1
|
Xia Q, Zhang H, Qu D, Bai J, Lv C. BRPVis: Visual Analytics for Bus Route Planning Based on Perception of Passenger Travel Demand. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2024; 44:118-131. [PMID: 39231050 DOI: 10.1109/mcg.2024.3454645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Bus route planning is a complex application problem within the transportation domain, aiming to identify the best route among numerous candidate solutions. Despite existing research significantly reducing the exploration space of solutions, planners still face challenges in further exploring optimal route planning solutions. Specifically, the diversity of route attributes increases the complexity of determining their impact, such as the variety and quantity of reachable points of interest. Therefore, we present BRPVis, an interactive visual analytics system designed to assist bus route planners in exploring optimal solutions through multilevel visualization and rich interaction design. Furthermore, we propose a human-machine collaborative multicriteria decision-making method, which quantitatively analyzes the weights of route attributes while incorporating interactive feedback mechanisms to support personalized route exploration. Based on exploration using real-world traffic datasets, three case studies conducted with domain experts demonstrate that BRPVis effectively provides decision support for bus route planning tasks.
Collapse
|
2
|
Oral E, Chawla R, Wijkstra M, Mahyar N, Dimara E. From Information to Choice: A Critical Inquiry Into Visualization Tools for Decision Making. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:359-369. [PMID: 37871054 DOI: 10.1109/tvcg.2023.3326593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
In the face of complex decisions, people often engage in a three-stage process that spans from (1) exploring and analyzing pertinent information (intelligence); (2) generating and exploring alternative options (design); and ultimately culminating in (3) selecting the optimal decision by evaluating discerning criteria (choice). We can fairly assume that all good visualizations aid in the "intelligence" stage by enabling data exploration and analysis. Yet, to what degree and how do visualization systems currently support the other decision making stages, namely "design" and "choice"? To further explore this question, we conducted a comprehensive review of decision-focused visualization tools by examining publications in major visualization journals and conferences, including VIS, EuroVis, and CHI, spanning all available years. We employed a deductive coding method and in-depth analysis to assess whether and how visualization tools support design and choice. Specifically, we examined each visualization tool by (i) its degree of visibility for displaying decision alternatives, criteria, and preferences, and (ii) its degree of flexibility for offering means to manipulate the decision alternatives, criteria, and preferences with interactions such as adding, modifying, changing mapping, and filtering. Our review highlights the opportunities and challenges that decision-focused visualization tools face in realizing their full potential to support all stages of the decision making process. It reveals a surprising scarcity of tools that support all stages, and while most tools excel in offering visibility for decision criteria and alternatives, the degree of flexibility to manipulate these elements is often limited, and the lack of tools that accommodate decision preferences and their elicitation is notable. Based on our findings, to better support the choice stage, future research could explore enhancing flexibility levels and variety, exploring novel visualization paradigms, increasing algorithmic support, and ensuring that this automation is user-controlled via the enhanced flexibility I evels. Our curated list of the 88 surveyed visualization tools is available in the OSF link (https://osf.io/nrasz/?view_only=b92a90a34ae241449b5f2cd33383bfcb).
Collapse
|
3
|
Liu Q, Ren Y, Zhu Z, Li D, Ma X, Li Q. RankAxis: Towards a Systematic Combination of Projection and Ranking in Multi-Attribute Data Exploration. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:701-711. [PMID: 36155453 DOI: 10.1109/tvcg.2022.3209463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Projection and ranking are frequently used analysis techniques in multi-attribute data exploration. Both families of techniques help analysts with tasks such as identifying similarities between observations and determining ordered subgroups, and have shown good performances in multi-attribute data exploration. However, they often exhibit problems such as distorted projection layouts, obscure semantic interpretations, and non-intuitive effects produced by selecting a subset of (weighted) attributes. Moreover, few studies have attempted to combine projection and ranking into the same exploration space to complement each other's strengths and weaknesses. For this reason, we propose RankAxis, a visual analytics system that systematically combines projection and ranking to facilitate the mutual interpretation of these two techniques and jointly support multi-attribute data exploration. A real-world case study, expert feedback, and a user study demonstrate the efficacy of RankAxis.
