10
|
Delaforge A, Aze J, Bringay S, Mollevi C, Sallaberry A, Servajean M. EBBE-Text: Explaining Neural Networks by Exploring Text Classification Decision Boundaries. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:4154-4171. [PMID: 35724275 DOI: 10.1109/tvcg.2022.3184247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
While neural networks (NN) have been successfully applied to many NLP tasks, the way they function is often difficult to interpret. In this article, we focus on binary text classification via NNs and propose a new tool, which includes a visualization of the decision boundary and the distances of data elements to this boundary. This tool increases the interpretability of NN. Our approach uses two innovative views: (1) an overview of the text representation space and (2) a local view allowing data exploration around the decision boundary for various localities of this representation space. These views are integrated into a visual platform, EBBE-Text, which also contains state-of-the-art visualizations of NN representation spaces and several kinds of information obtained from the classification process. The various views are linked through numerous interactive functionalities that enable easy exploration of texts and classification results via the various complementary views. A user study shows the effectiveness of the visual encoding and a case study illustrates the benefits of using our tool for the analysis of the classifications obtained with several recent NNs and two datasets.
Collapse
|
11
|
Zhang J, Fan T, Lang D, Xu Y, Li HA, Li X. Intelligent crowd sensing pickpocketing group identification using remote sensing data for secure smart cities. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:13777-13797. [PMID: 37679110 DOI: 10.3934/mbe.2023613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
As a public infrastructure service, remote sensing data provided by smart cities will go deep into the safety field and realize the comprehensive improvement of urban management and services. However, it is challenging to detect criminal individuals with abnormal features from massive sensing data and identify groups composed of criminal individuals with similar behavioral characteristics. To address this issue, we study two research aspects: pickpocketing individual detection and pickpocketing group identification. First, we propose an IForest-FD pickpocketing individual detection algorithm. The IForest algorithm filters the abnormal individuals of each feature extracted from ticketing and geographic information data. Through the filtered results, the factorization machines (FM) and deep neural network (DNN) (FD) algorithm learns the combination relationship between low-order and high-order features to improve the accuracy of identifying pickpockets composed of factorization machines and deep neural networks. Second, we propose a community relationship strength (CRS)-Louvain pickpocketing group identification algorithm. Based on crowdsensing, we measure the similarity of temporal, spatial, social and identity features among pickpocketing individuals. We then use the weighted combination similarity as an edge weight to construct the pickpocketing association graph. Furthermore, the CRS-Louvain algorithm improves the modularity of the Louvain algorithm to overcome the limitation that small-scale communities cannot be identified. The experimental results indicate that the IForest-FD algorithm has better detection results in Precision, Recall and F1score than similar algorithms. In addition, the normalized mutual information results of the group division effect obtained by the CRS-Louvain pickpocketing group identification algorithm are better than those of other representative methods.
Collapse
Affiliation(s)
- Jing Zhang
- College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710600, China
| | - Ting Fan
- College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710600, China
| | - Ding Lang
- College of Energy Enginnering, Xi'an University of Science and Technology, Xi'an 710600, China
| | - Yuguang Xu
- College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710600, China
| | - Hong-An Li
- College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710600, China
| | - Xuewen Li
- College of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an 710600, China
| |
Collapse
|
12
|
Collaris D, van Wijk JJ. StrategyAtlas: Strategy Analysis for Machine Learning Interpretability. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:2996-3008. [PMID: 35085084 DOI: 10.1109/tvcg.2022.3146806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Businesses in high-risk environments have been reluctant to adopt modern machine learning approaches due to their complex and uninterpretable nature. Most current solutions provide local, instance-level explanations, but this is insufficient for understanding the model as a whole. In this work, we show that strategy clusters (i.e., groups of data instances that are treated distinctly by the model) can be used to understand the global behavior of a complex ML model. To support effective exploration and understanding of these clusters, we introduce StrategyAtlas, a system designed to analyze and explain model strategies. Furthermore, it supports multiple ways to utilize these strategies for simplifying and improving the reference model. In collaboration with a large insurance company, we present a use case in automatic insurance acceptance, and show how professional data scientists were enabled to understand a complex model and improve the production model based on these insights.
Collapse
|
13
|
Wang Q, L'Yi S, Gehlenborg N. DRAVA: Aligning Human Concepts with Machine Learning Latent Dimensions for the Visual Exploration of Small Multiples. PROCEEDINGS OF THE SIGCHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS. CHI CONFERENCE 2023; 2023:833. [PMID: 38074525 PMCID: PMC10707479 DOI: 10.1145/3544548.3581127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Latent vectors extracted by machine learning (ML) are widely used in data exploration (e.g., t-SNE) but suffer from a lack of interpretability. While previous studies employed disentangled representation learning (DRL) to enable more interpretable exploration, they often overlooked the potential mismatches between the concepts of humans and the semantic dimensions learned by DRL. To address this issue, we propose Drava, a visual analytics system that supports users in 1) relating the concepts of humans with the semantic dimensions of DRL and identifying mismatches, 2) providing feedback to minimize the mismatches, and 3) obtaining data insights from concept-driven exploration. Drava provides a set of visualizations and interactions based on visual piles to help users understand and refine concepts and conduct concept-driven exploration. Meanwhile, Drava employs a concept adaptor model to fine-tune the semantic dimensions of DRL based on user refinement. The usefulness of Drava is demonstrated through application scenarios and experimental validation.
