1
|
Xiong W, Yu C, Shi C, Zheng Y, Wang X, Hu Y, Yin H, Li C, Wang C. V4RIN: visual analysis of regional industry network with domain knowledge. Vis Comput Ind Biomed Art 2024; 7:11. [PMID: 38748079 PMCID: PMC11096142 DOI: 10.1186/s42492-024-00164-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
The regional industry network (RIN) is a type of financial network derived from industry networks that possess the capability to describe the connections between specific industries within a particular region. For most investors and financial analysts lacking extensive experience, the decision-support information provided by industry networks may be too vague. Conversely, RINs express more detailed and specific industry connections both within and outside the region. As RIN analysis is domain-specific and current financial network analysis tools are designed for generalized analytical tasks and cannot be directly applied to RINs, new visual analysis approaches are needed to enhance information exploration efficiency. In this study, we collaborated with domain experts and proposed V4RIN, an interactive visualization analysis system that integrates predefined domain knowledge and data processing methods to support users in uploading custom data. Through multiple views in the system panel, users can comprehensively explore the structure, geographical distribution, and spatiotemporal variations of the RIN. Two case studies were conducted and a set of expert interviews with five domain experts to validate the usability and reliability of our system.
Collapse
Affiliation(s)
- Wenli Xiong
- School of Computer Science and Technology, East China Normal University, Shanghai, 200062, China
| | - Chenjie Yu
- School of Computer Science and Technology, East China Normal University, Shanghai, 200062, China
| | - Chen Shi
- School of Computer Science and Technology, East China Normal University, Shanghai, 200062, China
| | - Yaxuan Zheng
- School of Computer Science and Technology, East China Normal University, Shanghai, 200062, China
| | - Xiping Wang
- China Fortune Securities Co., Ltd, Shanghai, 200030, China
| | - Yanpeng Hu
- Shanghai Chinafortune Co., Ltd, Shanghai, 200030, China
| | - Hong Yin
- Faculty of Economics and Management, East China Normal University, Shanghai, 200062, China.
| | - Chenhui Li
- School of Computer Science and Technology, East China Normal University, Shanghai, 200062, China
| | - Changbo Wang
- School of Computer Science and Technology, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
2
|
Silva JCS, de Lima Silva DF, Ferreira Júnior NR, de Almeida Filho AT. An analytical tool to support public policies and isolation barriers against SARS-CoV-2 based on mobility patterns and socio-economic aspects. Appl Soft Comput 2023; 138:110177. [PMID: 36923646 PMCID: PMC9991329 DOI: 10.1016/j.asoc.2023.110177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/23/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
It is crucial to develop spatiotemporal analysis tools to mitigate risks during a pandemic. Many dashboards encountered in the literature do not consider how the geolocation characteristics and travel patterns may influence the spread of the virus. This work brings an interactive tool that is capable of crossing information about mobility patterns, geolocation characteristics and epidemiologic variables. To do so, our system uses a mobility network, generated through anonymized mobile location data, which enables the division of a region into representative clusters. The clusters' aggregated socioeconomic, and epidemiologic indicators can be analyzed through multiple coordinated views. The proposal is to enable users to understand how different locations commute citizens, monitor risk over time, and understand what locations need more assistance, considering different layers of visualization, such as clusters and individual locations. The main novelty is the interactive way to construct the mobility network that defines the social distancing level and the way that risks are managed, since many different geolocation characteristics can be considered and visualized, such as socioeconomic indicators of a location, the economic importance of a set of locations, and the connection of important neighborhoods of a city with other cities. The proposed tool was built and verified by experts assembled to give scientific recommendations to the city administration of Recife, the capital city of Pernambuco. Our analysis shows how a policymaker could use the tool to evaluate different isolation scenarios considering the trade-off between economic activity and contamination risk, where the practical insights can also be used to tighten and relax mitigation measures in other phases of a pandemic.