Collapse
|
4
|
Li J, Zhou CQ. Incorporation of Human Knowledge into Data Embeddings to Improve Pattern Significance and Interpretability. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:723-733. [PMID: 36155441 DOI: 10.1109/tvcg.2022.3209382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Embedding is a common technique for analyzing multi-dimensional data. However, the embedding projection cannot always form significant and interpretable visual structures that foreshadow underlying data patterns. We propose an approach that incorporates human knowledge into data embeddings to improve pattern significance and interpretability. The core idea is (1) externalizing tacit human knowledge as explicit sample labels and (2) adding a classification loss in the embedding network to encode samples' classes. The approach pulls samples of the same class with similar data features closer in the projection, leading to more compact (significant) and class-consistent (interpretable) visual structures. We give an embedding network with a customized classification loss to implement the idea and integrate the network into a visualization system to form a workflow that supports flexible class creation and pattern exploration. Patterns found on open datasets in case studies, subjects' performance in a user study, and quantitative experiment results illustrate the general usability and effectiveness of the approach.
Collapse
|
5
|
Li G, Li R, Wang Z, Liu CH, Lu M, Wang G. HiTailor: Interactive Transformation and Visualization for Hierarchical Tabular Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:139-148. [PMID: 36155464 DOI: 10.1109/tvcg.2022.3209354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tabular visualization techniques integrate visual representations with tabular data to avoid additional cognitive load caused by splitting users' attention. However, most of the existing studies focus on simple flat tables instead of hierarchical tables, whose complex structure limits the expressiveness of visualization results and affects users' efficiency in visualization construction. We present HiTailor, a technique for presenting and exploring hierarchical tables. HiTailor constructs an abstract model, which defines row/column headings as biclustering and hierarchical structures. Based on our abstract model, we identify three pairs of operators, Swap/Transpose, ToStacked/ToLinear, Fold/Unfold, for transformations of hierarchical tables to support users' comprehensive explorations. After transformation, users can specify a cell or block of interest in hierarchical tables as a TableUnit for visualization, and HiTailor recommends other related TableUnits according to the abstract model using different mechanisms. We demonstrate the usability of the HiTailor system through a comparative study and a case study with domain experts, showing that HiTailor can present and explore hierarchical tables from different viewpoints. HiTailor is available at https://github.com/bitvis2021/HiTailor.
Collapse
|
6
|
Chen R, Shu X, Chen J, Weng D, Tang J, Fu S, Wu Y. Nebula: A Coordinating Grammar of Graphics. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:4127-4140. [PMID: 33909565 DOI: 10.1109/tvcg.2021.3076222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In multiple coordinated views (MCVs), visualizations across views update their content in response to users' interactions in other views. Interactive systems provide direct manipulation to create coordination between views, but are restricted to limited types of predefined templates. By contrast, textual specification languages enable flexible coordination but expose technical burden. To bridge the gap, we contribute Nebula, a grammar based on natural language for coordinating visualizations in MCVs. The grammar design is informed by a novel framework based on a systematic review of 176 coordinations from existing theories and applications, which describes coordination by demonstration, i.e., how coordination is performed by users. With the framework, Nebula specification formalizes coordination as a composition of user- and coordination-triggered interactions in origin and destination views, respectively, along with potential data transformation between the interactions. We evaluate Nebula by demonstrating its expressiveness with a gallery of diverse examples and analyzing its usability on cognitive dimensions.
Collapse
|
7
|
Liu H, Dai H, Chen J, Xu J, Tao Y, Lin H. Interactive similar patient retrieval for visual summary of patient outcomes. J Vis (Tokyo) 2022. [DOI: 10.1007/s12650-022-00898-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Dimara E, Stasko J. A Critical Reflection on Visualization Research: Where Do Decision Making Tasks Hide? IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:1128-1138. [PMID: 34587049 DOI: 10.1109/tvcg.2021.3114813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It has been widely suggested that a key goal of visualization systems is to assist decision making, but is this true? We conduct a critical investigation on whether the activity of decision making is indeed central to the visualization domain. By approaching decision making as a user task, we explore the degree to which decision tasks are evident in visualization research and user studies. Our analysis suggests that decision tasks are not commonly found in current visualization task taxonomies and that the visualization field has yet to leverage guidance from decision theory domains on how to study such tasks. We further found that the majority of visualizations addressing decision making were not evaluated based on their ability to assist decision tasks. Finally, to help expand the impact of visual analytics in organizational as well as casual decision making activities, we initiate a research agenda on how decision making assistance could be elevated throughout visualization research.