Collapse
Affiliation(s)
| | - Sehi L'Yi
- Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
14
|
Afzal S, Ghani S, Hittawe MM, Rashid SF, Knio OM, Hadwiger M, Hoteit I. Visualization and Visual Analytics Approaches for Image and Video Datasets: A Survey. ACM T INTERACT INTEL 2023. [DOI: 10.1145/3576935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Image and video data analysis has become an increasingly important research area with applications in different domains such as security surveillance, healthcare, augmented and virtual reality, video and image editing, activity analysis and recognition, synthetic content generation, distance education, telepresence, remote sensing, sports analytics, art, non-photorealistic rendering, search engines, and social media. Recent advances in Artificial Intelligence (AI) and particularly deep learning have sparked new research challenges and led to significant advancements, especially in image and video analysis. These advancements have also resulted in significant research and development in other areas such as visualization and visual analytics, and have created new opportunities for future lines of research. In this survey paper, we present the current state of the art at the intersection of visualization and visual analytics, and image and video data analysis. We categorize the visualization papers included in our survey based on different taxonomies used in visualization and visual analytics research. We review these papers in terms of task requirements, tools, datasets, and application areas. We also discuss insights based on our survey results, trends and patterns, the current focus of visualization research, and opportunities for future research.
Collapse
Affiliation(s)
- Shehzad Afzal
- King Abdullah University of Science & Technology, Saudi Arabia
| | - Sohaib Ghani
- King Abdullah University of Science & Technology, Saudi Arabia
| | | | | | - Omar M Knio
- King Abdullah University of Science & Technology, Saudi Arabia
| | - Markus Hadwiger
- King Abdullah University of Science & Technology, Saudi Arabia
| | - Ibrahim Hoteit
- King Abdullah University of Science & Technology, Saudi Arabia
| |
Collapse
|
15
|
Jin S, Lee H, Park C, Chu H, Tae Y, Choo J, Ko S. A Visual Analytics System for Improving Attention-based Traffic Forecasting Models. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:1102-1112. [PMID: 36155438 DOI: 10.1109/tvcg.2022.3209462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With deep learning (DL) outperforming conventional methods for different tasks, much effort has been devoted to utilizing DL in various domains. Researchers and developers in the traffic domain have also designed and improved DL models for forecasting tasks such as estimation of traffic speed and time of arrival. However, there exist many challenges in analyzing DL models due to the black-box property of DL models and complexity of traffic data (i.e., spatio-temporal dependencies). Collaborating with domain experts, we design a visual analytics system, AttnAnalyzer, that enables users to explore how DL models make predictions by allowing effective spatio-temporal dependency analysis. The system incorporates dynamic time warping (DTW) and Granger causality tests for computational spatio-temporal dependency analysis while providing map, table, line chart, and pixel views to assist user to perform dependency and model behavior analysis. For the evaluation, we present three case studies showing how AttnAnalyzer can effectively explore model behaviors and improve model performance in two different road networks. We also provide domain expert feedback.
Collapse
|
16
|
Yuan J, Liu M, Tian F, Liu S. Visual Analysis of Neural Architecture Spaces for Summarizing Design Principles. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:288-298. [PMID: 36191103 DOI: 10.1109/tvcg.2022.3209404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recent advances in artificial intelligence largely benefit from better neural network architectures. These architectures are a product of a costly process of trial-and-error. To ease this process, we develop ArchExplorer, a visual analysis method for understanding a neural architecture space and summarizing design principles. The key idea behind our method is to make the architecture space explainable by exploiting structural distances between architectures. We formulate the pairwise distance calculation as solving an all-pairs shortest path problem. To improve efficiency, we decompose this problem into a set of single-source shortest path problems. The time complexity is reduced from O(kn2N) to O(knN). Architectures are hierarchically clustered according to the distances between them. A circle-packing-based architecture visualization has been developed to convey both the global relationships between clusters and local neighborhoods of the architectures in each cluster. Two case studies and a post-analysis are presented to demonstrate the effectiveness of ArchExplorer in summarizing design principles and selecting better-performing architectures.
Collapse
|
17
|
Xenopoulos P, Rulff J, Nonato LG, Barr B, Silva C. Calibrate: Interactive Analysis of Probabilistic Model Output. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:853-863. [PMID: 36166523 DOI: 10.1109/tvcg.2022.3209489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Analyzing classification model performance is a crucial task for machine learning practitioners. While practitioners often use count-based metrics derived from confusion matrices, like accuracy, many applications, such as weather prediction, sports betting, or patient risk prediction, rely on a classifier's predicted probabilities rather than predicted labels. In these instances, practitioners are concerned with producing a calibrated model, that is, one which outputs probabilities that reflect those of the true distribution. Model calibration is often analyzed visually, through static reliability diagrams, however, the traditional calibration visualization may suffer from a variety of drawbacks due to the strong aggregations it necessitates. Furthermore, count-based approaches are unable to sufficiently analyze model calibration. We present Calibrate, an interactive reliability diagram that addresses the aforementioned issues. Calibrate constructs a reliability diagram that is resistant to drawbacks in traditional approaches, and allows for interactive subgroup analysis and instance-level inspection. We demonstrate the utility of Calibrate through use cases on both real-world and synthetic data. We further validate Calibrate by presenting the results of a think-aloud experiment with data scientists who routinely analyze model calibration.
Collapse
|
18
|
Bertucci D, Hamid MM, Anand Y, Ruangrotsakun A, Tabatabai D, Perez M, Kahng M. DendroMap: Visual Exploration of Large-Scale Image Datasets for Machine Learning with Treemaps. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:320-330. [PMID: 36166545 DOI: 10.1109/tvcg.2022.3209425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this paper, we present DendroMap, a novel approach to interactively exploring large-scale image datasets for machine learning (ML). ML practitioners often explore image datasets by generating a grid of images or projecting high-dimensional representations of images into 2-D using dimensionality reduction techniques (e.g., t-SNE). However, neither approach effectively scales to large datasets because images are ineffectively organized and interactions are insufficiently supported. To address these challenges, we develop DendroMap by adapting Treemaps, a well-known visualization technique. DendroMap effectively organizes images by extracting hierarchical cluster structures from high-dimensional representations of images. It enables users to make sense of the overall distributions of datasets and interactively zoom into specific areas of interests at multiple levels of abstraction. Our case studies with widely-used image datasets for deep learning demonstrate that users can discover insights about datasets and trained models by examining the diversity of images, identifying underperforming subgroups, and analyzing classification errors. We conducted a user study that evaluates the effectiveness of DendroMap in grouping and searching tasks by comparing it with a gridified version of t-SNE and found that participants preferred DendroMap. DendroMap is available at https://div-lab.github.io/dendromap/.
