1
|
Yin J, Jia H, Zhou B, Tang T, Ying L, Ye S, Peng TQ, Wu Y. Blowing Seeds Across Gardens: Visualizing Implicit Propagation of Cross-Platform Social Media Posts. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:185-195. [PMID: 39255156 DOI: 10.1109/tvcg.2024.3456181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Propagation analysis refers to studying how information spreads on social media, a pivotal endeavor for understanding social sentiment and public opinions. Numerous studies contribute to visualizing information spread, but few have considered the implicit and complex diffusion patterns among multiple platforms. To bridge the gap, we summarize cross-platform diffusion patterns with experts and identify significant factors that dissect the mechanisms of cross-platform information spread. Based on that, we propose an information diffusion model that estimates the likelihood of a topic/post spreading among different social media platforms. Moreover, we propose a novel visual metaphor that encapsulates cross-platform propagation in a manner analogous to the spread of seeds across gardens. Specifically, we visualize platforms, posts, implicit cross-platform routes, and salient instances as elements of a virtual ecosystem - gardens, flowers, winds, and seeds, respectively. We further develop a visual analytic system, namely BloomWind, that enables users to quickly identify the cross-platform diffusion patterns and investigate the relevant social media posts. Ultimately, we demonstrate the usage of BloomWind through two case studies and validate its effectiveness using expert interviews.
Collapse
|
2
|
Nguyen TM, Chun HW, Hwang M, Kwon LN, Lee JM, Park K, Jung JJ. SocioPedia+: a visual analytics system for social knowledge graph-based event exploration. PeerJ Comput Sci 2023; 9:e1277. [PMID: 37346548 PMCID: PMC10280572 DOI: 10.7717/peerj-cs.1277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/15/2023] [Indexed: 06/23/2023]
Abstract
In the recent era of information explosion, exploring event from social networks has recently been a crucial task for many applications. To derive valuable comprehensive and thorough insights on social events, visual analytics (VA) system have been broadly used as a promising solution. However, due to the enormous social data volume with highly diversity and complexity, the number of event exploration tasks which can be enabled in a conventional real-time visual analytics systems has been limited. In this article, we introduce SocioPedia+, a real-time visual analytics system for social event exploration in time and space domains. By introducing the dimension of social knowledge graph analysis into the system multivariate analysis, the process of event explorations in SocioPedia+ can be significantly enhanced and thus enabling system capability on performing full required tasks of visual analytics and social event explorations. Furthermore, SocioPedia+ has been optimized for visualizing event analysis on different levels from macroscopic (events level) to microscopic (knowledge level). The system is then implemented and investigated with a detailed case study for evaluating its usefulness and visualization effectiveness for the application of event explorations.
Collapse
Affiliation(s)
- Tra My Nguyen
- Department of Computer Engineering, Chung-Ang University, Seoul, Korea
| | - Hong-Woo Chun
- Korea Institute of Science and Technology Information, Seoul, Korea
| | - Myunggwon Hwang
- Korea Institute of Science and Technology Information, Daejeon, Korea
| | - Lee-Nam Kwon
- Korea Institute of Science and Technology Information, Seoul, Korea
| | - Jae-Min Lee
- Korea Institute of Science and Technology Information, Seoul, Korea
| | - Kanghee Park
- Korea Institute of Science and Technology Information, Seoul, Korea
| | - Jason J. Jung
- Department of Computer Engineering, Chung-Ang University, Seoul, Korea
| |
Collapse
|
3
|
WaterExcVA: a system for exploring and visualizing data exception in urban water supply. J Vis (Tokyo) 2023. [DOI: 10.1007/s12650-023-00911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
4
|
Deng Z, Weng D, Liu S, Tian Y, Xu M, Wu Y. A survey of urban visual analytics: Advances and future directions. COMPUTATIONAL VISUAL MEDIA 2022; 9:3-39. [PMID: 36277276 PMCID: PMC9579670 DOI: 10.1007/s41095-022-0275-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/08/2022] [Indexed: 06/16/2023]
Abstract
Developing effective visual analytics systems demands care in characterization of domain problems and integration of visualization techniques and computational models. Urban visual analytics has already achieved remarkable success in tackling urban problems and providing fundamental services for smart cities. To promote further academic research and assist the development of industrial urban analytics systems, we comprehensively review urban visual analytics studies from four perspectives. In particular, we identify 8 urban domains and 22 types of popular visualization, analyze 7 types of computational method, and categorize existing systems into 4 types based on their integration of visualization techniques and computational models. We conclude with potential research directions and opportunities.