Collapse
|
9
|
Tang J, Zhou Y, Tang T, Weng D, Xie B, Yu L, Zhang H, Wu Y. A Visualization Approach for Monitoring Order Processing in E-Commerce Warehouse. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:857-867. [PMID: 34596553 DOI: 10.1109/tvcg.2021.3114878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The efficiency of warehouses is vital to e-commerce. Fast order processing at the warehouses ensures timely deliveries and improves customer satisfaction. However, monitoring, analyzing, and manipulating order processing in the warehouses in real time are challenging for traditional methods due to the sheer volume of incoming orders, the fuzzy definition of delayed order patterns, and the complex decision-making of order handling priorities. In this paper, we adopt a data-driven approach and propose OrderMonitor, a visual analytics system that assists warehouse managers in analyzing and improving order processing efficiency in real time based on streaming warehouse event data. Specifically, the order processing pipeline is visualized with a novel pipeline design based on the sedimentation metaphor to facilitate real-time order monitoring and suggest potentially abnormal orders. We also design a novel visualization that depicts order timelines based on the Gantt charts and Marey's graphs. Such a visualization helps the managers gain insights into the performance of order processing and find major blockers for delayed orders. Furthermore, an evaluating view is provided to assist users in inspecting order details and assigning priorities to improve the processing performance. The effectiveness of OrderMonitor is evaluated with two case studies on a real-world warehouse dataset.
Collapse
|
10
|
Kim H, Drake B, Endert A, Park H. ArchiText: Interactive Hierarchical Topic Modeling. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:3644-3655. [PMID: 32191890 DOI: 10.1109/tvcg.2020.2981456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Human-in-the-loop topic modeling allows users to explore and steer the process to produce better quality topics that align with their needs. When integrated into visual analytic systems, many existing automated topic modeling algorithms are given interactive parameters to allow users to tune or adjust them. However, this has limitations when the algorithms cannot be easily adapted to changes, and it is difficult to realize interactivity closely supported by underlying algorithms. Instead, we emphasize the concept of tight integration, which advocates for the need to co-develop interactive algorithms and interactive visual analytic systems in parallel to allow flexibility and scalability. In this article, we describe design goals for efficiently and effectively executing the concept of tight integration among computation, visualization, and interaction for hierarchical topic modeling of text data. We propose computational base operations for interactive tasks to achieve the design goals. To instantiate our concept, we present ArchiText, a prototype system for interactive hierarchical topic modeling, which offers fast, flexible, and algorithmically valid analysis via tight integration. Utilizing interactive hierarchical topic modeling, our technique lets users generate, explore, and flexibly steer hierarchical topics to discover more informed topics and their document memberships.
Collapse
|
11
|
Ebert D, Reinert A, Fisher B. Visual Analytics Review: An Early and Continuing Success of Convergent Research With Impact. Comput Sci Eng 2021. [DOI: 10.1109/mcse.2021.3069342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Lyu Y, Gao F, Wu IS, Lim BY. Imma Sort by Two or More Attributes With Interpretable Monotonic Multi-Attribute Sorting. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:2369-2384. [PMID: 33296304 DOI: 10.1109/tvcg.2020.3043487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many choice problems often involve multiple attributes which are mentally challenging, because only one attribute is neatly sorted while others could be randomly arranged. We hypothesize that perceiving approximately monotonic trends across multiple attributes is key to the overall interpretability of sorted results, because users can easily predict the attribute values of the next items. We extend a ranking principal curve model to tune monotonic trends in attributes and present Imma Sort to sort items by multiple attributes simultaneously by trading-off the monotonicity in the primary sorted attribute to increase the human predictability for other attributes. We characterize how it performs for varying attribute correlations, attribute preferences, list lengths and number of attributes. We further extend Imma Sort with ImmaAnchor and ImmaCenter to improve the learnability and efficiency to search sorted items with conflicting attributes. We demonstrate usage scenarios for two applications and evaluate its learnability, usability, interpretability, and user performance in prediction and search tasks. We find that Imma Sort improves the interpretability and satisfaction of sorting by ≥ 2 attributes. We discuss why, when, where, and how to deploy Imma Sort for real-world applications.
Collapse
|
13
|
SemanticAxis: exploring multi-attribute data by semantic construction and ranking analysis. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-020-00733-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Xie T, Ma Y, Tong H, Thai MT, Maciejewski R. Auditing the Sensitivity of Graph-based Ranking with Visual Analytics. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1459-1469. [PMID: 33027000 DOI: 10.1109/tvcg.2020.3028958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Graph mining plays a pivotal role across a number of disciplines, and a variety of algorithms have been developed to answer who/what type questions. For example, what items shall we recommend to a given user on an e-commerce platform? The answers to such questions are typically returned in the form of a ranked list, and graph-based ranking methods are widely used in industrial information retrieval settings. However, these ranking algorithms have a variety of sensitivities, and even small changes in rank can lead to vast reductions in product sales and page hits. As such, there is a need for tools and methods that can help model developers and analysts explore the sensitivities of graph ranking algorithms with respect to perturbations within the graph structure. In this paper, we present a visual analytics framework for explaining and exploring the sensitivity of any graph-based ranking algorithm by performing perturbation-based what-if analysis. We demonstrate our framework through three case studies inspecting the sensitivity of two classic graph-based ranking algorithms (PageRank and HITS) as applied to rankings in political news media and social networks.