Collapse
|
19
|
A Multilayer Network-Based Approach to Represent, Explore and Handle Convolutional Neural Networks. Cognit Comput 2022. [DOI: 10.1007/s12559-022-10084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Wang J, Zhang W, Yang H, Yeh CCM, Wang L. Visual Analytics for RNN-Based Deep Reinforcement Learning. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:4141-4155. [PMID: 33929961 DOI: 10.1109/tvcg.2021.3076749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Deep reinforcement learning (DRL) targets to train an autonomous agent to interact with a pre-defined environment and strives to achieve specific goals through deep neural networks (DNN). Recurrent neural network (RNN) based DRL has demonstrated superior performance, as RNNs can effectively capture the temporal evolution of the environment and respond with proper agent actions. However, apart from the outstanding performance, little is known about how RNNs understand the environment internally and what has been memorized over time. Revealing these details is extremely important for deep learning experts to understand and improve DRLs, which in contrast, is also challenging due to the complicated data transformations inside these models. In this article, we propose Deep Reinforcement Learning Interactive Visual Explorer (DRLIVE), a visual analytics system to effectively explore, interpret, and diagnose RNN-based DRLs. Having focused on DRL agents trained for different Atari games, DRLIVE accomplishes three tasks: game episode exploration, RNN hidden/cell state examination, and interactive model perturbation. Using the system, one can flexibly explore a DRL agent through interactive visualizations, discover interpretable RNN cells by prioritizing RNN hidden/cell states with a set of metrics, and further diagnose the DRL model by interactively perturbing its inputs. Through concrete studies with multiple deep learning experts, we validated the efficacy of DRLIVE.
Collapse
|
21
|
Hoque MN, Mueller K. Outcome-Explorer: A Causality Guided Interactive Visual Interface for Interpretable Algorithmic Decision Making. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:4728-4740. [PMID: 34347601 DOI: 10.1109/tvcg.2021.3102051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The widespread adoption of algorithmic decision-making systems has brought about the necessity to interpret the reasoning behind these decisions. The majority of these systems are complex black box models, and auxiliary models are often used to approximate and then explain their behavior. However, recent research suggests that such explanations are not overly accessible to lay users with no specific expertise in machine learning and this can lead to an incorrect interpretation of the underlying model. In this article, we show that a predictive and interactive model based on causality is inherently interpretable, does not require any auxiliary model, and allows both expert and non-expert users to understand the model comprehensively. To demonstrate our method we developed Outcome Explorer, a causality guided interactive interface, and evaluated it by conducting think-aloud sessions with three expert users and a user study with 18 non-expert users. All three expert users found our tool to be comprehensive in supporting their explanation needs while the non-expert users were able to understand the inner workings of a model easily.
Collapse
|
22
|
Zhang H, Dong J, Lv C, Lin Y, Bai J. Visual analytics of potential dropout behavior patterns in online learning based on counterfactual explanation. J Vis (Tokyo) 2022. [DOI: 10.1007/s12650-022-00899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Ding W, Abdel-Basset M, Hawash H, Ali AM. Explainability of artificial intelligence methods, applications and challenges: A comprehensive survey. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Intelligent Performance Evaluation of Urban Subway PPP Project Based on Deep Neural Network Model. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:1536881. [PMID: 35655512 PMCID: PMC9155946 DOI: 10.1155/2022/1536881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/10/2022] [Indexed: 11/18/2022]
Abstract
Neural network refers to an algorithmic mathematical model that imitates the behavioral characteristics of animal neural networks and performs distributed information processing. This kind of network depends on the complexity of the system and needs to adjust the internal node relationship, so as to achieve the purpose of processing information. With the continuous development of the economy, the transportation problem needs to be solved urgently, and the urban subway has emerged at the historic moment. The subway is a fast, large-capacity, electric-driven rail transit built in the city. The advantages of the subway provide conditions for the mitigation of urban traffic, due to the large number of cars, traffic jams, frequent accidents, and serious environmental pollution. In the city center, there are more cars and less space, and the parking lot is not commensurate with the number of cars, making parking difficult. This paper aims to study the intelligent performance evaluation of urban subway PPP projects based on deep neural network models. The subway project has a large investment, a long period, and a wide range, but the development time of the subway in China is relatively short. In order to promote the stable progress of subway projects, it is very necessary to conduct intelligent performance evaluation on subway projects. This paper compares and analyzes the basic characteristics of the PPP model and verifies the applicability and necessity of the PPP model in urban subway transportation projects. Through the investigation of relevant literature, this article puts forward the research content of the social impact assessment of subway projects. The experimental results of this paper show that, from the perspective of whether it is necessary to evaluate the performance of PPP projects, 65% of people think it is very necessary, and 22% think it is more necessary. 3% of people think it is unnecessary, and 10% of people hold an indifferent attitude. These data show that the intelligent performance evaluation of urban subway PPP projects has exploratory significance for urban infrastructure design and construction.
