1
|
Liu Z, Chen C, Hooker J. Manipulable Semantic Components: A Computational Representation of Data Visualization Scenes. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:732-742. [PMID: 39255155 DOI: 10.1109/tvcg.2024.3456296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Various data visualization applications such as reverse engineering and interactive authoring require a vocabulary that describes the structure of visualization scenes and the procedure to manipulate them. A few scene abstractions have been proposed, but they are restricted to specific applications for a limited set of visualization types. A unified and expressive model of data visualization scenes for different applications has been missing. To fill this gap, we present Manipulable Semantic Components (MSC), a computational representation of data visualization scenes, to support applications in scene understanding and augmentation. MSC consists of two parts: a unified object model describing the structure of a visualization scene in terms of semantic components, and a set of operations to generate and modify the scene components. We demonstrate the benefits of MSC in three applications: visualization authoring, visualization deconstruction and reuse, and animation specification.
Collapse
|
2
|
Li G, Mi H, Liu CH, Itoh T, Wang G. HiRegEx: Interactive Visual Query and Exploration of Multivariate Hierarchical Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:699-709. [PMID: 39255148 DOI: 10.1109/tvcg.2024.3456389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
When using exploratory visual analysis to examine multivariate hierarchical data, users often need to query data to narrow down the scope of analysis. However, formulating effective query expressions remains a challenge for multivariate hierarchical data, particularly when datasets become very large. To address this issue, we develop a declarative grammar, HiRegEx (Hierarchical data Regular Expression), for querying and exploring multivariate hierarchical data. Rooted in the extended multi-level task topology framework for tree visualizations (e-MLTT), HiRegEx delineates three query targets (node, path, and subtree) and two aspects for querying these targets (features and positions), and uses operators developed based on classical regular expressions for query construction. Based on the HiRegEx grammar, we develop an exploratory framework for querying and exploring multivariate hierarchical data and integrate it into the TreeQueryER prototype system. The exploratory framework includes three major components: top-down pattern specification, bottom-up data-driven inquiry, and context-creation data overview. We validate the expressiveness of HiRegEx with the tasks from the e-MLTT framework and showcase the utility and effectiveness of TreeQueryER system through a case study involving expert users in the analysis of a citation tree dataset.
Collapse
|
3
|
Xie L, Shu X, Su JC, Wang Y, Chen S, Qu H. Creating Emordle: Animating Word Cloud for Emotion Expression. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:5198-5211. [PMID: 37318965 DOI: 10.1109/tvcg.2023.3286392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We propose emordle, a conceptual design that animates wordles (compact word clouds) to deliver their emotional context to audiences. To inform the design, we first reviewed online examples of animated texts and animated wordles, and summarized strategies for injecting emotion into the animations. We introduced a composite approach that extends an existing animation scheme for one word to multiple words in a wordle with two global factors: the randomness of text animation (entropy) and the animation speed (speed). To create an emordle, general users can choose one predefined animated scheme that matches the intended emotion class and fine-tune the emotion intensity with the two parameters. We designed proof-of-concept emordle examples for four basic emotion classes, namely happiness, sadness, anger, and fear. We conducted two controlled crowdsourcing studies to evaluate our approach. The first study confirmed that people generally agreed on the conveyed emotions from well-crafted animations, and the second one demonstrated that our identified factors helped fine-tune the extent of the emotion delivered. We also invited general users to create their own emordles based on our proposed framework. Through this user study, we confirmed the effectiveness of the approach. We concluded with implications for future research opportunities of supporting emotion expression in visualizations.
Collapse
|
4
|
Hinterreiter A, Humer C, Kainz B, Streit M. ParaDime: A Framework for Parametric Dimensionality Reduction. COMPUTER GRAPHICS FORUM : JOURNAL OF THE EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS 2023; 42:337-348. [PMID: 38505300 PMCID: PMC10947012 DOI: 10.1111/cgf.14834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
ParaDime is a framework for parametric dimensionality reduction (DR). In parametric DR, neural networks are trained to embed high-dimensional data items in a low-dimensional space while minimizing an objective function. ParaDime builds on the idea that the objective functions of several modern DR techniques result from transformed inter-item relationships. It provides a common interface for specifying these relations and transformations and for defining how they are used within the losses that govern the training process. Through this interface, ParaDime unifies parametric versions of DR techniques such as metric MDS, t-SNE, and UMAP. It allows users to fully customize all aspects of the DR process. We show how this ease of customization makes ParaDime suitable for experimenting with interesting techniques such as hybrid classification/embedding models and supervised DR. This way, ParaDime opens up new possibilities for visualizing high-dimensional data.