Collapse
|
3
|
Deng Z, Weng D, Liu S, Tian Y, Xu M, Wu Y. A survey of urban visual analytics: Advances and future directions. COMPUTATIONAL VISUAL MEDIA 2022; 9:3-39. [PMID: 36277276 PMCID: PMC9579670 DOI: 10.1007/s41095-022-0275-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/08/2022] [Indexed: 06/16/2023]
Abstract
Developing effective visual analytics systems demands care in characterization of domain problems and integration of visualization techniques and computational models. Urban visual analytics has already achieved remarkable success in tackling urban problems and providing fundamental services for smart cities. To promote further academic research and assist the development of industrial urban analytics systems, we comprehensively review urban visual analytics studies from four perspectives. In particular, we identify 8 urban domains and 22 types of popular visualization, analyze 7 types of computational method, and categorize existing systems into 4 types based on their integration of visualization techniques and computational models. We conclude with potential research directions and opportunities.
Collapse
Affiliation(s)
- Zikun Deng
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| | - Di Weng
- Microsoft Research Asia, Beijing, 100080 China
| | - Shuhan Liu
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| | - Yuan Tian
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| | - Mingliang Xu
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001 China
| | - Yingcai Wu
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
4
|
|
5
|
Liu L, Zhang H, Liu J, Liu S, Chen W, Man J. Visual exploration of urban functional zones based on augmented nonnegative tensor factorization. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-020-00713-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Pinter G, Mosavi A, Felde I. Artificial Intelligence for Modeling Real Estate Price Using Call Detail Records and Hybrid Machine Learning Approach. ENTROPY 2020; 22:e22121421. [PMID: 33339406 PMCID: PMC7766813 DOI: 10.3390/e22121421] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022]
Abstract
Advancement of accurate models for predicting real estate price is of utmost importance for urban development and several critical economic functions. Due to the significant uncertainties and dynamic variables, modeling real estate has been studied as complex systems. In this study, a novel machine learning method is proposed to tackle real estate modeling complexity. Call detail records (CDR) provides excellent opportunities for in-depth investigation of the mobility characterization. This study explores the CDR potential for predicting the real estate price with the aid of artificial intelligence (AI). Several essential mobility entropy factors, including dweller entropy, dweller gyration, workers’ entropy, worker gyration, dwellers’ work distance, and workers’ home distance, are used as input variables. The prediction model is developed using the machine learning method of multi-layered perceptron (MLP) trained with the evolutionary algorithm of particle swarm optimization (PSO). Model performance is evaluated using mean square error (MSE), sustainability index (SI), and Willmott’s index (WI). The proposed model showed promising results revealing that the workers’ entropy and the dwellers’ work distances directly influence the real estate price. However, the dweller gyration, dweller entropy, workers’ gyration, and the workers’ home had a minimum effect on the price. Furthermore, it is shown that the flow of activities and entropy of mobility are often associated with the regions with lower real estate prices.
Collapse
Affiliation(s)
- Gergo Pinter
- John von Neumann Faculty of Informatics, Obuda University, 1034 Budapest, Hungary; (G.P.); (I.F.)
| | - Amir Mosavi
- John von Neumann Faculty of Informatics, Obuda University, 1034 Budapest, Hungary; (G.P.); (I.F.)
- School of Economics and Business, Norwegian University of Life Sciences, 1430 Ås, Norway
- School of the Built Environment, Oxford Brookes University, Oxford OX3 0BP, UK
- Correspondence:
| | - Imre Felde
- John von Neumann Faculty of Informatics, Obuda University, 1034 Budapest, Hungary; (G.P.); (I.F.)
| |
Collapse
|
7
|
Lee C, Kim Y, Jin S, Kim D, Maciejewski R, Ebert D, Ko S. A Visual Analytics System for Exploring, Monitoring, and Forecasting Road Traffic Congestion. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:3133-3146. [PMID: 31199260 DOI: 10.1109/tvcg.2019.2922597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present an interactive visual analytics system that enables traffic congestion exploration, surveillance, and forecasting based on vehicle detector data. Through domain expert collaboration, we have extracted task requirements, incorporated the Long Short-Term Memory (LSTM) model for congestion forecasting, and designed a weighting method for detecting the causes of congestion and congestion propagation directions. Our visual analytics system is designed to enable users to explore congestion causes, directions, and severity. Congestion conditions of a city are visualized using a Volume-Speed Rivers (VSRivers) visualization that simultaneously presents traffic volumes and speeds. To evaluate our system, we report performance comparison results, wherein our model is more accurate than other forecasting algorithms. We demonstrate the usefulness of our system in the traffic management and congestion broadcasting domains through three case studies and domain expert feedback.