Collapse
Affiliation(s)
- Zikun Deng
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| | - Di Weng
- Microsoft Research Asia, Beijing, 100080 China
| | - Shuhan Liu
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| | - Yuan Tian
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| | - Mingliang Xu
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001 China
| | - Yingcai Wu
- State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
5
|
Deng Z, Weng D, Xie X, Bao J, Zheng Y, Xu M, Chen W, Wu Y. Compass: Towards Better Causal Analysis of Urban Time Series. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:1051-1061. [PMID: 34596550 DOI: 10.1109/tvcg.2021.3114875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The spatial time series generated by city sensors allow us to observe urban phenomena like environmental pollution and traffic congestion at an unprecedented scale. However, recovering causal relations from these observations to explain the sources of urban phenomena remains a challenging task because these causal relations tend to be time-varying and demand proper time series partitioning for effective analyses. The prior approaches extract one causal graph given long-time observations, which cannot be directly applied to capturing, interpreting, and validating dynamic urban causality. This paper presents Compass, a novel visual analytics approach for in-depth analyses of the dynamic causality in urban time series. To develop Compass, we identify and address three challenges: detecting urban causality, interpreting dynamic causal relations, and unveiling suspicious causal relations. First, multiple causal graphs over time among urban time series are obtained with a causal detection framework extended from the Granger causality test. Then, a dynamic causal graph visualization is designed to reveal the time-varying causal relations across these causal graphs and facilitate the exploration of the graphs along the time. Finally, a tailored multi-dimensional visualization is developed to support the identification of spurious causal relations, thereby improving the reliability of causal analyses. The effectiveness of Compass is evaluated with two case studies conducted on the real-world urban datasets, including the air pollution and traffic speed datasets, and positive feedback was received from domain experts.
Collapse
|
6
|
Ying L, Tangl T, Luo Y, Shen L, Xie X, Yu L, Wu Y. GlyphCreator: Towards Example-based Automatic Generation of Circular Glyphs. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:400-410. [PMID: 34596552 DOI: 10.1109/tvcg.2021.3114877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Circular glyphs are used across disparate fields to represent multidimensional data. However, although these glyphs are extremely effective, creating them is often laborious, even for those with professional design skills. This paper presents GlyphCreator, an interactive tool for the example-based generation of circular glyphs. Given an example circular glyph and multidimensional input data, GlyphCreator promptly generates a list of design candidates, any of which can be edited to satisfy the requirements of a particular representation. To develop GlyphCreator, we first derive a design space of circular glyphs by summarizing relationships between different visual elements. With this design space, we build a circular glyph dataset and develop a deep learning model for glyph parsing. The model can deconstruct a circular glyph bitmap into a series of visual elements. Next, we introduce an interface that helps users bind the input data attributes to visual elements and customize visual styles. We evaluate the parsing model through a quantitative experiment, demonstrate the use of GlyphCreator through two use scenarios, and validate its effectiveness through user interviews.
Collapse
|
7
|
Knittel J, Koch S, Tang T, Chen W, Wu Y, Liu S, Ertl T. Real-Time Visual Analysis of High-Volume Social Media Posts. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:879-889. [PMID: 34587041 DOI: 10.1109/tvcg.2021.3114800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Breaking news and first-hand reports often trend on social media platforms before traditional news outlets cover them. The real-time analysis of posts on such platforms can reveal valuable and timely insights for journalists, politicians, business analysts, and first responders, but the high number and diversity of new posts pose a challenge. In this work, we present an interactive system that enables the visual analysis of streaming social media data on a large scale in real-time. We propose an efficient and explainable dynamic clustering algorithm that powers a continuously updated visualization of the current thematic landscape as well as detailed visual summaries of specific topics of interest. Our parallel clustering strategy provides an adaptive stream with a digestible but diverse selection of recent posts related to relevant topics. We also integrate familiar visual metaphors that are highly interlinked for enabling both explorative and more focused monitoring tasks. Analysts can gradually increase the resolution to dive deeper into particular topics. In contrast to previous work, our system also works with non-geolocated posts and avoids extensive preprocessing such as detecting events. We evaluated our dynamic clustering algorithm and discuss several use cases that show the utility of our system.
Collapse
|
8
|
Tang J, Zhou Y, Tang T, Weng D, Xie B, Yu L, Zhang H, Wu Y. A Visualization Approach for Monitoring Order Processing in E-Commerce Warehouse. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:857-867. [PMID: 34596553 DOI: 10.1109/tvcg.2021.3114878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The efficiency of warehouses is vital to e-commerce. Fast order processing at the warehouses ensures timely deliveries and improves customer satisfaction. However, monitoring, analyzing, and manipulating order processing in the warehouses in real time are challenging for traditional methods due to the sheer volume of incoming orders, the fuzzy definition of delayed order patterns, and the complex decision-making of order handling priorities. In this paper, we adopt a data-driven approach and propose OrderMonitor, a visual analytics system that assists warehouse managers in analyzing and improving order processing efficiency in real time based on streaming warehouse event data. Specifically, the order processing pipeline is visualized with a novel pipeline design based on the sedimentation metaphor to facilitate real-time order monitoring and suggest potentially abnormal orders. We also design a novel visualization that depicts order timelines based on the Gantt charts and Marey's graphs. Such a visualization helps the managers gain insights into the performance of order processing and find major blockers for delayed orders. Furthermore, an evaluating view is provided to assist users in inspecting order details and assigning priorities to improve the processing performance. The effectiveness of OrderMonitor is evaluated with two case studies on a real-world warehouse dataset.