Collapse
|
25
|
Xuan X, Zhang X, Kwon OH, Ma KL. VAC-CNN: A Visual Analytics System for Comparative Studies of Deep Convolutional Neural Networks. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:2326-2337. [PMID: 35389868 DOI: 10.1109/tvcg.2022.3165347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The rapid development of Convolutional Neural Networks (CNNs) in recent years has triggered significant breakthroughs in many machine learning (ML) applications. The ability to understand and compare various CNN models available is thus essential. The conventional approach with visualizing each model's quantitative features, such as classification accuracy and computational complexity, is not sufficient for a deeper understanding and comparison of the behaviors of different models. Moreover, most of the existing tools for assessing CNN behaviors only support comparison between two models and lack the flexibility of customizing the analysis tasks according to user needs. This paper presents a visual analytics system, VAC-CNN (Visual Analytics for Comparing CNNs), that supports the in-depth inspection of a single CNN model as well as comparative studies of two or more models. The ability to compare a larger number of (e.g., tens of) models especially distinguishes our system from previous ones. With a carefully designed model visualization and explaining support, VAC-CNN facilitates a highly interactive workflow that promptly presents both quantitative and qualitative information at each analysis stage. We demonstrate VAC-CNN's effectiveness for assisting novice ML practitioners in evaluating and comparing multiple CNN models through two use cases and one preliminary evaluation study using the image classification tasks on the ImageNet dataset.
Collapse
|
26
|
An Injury-Severity-Prediction-Driven Accident Prevention System. SUSTAINABILITY 2022. [DOI: 10.3390/su14116569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Traffic accidents are inevitable events that occur unexpectedly and unintentionally. Therefore, analyzing traffic data is essential to prevent fatal accidents. Traffic data analysis provided insights into significant factors and driver behavioral patterns causing accidents. Combining these patterns and the prediction model into an accident prevention system can assist in reducing and preventing traffic accidents. This study applied various machine learning models, including neural network, ordinal regression, decision tree, support vector machines, and logistic regression to have a robust prediction model in injury severity. The trained model provides timely and accurate predictions on accident occurrence and injury severity using real-world traffic accident datasets. We proposed an informative negative data generator using feature weights derived from multinomial logit regression to balance the non-fatal accident data. Our aim is to resolve the bias that happens in the favor of the majority class as well as performance improvement. We evaluated the overall and class-level performance of the machine learning models based on accuracy and mean squared error scores. Three hidden layered neural networks outperformed the other models with 0.254 ± 0.038 and 0.173 ± 0.016 MSE scores for two different datasets. A neural network, which provides more accurate and reliable results, should be integrated into the accident prevention system.
Collapse
|
27
|
Understanding deep learning defenses against adversarial examples through visualizations for dynamic risk assessment. Neural Comput Appl 2022. [DOI: 10.1007/s00521-021-06812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Hinterreiter A, Ruch P, Stitz H, Ennemoser M, Bernard J, Strobelt H, Streit M. ConfusionFlow: A Model-Agnostic Visualization for Temporal Analysis of Classifier Confusion. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:1222-1236. [PMID: 32746284 DOI: 10.1109/tvcg.2020.3012063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Classifiers are among the most widely used supervised machine learning algorithms. Many classification models exist, and choosing the right one for a given task is difficult. During model selection and debugging, data scientists need to assess classifiers' performances, evaluate their learning behavior over time, and compare different models. Typically, this analysis is based on single-number performance measures such as accuracy. A more detailed evaluation of classifiers is possible by inspecting class errors. The confusion matrix is an established way for visualizing these class errors, but it was not designed with temporal or comparative analysis in mind. More generally, established performance analysis systems do not allow a combined temporal and comparative analysis of class-level information. To address this issue, we propose ConfusionFlow, an interactive, comparative visualization tool that combines the benefits of class confusion matrices with the visualization of performance characteristics over time. ConfusionFlow is model-agnostic and can be used to compare performances for different model types, model architectures, and/or training and test datasets. We demonstrate the usefulness of ConfusionFlow in a case study on instance selection strategies in active learning. We further assess the scalability of ConfusionFlow and present a use case in the context of neural network pruning.
Collapse
|
29
|
Pu J, Shao H, Gao B, Zhu Z, Zhu Y, Rao Y, Xiang Y. matExplorer: Visual Exploration on Predicting Ionic Conductivity for Solid-state Electrolytes. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:65-75. [PMID: 34587048 DOI: 10.1109/tvcg.2021.3114812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lithium ion batteries (LIBs) are widely used as important energy sources for mobile phones, electric vehicles, and drones. Experts have attempted to replace liquid electrolytes with solid electrolytes that have wider electrochemical window and higher stability due to the potential safety risks, such as electrolyte leakage, flammable solvents, poor thermal stability, and many side reactions caused by liquid electrolytes. However, finding suitable alternative materials using traditional approaches is very difficult due to the incredibly high cost in searching. Machine learning (ML)-based methods are currently introduced and used for material prediction. However, learning tools designed for domain experts to conduct intuitive performance comparison and analysis of ML models are rare. In this case, we propose an interactive visualization system for experts to select suitable ML models and understand and explore the predication results comprehensively. Our system uses a multifaceted visualization scheme designed to support analysis from various perspectives, such as feature distribution, data similarity, model performance, and result presentation. Case studies with actual lab experiments have been conducted by the experts, and the final results confirmed the effectiveness and helpfulness of our system.