Collapse
|
8
|
Yu S, Yang D, Hao Y, Lian M, Zang Y. Visual Analysis of Merchandise Sales Trend Based on Online Transaction Log. INT J PATTERN RECOGN 2020. [DOI: 10.1142/s0218001420590363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Online transaction log records the relevant information of the users, commodities and transactions, as well as changes over time, which can help analysts understand commodities’ sales. The existing visualization methods mainly analyze the purchase behavior from the perspective of users, while analyzing the sales trend of commodities can better help merchants to make business decisions. Based on the transaction log, this paper puts forward the visual analysis framework of commodity sales trend and the corresponding data processing algorithm. The concepts of volatility and dynamic performance of sales trend are proposed, through which the multi-dimensional sales data of time-oriented are displayed in two-dimensional space. The “Feature Ring” is designed to display the detailed sales information of the products. Based on the above methods, a visual analysis system is designed and implemented. The usability and validity of the visualization methods are verified by using JD online transaction data. The visualization methods enable manufacturers to formulate production plans and carry out product research and develop better.
Collapse
Affiliation(s)
- Shidong Yu
- Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Department of Electrical Engineering, Yingkou Institute of Technology, Yingkou 115014, P. R. China
| | - Dongsheng Yang
- Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, P. R. China
| | - Ying Hao
- Department of Electrical Engineering, Yingkou Institute of Technology, Yingkou 115014, P. R. China
- Department of Information Science, Dalian Maritime University, Dalian 116026, P. R. China
| | - Mengjia Lian
- Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ying Zang
- Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
9
|
|
10
|
Du X, Pei Y, Duivesteijn W, Pechenizkiy M. Exceptional spatio-temporal behavior mining through Bayesian non-parametric modeling. Data Min Knowl Discov 2020. [DOI: 10.1007/s10618-020-00674-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractCollective social media provides a vast amount of geo-tagged social posts, which contain various records on spatio-temporal behavior. Modeling spatio-temporal behavior on collective social media is an important task for applications like tourism recommendation, location prediction and urban planning. Properly accomplishing this task requires a model that allows for diverse behavioral patterns on each of the three aspects: spatial location, time, and text. In this paper, we address the following question: how to find representative subgroups of social posts, for which the spatio-temporal behavioral patterns are substantially different from the behavioral patterns in the whole dataset? Selection and evaluation are the two challenging problems for finding the exceptional subgroups. To address these problems, we propose BNPM: a Bayesian non-parametric model, to model spatio-temporal behavior and infer the exceptionality of social posts in subgroups. By training BNPM on a large amount of randomly sampled subgroups, we can get the global distribution of behavioral patterns. For each given subgroup of social posts, its posterior distribution can be inferred by BNPM. By comparing the posterior distribution with the global distribution, we can quantify the exceptionality of each given subgroup. The exceptionality scores are used to guide the search process within the exceptional model mining framework to automatically discover the exceptional subgroups. Various experiments are conducted to evaluate the effectiveness and efficiency of our method. On four real-world datasets our method discovers subgroups coinciding with events, subgroups distinguishing professionals from tourists, and subgroups whose consistent exceptionality can only be truly appreciated by combining exceptional spatio-temporal and exceptional textual behavior.
Collapse
|
11
|
Huang Z, Zhao Y, Chen W, Gao S, Yu K, Xu W, Tang M, Zhu M, Xu M. A Natural-language-based Visual Query Approach of Uncertain Human Trajectories. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:1256-1266. [PMID: 31443013 DOI: 10.1109/tvcg.2019.2934671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Visual querying is essential for interactively exploring massive trajectory data. However, the data uncertainty imposes profound challenges to fulfill advanced analytics requirements. On the one hand, many underlying data does not contain accurate geographic coordinates, e.g., positions of a mobile phone only refer to the regions (i.e., mobile cell stations) in which it resides, instead of accurate GPS coordinates. On the other hand, domain experts and general users prefer a natural way, such as using a natural language sentence, to access and analyze massive movement data. In this paper, we propose a visual analytics approach that can extract spatial-temporal constraints from a textual sentence and support an effective query method over uncertain mobile trajectory data. It is built up on encoding massive, spatially uncertain trajectories by the semantic information of the POls and regions covered by them, and then storing the trajectory documents in text database with an effective indexing scheme. The visual interface facilitates query condition specification, situation-aware visualization, and semantic exploration of large trajectory data. Usage scenarios on real-world human mobility datasets demonstrate the effectiveness of our approach.