Collapse
|
9
|
Vemprala N, Liu CZ, Choo KR. From puzzles to portraits: Enhancing situation awareness during natural disasters using a design science approach. DECISION SCIENCES 2021. [DOI: 10.1111/deci.12527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Naga Vemprala
- Department of Information Systems and Cyber Security University of Texas San Antonio San Antonio Texas USA
| | - Charles Zhechao Liu
- Department of Information Systems and Cyber Security University of Texas San Antonio San Antonio Texas USA
| | - Kim‐Kwang Raymond Choo
- Department of Information Systems and Cyber Security University of Texas San Antonio San Antonio Texas USA
| |
Collapse
|
10
|
Chen S, Andrienko N, Andrienko G, Li J, Yuan X. Co-Bridges: Pair-wise Visual Connection and Comparison for Multi-item Data Streams. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:1612-1622. [PMID: 33125329 DOI: 10.1109/tvcg.2020.3030411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In various domains, there are abundant streams or sequences of multi-item data of various kinds, e.g. streams of news and social media texts, sequences of genes and sports events, etc. Comparison is an important and general task in data analysis. For comparing data streams involving multiple items (e.g., words in texts, actors or action types in action sequences, visited places in itineraries, etc.), we propose Co-Bridges, a visual design involving connection and comparison techniques that reveal similarities and differences between two streams. Co-Bridges use river and bridge metaphors, where two sides of a river represent data streams, and bridges connect temporally or sequentially aligned segments of streams. Commonalities and differences between these segments in terms of involvement of various items are shown on the bridges. Interactive query tools support the selection of particular stream subsets for focused exploration. The visualization supports both qualitative (common and distinct items) and quantitative (stream volume, amount of item involvement) comparisons. We further propose Comparison-of-Comparisons, in which two or more Co-Bridges corresponding to different selections are juxtaposed. We test the applicability of the Co-Bridges in different domains, including social media text streams and sports event sequences. We perform an evaluation of the users' capability to understand and use Co-Bridges. The results confirm that Co-Bridges is effective for supporting pair-wise visual comparisons in a wide range of applications.
Collapse
|
11
|
Liu L, Zhang H, Liu J, Liu S, Chen W, Man J. Visual exploration of urban functional zones based on augmented nonnegative tensor factorization. J Vis (Tokyo) 2021. [DOI: 10.1007/s12650-020-00713-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Ianni M, Masciari E, Sperlí G. A survey of Big Data dimensions vs Social Networks analysis. J Intell Inf Syst 2020; 57:73-100. [PMID: 33191981 PMCID: PMC7649712 DOI: 10.1007/s10844-020-00629-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023]
Abstract
The pervasive diffusion of Social Networks (SN) produced an unprecedented amount of heterogeneous data. Thus, traditional approaches quickly became unpractical for real life applications due their intrinsic properties: large amount of user-generated data (text, video, image and audio), data heterogeneity and high speed generation rate. More in detail, the analysis of user generated data by popular social networks (i.e Facebook (https://www.facebook.com/), Twitter (https://www.twitter.com/), Instagram (https://www.instagram.com/), LinkedIn (https://www.linkedin.com/)) poses quite intriguing challenges for both research and industry communities in the task of analyzing user behavior, user interactions, link evolution, opinion spreading and several other important aspects. This survey will focus on the analyses performed in last two decades on these kind of data w.r.t. the dimensions defined for Big Data paradigm (the so called Big Data 6 V's).