Collapse
|
30
|
Wang X, He J, Jin Z, Yang M, Wang Y, Qu H. M2Lens: Visualizing and Explaining Multimodal Models for Sentiment Analysis. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:802-812. [PMID: 34587037 DOI: 10.1109/tvcg.2021.3114794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multimodal sentiment analysis aims to recognize people's attitudes from multiple communication channels such as verbal content (i.e., text), voice, and facial expressions. It has become a vibrant and important research topic in natural language processing. Much research focuses on modeling the complex intra- and inter-modal interactions between different communication channels. However, current multimodal models with strong performance are often deep-learning-based techniques and work like black boxes. It is not clear how models utilize multimodal information for sentiment predictions. Despite recent advances in techniques for enhancing the explainability of machine learning models, they often target unimodal scenarios (e.g., images, sentences), and little research has been done on explaining multimodal models. In this paper, we present an interactive visual analytics system, M2 Lens, to visualize and explain multimodal models for sentiment analysis. M2 Lens provides explanations on intra- and inter-modal interactions at the global, subset, and local levels. Specifically, it summarizes the influence of three typical interaction types (i.e., dominance, complement, and conflict) on the model predictions. Moreover, M2 Lens identifies frequent and influential multimodal features and supports the multi-faceted exploration of model behaviors from language, acoustic, and visual modalities. Through two case studies and expert interviews, we demonstrate our system can help users gain deep insights into the multimodal models for sentiment analysis.
Collapse
|
31
|
Meng L, Wei Y, Pan R, Zhou S, Zhang J, Chen W. VADAF: Visualization for Abnormal Client Detection and Analysis in Federated Learning. ACM T INTERACT INTEL 2021. [DOI: 10.1145/3426866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Federated Learning (FL) provides a powerful solution to distributed machine learning on a large corpus of decentralized data. It ensures privacy and security by performing computation on devices (which we refer to as clients) based on local data to improve the shared global model. However, the inaccessibility of the data and the invisibility of the computation make it challenging to interpret and analyze the training process, especially to distinguish potential client anomalies. Identifying these anomalies can help experts diagnose and improve FL models. For this reason, we propose a visual analytics system, VADAF, to depict the training dynamics and facilitate analyzing potential client anomalies. Specifically, we design a visualization scheme that supports massive training dynamics in the FL environment. Moreover, we introduce an anomaly detection method to detect potential client anomalies, which are further analyzed based on both the client model’s visual and objective estimation. Three case studies have demonstrated the effectiveness of our system in understanding the FL training process and supporting abnormal client detection and analysis.
Collapse
Affiliation(s)
- Linhao Meng
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Yating Wei
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Rusheng Pan
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Shuyue Zhou
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Jianwei Zhang
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Wei Chen
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Mohseni S, Zarei N, Ragan ED. A Multidisciplinary Survey and Framework for Design and Evaluation of Explainable AI Systems. ACM T INTERACT INTEL 2021. [DOI: 10.1145/3387166] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The need for interpretable and accountable intelligent systems grows along with the prevalence of
artificial intelligence
(
AI
) applications used in everyday life.
Explainable AI
(
XAI
) systems are intended to self-explain the reasoning behind system decisions and predictions. Researchers from different disciplines work together to define, design, and evaluate explainable systems. However, scholars from different disciplines focus on different objectives and fairly independent topics of XAI research, which poses challenges for identifying appropriate design and evaluation methodology and consolidating knowledge across efforts. To this end, this article presents a survey and framework intended to share knowledge and experiences of XAI design and evaluation methods across multiple disciplines. Aiming to support diverse design goals and evaluation methods in XAI research, after a thorough review of XAI related papers in the fields of machine learning, visualization, and human-computer interaction, we present a categorization of XAI design goals and evaluation methods. Our categorization presents the mapping between design goals for different XAI user groups and their evaluation methods. From our findings, we develop a framework with step-by-step design guidelines paired with evaluation methods to close the iterative design and evaluation cycles in multidisciplinary XAI teams. Further, we provide summarized ready-to-use tables of evaluation methods and recommendations for different goals in XAI research.
Collapse
|
33
|
Ferreira MD, Cantareira GD, de Mello RF, Paulovich FV. Neural network training fingerprint: visual analytics of the training process in classification neural networks. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-021-00809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Garcia R, Munz T, Weiskopf D. Visual analytics tool for the interpretation of hidden states in recurrent neural networks. Vis Comput Ind Biomed Art 2021; 4:24. [PMID: 34585277 PMCID: PMC8479019 DOI: 10.1186/s42492-021-00090-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/12/2021] [Indexed: 11/29/2022] Open
Abstract
In this paper, we introduce a visual analytics approach aimed at helping machine learning experts analyze the hidden states of layers in recurrent neural networks. Our technique allows the user to interactively inspect how hidden states store and process information throughout the feeding of an input sequence into the network. The technique can help answer questions, such as which parts of the input data have a higher impact on the prediction and how the model correlates each hidden state configuration with a certain output. Our visual analytics approach comprises several components: First, our input visualization shows the input sequence and how it relates to the output (using color coding). In addition, hidden states are visualized through a nonlinear projection into a 2-D visualization space using t-distributed stochastic neighbor embedding to understand the shape of the space of the hidden states. Trajectories are also employed to show the details of the evolution of the hidden state configurations. Finally, a time-multi-class heatmap matrix visualizes the evolution of the expected predictions for multi-class classifiers, and a histogram indicates the distances between the hidden states within the original space. The different visualizations are shown simultaneously in multiple views and support brushing-and-linking to facilitate the analysis of the classifications and debugging for misclassified input sequences. To demonstrate the capability of our approach, we discuss two typical use cases for long short-term memory models applied to two widely used natural language processing datasets.