Collapse
|
15
|
Kim Y, Kim J, Jeon H, Kim YH, Song H, Kim B, Seo J. Githru: Visual Analytics for Understanding Software Development History Through Git Metadata Analysis. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:656-666. [PMID: 33048722 DOI: 10.1109/tvcg.2020.3030414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Git metadata contains rich information for developers to understand the overall context of a large software development project. Thus it can help new developers, managers, and testers understand the history of development without needing to dig into a large pile of unfamiliar source code. However, the current tools for Git visualization are not adequate to analyze and explore the metadata: They focus mainly on improving the usability of Git commands instead of on helping users understand the development history. Furthermore, they do not scale for large and complex Git commit graphs, which can play an important role in understanding the overall development history. In this paper, we present Githru, an interactive visual analytics system that enables developers to effectively understand the context of development history through the interactive exploration of Git metadata. We design an interactive visual encoding idiom to represent a large Git graph in a scalable manner while preserving the topological structures in the Git graph. To enable scalable exploration of a large Git commit graph, we propose novel techniques (graph reconstruction, clustering, and Context-Preserving Squash Merge (CSM) methods) to abstract a large-scale Git commit graph. Based on these Git commit graph abstraction techniques, Githru provides an interactive summary view to help users gain an overview of the development history and a comparison view in which users can compare different clusters of commits. The efficacy of Githru has been demonstrated by case studies with domain experts using real-world, in-house datasets from a large software development team at a major international IT company. A controlled user study with 12 developers comparing Githru to previous tools also confirms the effectiveness of Githru in terms of task completion time.
Collapse
|
16
|
Pister A, Buono P, Fekete JD, Plaisant C, Valdivia P. Integrating Prior Knowledge in Mixed-Initiative Social Network Clustering. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1775-1785. [PMID: 33095715 DOI: 10.1109/tvcg.2020.3030347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We propose a new approach-called PK-clustering-to help social scientists create meaningful clusters in social networks. Many clustering algorithms exist but most social scientists find them difficult to understand, and tools do not provide any guidance to choose algorithms, or to evaluate results taking into account the prior knowledge of the scientists. Our work introduces a new clustering approach and a visual analytics user interface that address this issue. It is based on a process that 1) captures the prior knowledge of the scientists as a set of incomplete clusters, 2) runs multiple clustering algorithms (similarly to clustering ensemble methods), 3) visualizes the results of all the algorithms ranked and summarized by how well each algorithm matches the prior knowledge, 4) evaluates the consensus between user-selected algorithms and 5) allows users to review details and iteratively update the acquired knowledge. We describe our approach using an initial functional prototype, then provide two examples of use and early feedback from social scientists. We believe our clustering approach offers a novel constructive method to iteratively build knowledge while avoiding being overly influenced by the results of often randomly selected black-box clustering algorithms.
Collapse
|
17
|
Saket B, Huron S, Perin C, Endert A. Investigating Direct Manipulation of Graphical Encodings as a Method for User Interaction. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:482-491. [PMID: 31442983 DOI: 10.1109/tvcg.2019.2934534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We investigate direct manipulation of graphical encodings as a method for interacting with visualizations. There is an increasing interest in developing visualization tools that enable users to perform operations by directly manipulating graphical encodings rather than external widgets such as checkboxes and sliders. Designers of such tools must decide which direct manipulation operations should be supported, and identify how each operation can be invoked. However, we lack empirical guidelines for how people convey their intended operations using direct manipulation of graphical encodings. We address this issue by conducting a qualitative study that examines how participants perform 15 operations using direct manipulation of standard graphical encodings. From this study, we 1) identify a list of strategies people employ to perform each operation, 2) observe commonalities in strategies across operations, and 3) derive implications to help designers leverage direct manipulation of graphical encoding as a method for user interaction.