Collapse
Affiliation(s)
- Michele Ianni
- DIMES - Department of Informatics, Modeling, Electronics and Systems, University of Calabria, 87036 Arcavacata, CS Italy
| | - Elio Masciari
- Department of Electrical and Information Technology (DIETI), University of Naples Federico II, via Claudio 21, 80125 Naples, Italy
| | - Giancarlo Sperlí
- Department of Electrical and Information Technology (DIETI), University of Naples Federico II, via Claudio 21, 80125 Naples, Italy
| |
Collapse
|
13
|
Chotisarn N, Lu J, Ma L, Xu J, Meng L, Lin B, Xu Y, Luo X, Chen W. Bubble storytelling with automated animation: a Brexit hashtag activism case study. J Vis (Tokyo) 2020; 24:101-115. [PMID: 32904885 PMCID: PMC7459253 DOI: 10.1007/s12650-020-00690-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/01/2020] [Accepted: 08/09/2020] [Indexed: 12/02/2022]
Abstract
Abstract Hashtag data are common and easy to acquire. Thus, they are widely used in studies and visual data storytelling. For example, a recent story by China Central Television Europe depicts Brexit as a hashtag movement displayed on an animated bubble chart. However, creating such a story is usually laborious and tedious, because narrators have to switch between different tools and discuss with different collaborators. To reduce the burden, we develop a prototype system to help explore the bubbles’ movement by automatically inserting animations connected to the storytelling of the video creators and the interaction of viewers to those videos. We demonstrate the usability of our method through both use cases and a semi-structured user study. Graphic abstract ![]()
Collapse
Affiliation(s)
| | - Junhua Lu
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Libinzi Ma
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Jingli Xu
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Linhao Meng
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Bingru Lin
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Ying Xu
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Xiaonan Luo
- Guilin University of Electronic Technology, Guilin, China
| | - Wei Chen
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
|
15
|
|
16
|
Visual analysis of the opinion flow among multiple social groups. J Vis (Tokyo) 2019. [DOI: 10.1007/s12650-019-00615-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Abstract
The increased accessibility of urban sensor data and the popularity of social network applications is enabling the discovery of crowd mobility and personal communication patterns. However, studying the egocentric relationships of an individual can be very challenging because available data may refer to direct contacts, such as phone calls between individuals, or indirect contacts, such as paired location presence. In this article, we develop methods to integrate three facets extracted from heterogeneous urban data (timelines, calls, and locations) through a progressive visual reasoning and inspection scheme. Our approach uses a detect-and-filter scheme such that, prior to visual refinement and analysis, a coarse detection is performed to extract the target individual and construct the timeline of the target. It then detects spatio-temporal co-occurrences or call-based contacts to develop the egocentric network of the individual. The filtering stage is enhanced with a line-based visual reasoning interface that facilitates a flexible and comprehensive investigation of egocentric relationships and connections in terms of time, space, and social networks. The integrated system, RelationLines, is demonstrated using a dataset that contains taxi GPS data, cell-base mobility data, mobile calling data, microblog data, and point-of-interest (POI) data from a city with millions of citizens. We examine the effectiveness and efficiency of our system with three case studies and user review.
Collapse
Affiliation(s)
- Wei Chen
- Zhejiang University, State Key Lab of CAD8CG, China
| | - Jing Xia
- Zhejiang University, State Key Lab of CAD8CG and Alibaba Group, China
| | - Xumeng Wang
- Zhejiang University, State Key Lab of CAD8CG, China
| | - Yi Wang
- Zhejiang University, State Key Lab of CAD8CG, China
| | - Jun Chen
- Zhejiang University, State Key Lab of CAD8CG, Guangzhou, China
| | - Liang Chang
- Guilin University of Electronic Technology, China
| |
Collapse
|
18
|
Xu M, Wang H, Chu S, Gan Y, Jiang X, Li Y, Zhou B. Traffic Simulation and Visual Verification in Smog. ACM T INTEL SYST TEC 2019. [DOI: 10.1145/3200491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Smog causes low visibility on the road and it can impact the safety of traffic. Modeling traffic in smog will have a significant impact on realistic traffic simulations. Most existing traffic models assume that drivers have optimal vision in the simulations, making these simulations are not suitable for modeling smog weather conditions. In this article, we introduce the Smog Full Velocity Difference Model (SMOG-FVDM) for a realistic simulation of traffic in smog weather conditions. In this model, we present a stadia model for drivers in smog conditions. We introduce it into a car-following traffic model using both psychological force and body force concepts, and then we introduce the SMOG-FVDM. Considering that there are lots of parameters in the SMOG-FVDM, we design a visual verification system based on SMOG-FVDM to arrive at an adequate solution which can show visual simulation results under different road scenarios and different degrees of smog by reconciling the parameters. Experimental results show that our model can give a realistic and efficient traffic simulation of smog weather conditions.
Collapse
Affiliation(s)
- Mingliang Xu
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Hua Wang
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Shili Chu
- Artillery & Air Defense Forces Academy of Army, Zhengzhou, China
| | - Yong Gan
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xiaoheng Jiang
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Yafei Li
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
| | - Bing Zhou
- School of Information Engineering, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
|
20
|
Chen Y, Dong Y, Sun Y, Liang J. A Multi-comparable visual analytic approach for complex hierarchical data. JOURNAL OF VISUAL LANGUAGES AND COMPUTING 2018. [DOI: 10.1016/j.jvlc.2018.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|