Collapse
Affiliation(s)
- Rafael Garcia
- VISUS, University of Stuttgart, 70569, Stuttgart, Germany
| | - Tanja Munz
- VISUS, University of Stuttgart, 70569, Stuttgart, Germany.
| | | |
Collapse
|
35
|
Classification of Explainable Artificial Intelligence Methods through Their Output Formats. MACHINE LEARNING AND KNOWLEDGE EXTRACTION 2021. [DOI: 10.3390/make3030032] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Machine and deep learning have proven their utility to generate data-driven models with high accuracy and precision. However, their non-linear, complex structures are often difficult to interpret. Consequently, many scholars have developed a plethora of methods to explain their functioning and the logic of their inferences. This systematic review aimed to organise these methods into a hierarchical classification system that builds upon and extends existing taxonomies by adding a significant dimension—the output formats. The reviewed scientific papers were retrieved by conducting an initial search on Google Scholar with the keywords “explainable artificial intelligence”; “explainable machine learning”; and “interpretable machine learning”. A subsequent iterative search was carried out by checking the bibliography of these articles. The addition of the dimension of the explanation format makes the proposed classification system a practical tool for scholars, supporting them to select the most suitable type of explanation format for the problem at hand. Given the wide variety of challenges faced by researchers, the existing XAI methods provide several solutions to meet the requirements that differ considerably between the users, problems and application fields of artificial intelligence (AI). The task of identifying the most appropriate explanation can be daunting, thus the need for a classification system that helps with the selection of methods. This work concludes by critically identifying the limitations of the formats of explanations and by providing recommendations and possible future research directions on how to build a more generally applicable XAI method. Future work should be flexible enough to meet the many requirements posed by the widespread use of AI in several fields, and the new regulations.
Collapse
|
36
|
Cao K, Liu M, Su H, Wu J, Zhu J, Liu S. Analyzing the Noise Robustness of Deep Neural Networks. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:3289-3304. [PMID: 31985427 DOI: 10.1109/tvcg.2020.2969185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Adversarial examples, generated by adding small but intentionally imperceptible perturbations to normal examples, can mislead deep neural networks (DNNs) to make incorrect predictions. Although much work has been done on both adversarial attack and defense, a fine-grained understanding of adversarial examples is still lacking. To address this issue, we present a visual analysis method to explain why adversarial examples are misclassified. The key is to compare and analyze the datapaths of both the adversarial and normal examples. A datapath is a group of critical neurons along with their connections. We formulate the datapath extraction as a subset selection problem and solve it by constructing and training a neural network. A multi-level visualization consisting of a network-level visualization of data flows, a layer-level visualization of feature maps, and a neuron-level visualization of learned features, has been designed to help investigate how datapaths of adversarial and normal examples diverge and merge in the prediction process. A quantitative evaluation and a case study were conducted to demonstrate the promise of our method to explain the misclassification of adversarial examples.
Collapse
|
37
|
Sun G, Wu H, Zhu L, Xu C, Liang H, Xu B, Liang R. VSumVis: Interactive Visual Understanding and Diagnosis of Video Summarization Model. ACM T INTEL SYST TEC 2021. [DOI: 10.1145/3458928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
With the rapid development of mobile Internet, the popularity of video capture devices has brought a surge in multimedia video resources. Utilizing machine learning methods combined with well-designed features, we could automatically obtain video summarization to relax video resource consumption and retrieval issues. However, there always exists a gap between the summarization obtained by the model and the ones annotated by users. How to help users understand the difference, provide insights in improving the model, and enhance the trust in the model remains challenging in the current study. To address these challenges, we propose VSumVis under a user-centered design methodology, a visual analysis system with multi-feature examination and multi-level exploration, which could help users explore and analyze video content, as well as the intrinsic relationship that existed in our video summarization model. The system contains multiple coordinated views, i.e., video view, projection view, detail view, and sequential frames view. A multi-level analysis process to integrate video events and frames are presented with clusters and nodes visualization in our system. Temporal patterns concerning the difference between the manual annotation score and the saliency score produced by our model are further investigated and distinguished with sequential frames view. Moreover, we propose a set of rich user interactions that enable an in-depth, multi-faceted analysis of the features in our video summarization model. We conduct case studies and interviews with domain experts to provide anecdotal evidence about the effectiveness of our approach. Quantitative feedback from a user study confirms the usefulness of our visual system for exploring the video summarization model.
Collapse
Affiliation(s)
- Guodao Sun
- Zhejiang University of Technology, Hangzhou, China
| | - Hao Wu
- Zhejiang University of Technology, Hangzhou, China
| | - Lin Zhu
- Zhejiang University of Technology, Hangzhou, China
| | - Chaoqing Xu
- Zhejiang University of Technology, Hangzhou, China
| | - Haoran Liang
- Zhejiang University of Technology, Hangzhou, China
| | - Binwei Xu
- Zhejiang University of Technology, Hangzhou, China
| | | |
Collapse
|
38
|
Bauerle A, van Onzenoodt C, Ropinski T. Net2Vis - A Visual Grammar for Automatically Generating Publication-Tailored CNN Architecture Visualizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:2980-2991. [PMID: 33556010 DOI: 10.1109/tvcg.2021.3057483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To convey neural network architectures in publications, appropriate visualizations are of great importance. While most current deep learning papers contain such visualizations, these are usually handcrafted just before publication, which results in a lack of a common visual grammar, significant time investment, errors, and ambiguities. Current automatic network visualization tools focus on debugging the network itself and are not ideal for generating publication visualizations. Therefore, we present an approach to automate this process by translating network architectures specified in Keras into visualizations that can directly be embedded into any publication. To do so, we propose a visual grammar for convolutional neural networks (CNNs), which has been derived from an analysis of such figures extracted from all ICCV and CVPR papers published between 2013 and 2019. The proposed grammar incorporates visual encoding, network layout, layer aggregation, and legend generation. We have further realized our approach in an online system available to the community, which we have evaluated through expert feedback, and a quantitative study. It not only reduces the time needed to generate network visualizations for publications, but also enables a unified and unambiguous visualization design.