Collapse
|
12
|
Mei H, Chen W, Wei Y, Hu Y, Zhou S, Lin B, Zhao Y, Xia J. RSATree: Distribution-Aware Data Representation of Large-Scale Tabular Datasets for Flexible Visual Query. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:1161-1171. [PMID: 31443022 DOI: 10.1109/tvcg.2019.2934800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Analysts commonly investigate the data distributions derived from statistical aggregations of data that are represented by charts, such as histograms and binned scatterplots, to visualize and analyze a large-scale dataset. Aggregate queries are implicitly executed through such a process. Datasets are constantly extremely large; thus, the response time should be accelerated by calculating predefined data cubes. However, the queries are limited to the predefined binning schema of preprocessed data cubes. Such limitation hinders analysts' flexible adjustment of visual specifications to investigate the implicit patterns in the data effectively. Particularly, RSATree enables arbitrary queries and flexible binning strategies by leveraging three schemes, namely, an R-tree-based space partitioning scheme to catch the data distribution, a locality-sensitive hashing technique to achieve locality-preserving random access to data items, and a summed area table scheme to support interactive query of aggregated values with a linear computational complexity. This study presents and implements a web-based visual query system that supports visual specification, query, and exploration of large-scale tabular data with user-adjustable granularities. We demonstrate the efficiency and utility of our approach by performing various experiments on real-world datasets and analyzing time and space complexity.
Collapse
|
13
|
Zhao Y, Luo X, Lin X, Wang H, Kui X, Zhou F, Wang J, Chen Y, Chen W. Visual Analytics for Electromagnetic Situation Awareness in Radio Monitoring and Management. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:590-600. [PMID: 31443001 DOI: 10.1109/tvcg.2019.2934655] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Traditional radio monitoring and management largely depend on radio spectrum data analysis, which requires considerable domain experience and heavy cognition effort and frequently results in incorrect signal judgment and incomprehensive situation awareness. Faced with increasingly complicated electromagnetic environments, radio supervisors urgently need additional data sources and advanced analytical technologies to enhance their situation awareness ability. This paper introduces a visual analytics approach for electromagnetic situation awareness. Guided by a detailed scenario and requirement analysis, we first propose a signal clustering method to process radio signal data and a situation assessment model to obtain qualitative and quantitative descriptions of the electromagnetic situations. We then design a two-module interface with a set of visualization views and interactions to help radio supervisors perceive and understand the electromagnetic situations by a joint analysis of radio signal data and radio spectrum data. Evaluations on real-world data sets and an interview with actual users demonstrate the effectiveness of our prototype system. Finally, we discuss the limitations of the proposed approach and provide future work directions.
Collapse
|
14
|
Zhao Y, Wang L, Li S, Zhou F, Lin X, Lu Q, Ren L. A Visual Analysis Approach for Understanding Durability Test Data of Automotive Products. ACM T INTEL SYST TEC 2019. [DOI: 10.1145/3345640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
People face data-rich manufacturing environments in Industry 4.0. As an important technology for explaining and understanding complex data, visual analytics has been increasingly introduced into industrial data analysis scenarios. With the durability test of automotive starters as background, this study proposes a visual analysis approach for understanding large-scale and long-term durability test data. Guided by detailed scenario and requirement analyses, we first propose a migration-adapted clustering algorithm that utilizes a segmentation strategy and a group of matching-updating operations to achieve an efficient and accurate clustering analysis of the data for starting mode identification and abnormal test detection. We then design and implement a visual analysis system that provides a set of user-friendly visual designs and lightweight interactions to help people gain data insights into the test process overview, test data patterns, and durability performance dynamics. Finally, we conduct a quantitative algorithm evaluation, case study, and user interview by using real-world starter durability test datasets. The results demonstrate the effectiveness of the approach and its possible inspiration for the durability test data analysis of other similar industrial products.