Collapse
|
18
|
Zhao J, Karimzadeh M, Snyder LS, Surakitbanharn C, Qian ZC, Ebert DS. MetricsVis: A Visual Analytics System for Evaluating Employee Performance in Public Safety Agencies. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:1193-1203. [PMID: 31425117 DOI: 10.1109/tvcg.2019.2934603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Evaluating employee performance in organizations with varying workloads and tasks is challenging. Specifically, it is important to understand how quantitative measurements of employee achievements relate to supervisor expectations, what the main drivers of good performance are, and how to combine these complex and flexible performance evaluation metrics into an accurate portrayal of organizational performance in order to identify shortcomings and improve overall productivity. To facilitate this process, we summarize common organizational performance analyses into four visual exploration task categories. Additionally, we develop MetricsVis, a visual analytics system composed of multiple coordinated views to support the dynamic evaluation and comparison of individual, team, and organizational performance in public safety organizations. MetricsVis provides four primary visual components to expedite performance evaluation: (1) a priority adjustment view to support direct manipulation on evaluation metrics; (2) a reorderable performance matrix to demonstrate the details of individual employees; (3) a group performance view that highlights aggregate performance and individual contributions for each group; and (4) a projection view illustrating employees with similar specialties to facilitate shift assignments and training. We demonstrate the usability of our framework with two case studies from medium-sized law enforcement agencies and highlight its broader applicability to other domains.
Collapse
|
19
|
Snyder LS, Lin YS, Karimzadeh M, Goldwasser D, Ebert DS. Interactive Learning for Identifying Relevant Tweets to Support Real-time Situational Awareness. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:558-568. [PMID: 31442995 DOI: 10.1109/tvcg.2019.2934614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Various domain users are increasingly leveraging real-time social media data to gain rapid situational awareness. However, due to the high noise in the deluge of data, effectively determining semantically relevant information can be difficult, further complicated by the changing definition of relevancy by each end user for different events. The majority of existing methods for short text relevance classification fail to incorporate users' knowledge into the classification process. Existing methods that incorporate interactive user feedback focus on historical datasets. Therefore, classifiers cannot be interactively retrained for specific events or user-dependent needs in real-time. This limits real-time situational awareness, as streaming data that is incorrectly classified cannot be corrected immediately, permitting the possibility for important incoming data to be incorrectly classified as well. We present a novel interactive learning framework to improve the classification process in which the user iteratively corrects the relevancy of tweets in real-time to train the classification model on-the-fly for immediate predictive improvements. We computationally evaluate our classification model adapted to learn at interactive rates. Our results show that our approach outperforms state-of-the-art machine learning models. In addition, we integrate our framework with the extended Social Media Analytics and Reporting Toolkit (SMART) 2.0 system, allowing the use of our interactive learning framework within a visual analytics system tailored for real-time situational awareness. To demonstrate our framework's effectiveness, we provide domain expert feedback from first responders who used the extended SMART 2.0 system.
Collapse
|
20
|
Das S, Cashman D, Chang R, Endert A. BEAMES: Interactive Multimodel Steering, Selection, and Inspection for Regression Tasks. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2019; 39:20-32. [PMID: 31199255 DOI: 10.1109/mcg.2019.2922592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Interactive model steering helps people incrementally build machine learning models that are tailored to their domain and task. Existing visual analytic tools allow people to steer a single model (e.g., assignment attribute weights used by a dimension reduction model). However, the choice of model is critical in such situations. What if the model chosen is suboptimal for the task, dataset, or question being asked? What if instead of parameterizing and steering this model, a different model provides a better fit? This paper presents a technique to allow users to inspect and steer multiple machine learning models. The technique steers and samples models from a broader set of learning algorithms and model types. We incorporate this technique into a visual analytic prototype, BEAMES, that allows users to perform regression tasks via multimodel steering. This paper demonstrates the effectiveness of BEAMES via a use case, and discusses broader implications for multimodel steering.
Collapse
|
21
|
|
22
|
Liu S, Chen C, Lu Y, Ouyang F, Wang B. An Interactive Method to Improve Crowdsourced Annotations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:235-245. [PMID: 30130224 DOI: 10.1109/tvcg.2018.2864843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In order to effectively infer correct labels from noisy crowdsourced annotations, learning-from-crowds models have introduced expert validation. However, little research has been done on facilitating the validation procedure. In this paper, we propose an interactive method to assist experts in verifying uncertain instance labels and unreliable workers. Given the instance labels and worker reliability inferred from a learning-from-crowds model, candidate instances and workers are selected for expert validation. The influence of verified results is propagated to relevant instances and workers through the learning-from-crowds model. To facilitate the validation of annotations, we have developed a confusion visualization to indicate the confusing classes for further exploration, a constrained projection method to show the uncertain labels in context, and a scatter-plot-based visualization to illustrate worker reliability. The three visualizations are tightly integrated with the learning-from-crowds model to provide an iterative and progressive environment for data validation. Two case studies were conducted that demonstrate our approach offers an efficient method for validating and improving crowdsourced annotations.
Collapse
|