Collapse
|
39
|
Extraction of Competitive Factors in a Competitor Analysis Using an Explainable Neural Network. Neural Process Lett 2021. [DOI: 10.1007/s11063-021-10499-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Neuroscope: An Explainable AI Toolbox for Semantic Segmentation and Image Classification of Convolutional Neural Nets. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Trust in artificial intelligence (AI) predictions is a crucial point for a widespread acceptance of new technologies, especially in sensitive areas like autonomous driving. The need for tools explaining AI for deep learning of images is thus eminent. Our proposed toolbox Neuroscope addresses this demand by offering state-of-the-art visualization algorithms for image classification and newly adapted methods for semantic segmentation of convolutional neural nets (CNNs). With its easy to use graphical user interface (GUI), it provides visualization on all layers of a CNN. Due to its open model-view-controller architecture, networks generated and trained with Keras and PyTorch are processable, with an interface allowing extension to additional frameworks. We demonstrate the explanation abilities provided by Neuroscope using the example of traffic scene analysis.
Collapse
|
41
|
Dmitriev K, Marino J, Baker K, Kaufman AE. Visual Analytics of a Computer-Aided Diagnosis System for Pancreatic Lesions. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:2174-2185. [PMID: 31613771 DOI: 10.1109/tvcg.2019.2947037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Machine learning is a powerful and effective tool for medical image analysis to perform computer-aided diagnosis (CAD). Having great potential in improving the accuracy of a diagnosis, CAD systems are often analyzed in terms of the final accuracy, leading to a limited understanding of the internal decision process, impossibility to gain insights, and ultimately to skepticism from clinicians. We present a visual analytics approach to uncover the decision-making process of a CAD system for classifying pancreatic cystic lesions. This CAD algorithm consists of two distinct components: random forest (RF), which classifies a set of predefined features, including demographic features, and a convolutional neural network (CNN), which analyzes radiological (imaging) features of the lesions. We study the class probabilities generated by the RF and the semantical meaning of the features learned by the CNN. We also use an eye tracker to better understand which radiological features are particularly useful for a radiologist to make a diagnosis and to quantitatively compare with the features that lead the CNN to its final classification decision. Additionally, we evaluate the effects and benefits of supplying the CAD system with a case-based visual aid in a second-reader setting.
Collapse
|
42
|
Multi-system fusion based on deep neural network and cloud edge computing and its application in intelligent manufacturing. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-05735-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Wang ZJ, Turko R, Shaikh O, Park H, Das N, Hohman F, Kahng M, Polo Chau DH. CNN Explainer: Learning Convolutional Neural Networks with Interactive Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1396-1406. [PMID: 33048723 DOI: 10.1109/tvcg.2020.3030418] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Deep learning's great success motivates many practitioners and students to learn about this exciting technology. However, it is often challenging for beginners to take their first step due to the complexity of understanding and applying deep learning. We present CNN Explainer, an interactive visualization tool designed for non-experts to learn and examine convolutional neural networks (CNNs), a foundational deep learning model architecture. Our tool addresses key challenges that novices face while learning about CNNs, which we identify from interviews with instructors and a survey with past students. CNN Explainer tightly integrates a model overview that summarizes a CNN's structure, and on-demand, dynamic visual explanation views that help users understand the underlying components of CNNs. Through smooth transitions across levels of abstraction, our tool enables users to inspect the interplay between low-level mathematical operations and high-level model structures. A qualitative user study shows that CNN Explainer helps users more easily understand the inner workings of CNNs, and is engaging and enjoyable to use. We also derive design lessons from our study. Developed using modern web technologies, CNN Explainer runs locally in users' web browsers without the need for installation or specialized hardware, broadening the public's education access to modern deep learning techniques.
Collapse
|
44
|
Huang X, Jamonnak S, Zhao Y, Wang B, Hoai M, Yager K, Xu W. Interactive Visual Study of Multiple Attributes Learning Model of X-Ray Scattering Images. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1312-1321. [PMID: 33104509 DOI: 10.1109/tvcg.2020.3030384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Existing interactive visualization tools for deep learning are mostly applied to the training, debugging, and refinement of neural network models working on natural images. However, visual analytics tools are lacking for the specific application of x-ray image classification with multiple structural attributes. In this paper, we present an interactive system for domain scientists to visually study the multiple attributes learning models applied to x-ray scattering images. It allows domain scientists to interactively explore this important type of scientific images in embedded spaces that are defined on the model prediction output, the actual labels, and the discovered feature space of neural networks. Users are allowed to flexibly select instance images, their clusters, and compare them regarding the specified visual representation of attributes. The exploration is guided by the manifestation of model performance related to mutual relationships among attributes, which often affect the learning accuracy and effectiveness. The system thus supports domain scientists to improve the training dataset and model, find questionable attributes labels, and identify outlier images or spurious data clusters. Case studies and scientists feedback demonstrate its functionalities and usefulness.
Collapse
|
45
|
Knittel J, Lalama A, Koch S, Ertl T. Visual Neural Decomposition to Explain Multivariate Data Sets. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1374-1384. [PMID: 33048724 DOI: 10.1109/tvcg.2020.3030420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Investigating relationships between variables in multi-dimensional data sets is a common task for data analysts and engineers. More specifically, it is often valuable to understand which ranges of which input variables lead to particular values of a given target variable. Unfortunately, with an increasing number of independent variables, this process may become cumbersome and time-consuming due to the many possible combinations that have to be explored. In this paper, we propose a novel approach to visualize correlations between input variables and a target output variable that scales to hundreds of variables. We developed a visual model based on neural networks that can be explored in a guided way to help analysts find and understand such correlations. First, we train a neural network to predict the target from the input variables. Then, we visualize the inner workings of the resulting model to help understand relations within the data set. We further introduce a new regularization term for the backpropagation algorithm that encourages the neural network to learn representations that are easier to interpret visually. We apply our method to artificial and real-world data sets to show its utility.