Collapse
Affiliation(s)
- Ying Zhao
- Central South University, Changsha, Hunan, China
| | - Lei Wang
- Central South University, Changsha, Hunan, China
| | - Shijie Li
- Central South University, Changsha, Hunan, China
| | | | - Xiaoru Lin
- Central South University, Changsha, Hunan, China
| | - Qiang Lu
- Hefei University of Technology 8 China and Anhui Province Key Laboratory of Industry Safety and Emergency Technology, Hefei, Anhui, China
| | - Lei Ren
- Beihang University, Beijing, China
| |
Collapse
|
15
|
Liu Y, Guo Z, Zhang X, Zhang R, Zhou Z. (ChinaVis 2019) uncertainty visualization in stratigraphic correlation based on multi-source data fusion. J Vis (Tokyo) 2019. [DOI: 10.1007/s12650-019-00579-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
FuzzyRadar: visualization for understanding fuzzy clusters. J Vis (Tokyo) 2019. [DOI: 10.1007/s12650-019-00577-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Shi X, Lv F, Seng D, Xing B, Chen B. Visual exploration of mobility dynamics based on multi-source mobility datasets and POI information. J Vis (Tokyo) 2019. [DOI: 10.1007/s12650-019-00594-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Luo X, Yuan Y, Zhang K, Xia J, Zhou Z, Chang L, Gu T. Enhancing statistical charts: toward better data visualization and analysis. J Vis (Tokyo) 2019. [DOI: 10.1007/s12650-019-00569-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Abstract
The increased accessibility of urban sensor data and the popularity of social network applications is enabling the discovery of crowd mobility and personal communication patterns. However, studying the egocentric relationships of an individual can be very challenging because available data may refer to direct contacts, such as phone calls between individuals, or indirect contacts, such as paired location presence. In this article, we develop methods to integrate three facets extracted from heterogeneous urban data (timelines, calls, and locations) through a progressive visual reasoning and inspection scheme. Our approach uses a detect-and-filter scheme such that, prior to visual refinement and analysis, a coarse detection is performed to extract the target individual and construct the timeline of the target. It then detects spatio-temporal co-occurrences or call-based contacts to develop the egocentric network of the individual. The filtering stage is enhanced with a line-based visual reasoning interface that facilitates a flexible and comprehensive investigation of egocentric relationships and connections in terms of time, space, and social networks. The integrated system, RelationLines, is demonstrated using a dataset that contains taxi GPS data, cell-base mobility data, mobile calling data, microblog data, and point-of-interest (POI) data from a city with millions of citizens. We examine the effectiveness and efficiency of our system with three case studies and user review.
Collapse
Affiliation(s)
- Wei Chen
- Zhejiang University, State Key Lab of CAD8CG, China
| | - Jing Xia
- Zhejiang University, State Key Lab of CAD8CG and Alibaba Group, China
| | - Xumeng Wang
- Zhejiang University, State Key Lab of CAD8CG, China
| | - Yi Wang
- Zhejiang University, State Key Lab of CAD8CG, China
| | - Jun Chen
- Zhejiang University, State Key Lab of CAD8CG, Guangzhou, China
| | - Liang Chang
- Guilin University of Electronic Technology, China
| |
Collapse
|
20
|
Zhou F, Lin X, Liu C, Zhao Y, Xu P, Ren L, Xue T, Ren L. A survey of visualization for smart manufacturing. J Vis (Tokyo) 2018. [DOI: 10.1007/s12650-018-0530-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Visual analysis of traffic data via spatio-temporal graphs and interactive topic modeling. J Vis (Tokyo) 2018. [DOI: 10.1007/s12650-018-0517-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Wu X, Chen Z, Gu Y, Chen W, Fang ME. Illustrative visualization of time-varying features in spatio-temporal data. JOURNAL OF VISUAL LANGUAGES AND COMPUTING 2018. [DOI: 10.1016/j.jvlc.2018.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|