Collapse
|
46
|
Ma Y, Fan A, He J, Nelakurthi AR, Maciejewski R. A Visual Analytics Framework for Explaining and Diagnosing Transfer Learning Processes. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1385-1395. [PMID: 33035164 DOI: 10.1109/tvcg.2020.3028888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many statistical learning models hold an assumption that the training data and the future unlabeled data are drawn from the same distribution. However, this assumption is difficult to fulfill in real-world scenarios and creates barriers in reusing existing labels from similar application domains. Transfer Learning is intended to relax this assumption by modeling relationships between domains, and is often applied in deep learning applications to reduce the demand for labeled data and training time. Despite recent advances in exploring deep learning models with visual analytics tools, little work has explored the issue of explaining and diagnosing the knowledge transfer process between deep learning models. In this paper, we present a visual analytics framework for the multi-level exploration of the transfer learning processes when training deep neural networks. Our framework establishes a multi-aspect design to explain how the learned knowledge from the existing model is transferred into the new learning task when training deep neural networks. Based on a comprehensive requirement and task analysis, we employ descriptive visualization with performance measures and detailed inspections of model behaviors from the statistical, instance, feature, and model structure levels. We demonstrate our framework through two case studies on image classification by fine-tuning AlexNets to illustrate how analysts can utilize our framework.
Collapse
|
47
|
Cheng F, Ming Y, Qu H. DECE: Decision Explorer with Counterfactual Explanations for Machine Learning Models. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1438-1447. [PMID: 33074811 DOI: 10.1109/tvcg.2020.3030342] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With machine learning models being increasingly applied to various decision-making scenarios, people have spent growing efforts to make machine learning models more transparent and explainable. Among various explanation techniques, counterfactual explanations have the advantages of being human-friendly and actionable-a counterfactual explanation tells the user how to gain the desired prediction with minimal changes to the input. Besides, counterfactual explanations can also serve as efficient probes to the models' decisions. In this work, we exploit the potential of counterfactual explanations to understand and explore the behavior of machine learning models. We design DECE, an interactive visualization system that helps understand and explore a model's decisions on individual instances and data subsets, supporting users ranging from decision-subjects to model developers. DECE supports exploratory analysis of model decisions by combining the strengths of counterfactual explanations at instance- and subgroup-levels. We also introduce a set of interactions that enable users to customize the generation of counterfactual explanations to find more actionable ones that can suit their needs. Through three use cases and an expert interview, we demonstrate the effectiveness of DECE in supporting decision exploration tasks and instance explanations.
Collapse
|
48
|
Wang Q, Alexander W, Pegg J, Qu H, Chen M. HypoML: Visual Analysis for Hypothesis-based Evaluation of Machine Learning Models. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1417-1426. [PMID: 33048739 DOI: 10.1109/tvcg.2020.3030449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this paper, we present a visual analytics tool for enabling hypothesis-based evaluation of machine learning (ML) models. We describe a novel ML-testing framework that combines the traditional statistical hypothesis testing (commonly used in empirical research) with logical reasoning about the conclusions of multiple hypotheses. The framework defines a controlled configuration for testing a number of hypotheses as to whether and how some extra information about a "concept" or "feature" may benefit or hinder an ML model. Because reasoning multiple hypotheses is not always straightforward, we provide HypoML as a visual analysis tool, with which, the multi-thread testing results are first transformed to analytical results using statistical and logical inferences, and then to a visual representation for rapid observation of the conclusions and the logical flow between the testing results and hypotheses. We have applied HypoML to a number of hypothesized concepts, demonstrating the intuitive and explainable nature of the visual analysis.
Collapse
|
49
|
Visual analysis of meteorological satellite data via model-agnostic meta-learning. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-020-00704-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Martín-Noguerol T, Paulano-Godino F, López-Ortega R, Górriz JM, Riascos RF, Luna A. Artificial intelligence in radiology: relevance of collaborative work between radiologists and engineers for building a multidisciplinary team. Clin Radiol 2020; 76:317-324. [PMID: 33358195 DOI: 10.1016/j.crad.2020.11.113] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
The use of artificial intelligence (AI) algorithms in the field of radiology is becoming more common. Several studies have demonstrated the potential utility of machine learning (ML) and deep learning (DL) techniques as aids for radiologists to solve specific radiological challenges. The decision-making process, the establishment of specific clinical or radiological targets, the profile of the different professionals involved in the development of AI solutions, and the relation with partnerships and stakeholders are only some of the main issues that have to be faced and solved prior to starting the development of radiological AI solutions. Among all the players in this multidisciplinary team, the communication between radiologists and data scientists is essential for a successful collaborative work. There are specific skills that are inherent to radiological and medical training that are critical for identifying anatomical or clinical targets as well as for segmenting or labelling lesions. These skills would then have to be transferred, explained, and taught to the data science experts to facilitate their comprehension and integration into ML or DL algorithms. On the other hand, there is a wide range of complex software packages, deep neural-network architectures, and data transfer processes for which radiologists need the expertise of software engineers and data scientists in order to select the optimal manner to analyse and post-process this amount of data. This paper offers a summary of the top five challenges faced by radiologists and data scientists including tips and tricks to build a successful AI team.
Collapse
Affiliation(s)
| | | | | | - J M Górriz
- Department of Signal Theory, Telematics and Communications, University of Granada, Granada, Spain
| | - R F Riascos
- Department of Neuroradiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - A Luna
- MRI Unit, Radiology Department. HT Medica, Jaén, Spain
| |
Collapse
|