Collapse
Affiliation(s)
| | | | - Bernhard Kainz
- Friedrich-Alexander-University Erlangen-Nuremberg Germany
- Imperial College London UK
| | | |
Collapse
|
5
|
Nguyen T, Gentile D, Jamieson GA, Gosine RG, Purmehdi H. Designing a Glyph-Based Polar Chart to Interpret the Results of Machine Learning Models. ERGONOMICS IN DESIGN 2023. [DOI: 10.1177/10648046231166047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Explainable artificial intelligence practices can support data scientists in interpreting the results of machine learning (ML) models. However, current practices require effortful and time-consuming coding to compare explanations that either relate to different ML models of the same data, or that are generated with different computational methods. We report the development of a glyph-based polar chart (GPC), designed to support a more comprehensive interpretation of the results of ML models by allowing these comparisons. The results from our user experience evaluation indicated that the proposed GPC supported data scientists in identifying the most relevant model variables, comparing different explanation methods, and performing logic reviews.
Collapse
|
6
|
Lin T, Yang Y, Beyer J, Pfister H. Labeling Out-of-View Objects in Immersive Analytics to Support Situated Visual Searching. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:1831-1844. [PMID: 34882554 DOI: 10.1109/tvcg.2021.3133511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Augmented Reality (AR) embeds digital information into objects of the physical world. Data can be shown in-situ, thereby enabling real-time visual comparisons and object search in real-life user tasks, such as comparing products and looking up scores in a sports game. While there have been studies on designing AR interfaces for situated information retrieval, there has only been limited research on AR object labeling for visual search tasks in the spatial environment. In this article, we identify and categorize different design aspects in AR label design and report on a formal user study on labels for out-of-view objects to support visual search tasks in AR. We design three visualization techniques for out-of-view object labeling in AR, which respectively encode the relative physical position (height-encoded), the rotational direction (angle-encoded), and the label values (value-encoded) of the objects. We further implement two traditional in-view object labeling techniques, where labels are placed either next to the respective objects (situated) or at the edge of the AR FoV (boundary). We evaluate these five different label conditions in three visual search tasks for static objects. Our study shows that out-of-view object labels are beneficial when searching for objects outside the FoV, spatial orientation, and when comparing multiple spatially sparse objects. Angle-encoded labels with directional cues of the surrounding objects have the overall best performance with the highest user satisfaction. We discuss the implications of our findings for future immersive AR interface design.
Collapse
|
7
|
Rodrigues N, Schulz C, Doring S, Baumgartner D, Krake T, Weiskopf D. Relaxed Dot Plots: Faithful Visualization of Samples and Their Distribution. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:278-287. [PMID: 36166524 DOI: 10.1109/tvcg.2022.3209429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We introduce relaxed dot plots as an improvement of nonlinear dot plots for unit visualization. Our plots produce more faithful data representations and reduce moiré effects. Their contour is based on a customized kernel frequency estimation to match the shape of the distribution of underlying data values. Previous nonlinear layouts introduce column-centric nonlinear scaling of dot diameters for visualization of high-dynamic-range data with high peaks. We provide a mathematical approach to convert that column-centric scaling to our smooth envelope shape. This formalism allows us to use linear, root, and logarithmic scaling to find ideal dot sizes. Our method iteratively relaxes the dot layout for more correct and aesthetically pleasing results. To achieve this, we modified Lloyd's algorithm with additional constraints and heuristics. We evaluate the layouts of relaxed dot plots against a previously existing nonlinear variant and show that our algorithm produces less error regarding the underlying data while establishing the blue noise property that works against moiré effects. Further, we analyze the readability of our relaxed plots in three crowd-sourced experiments. The results indicate that our proposed technique surpasses traditional dot plots.
Collapse
|
8
|
Li S, Yu J, Li M, Liu L, Zhang XL, Yuan X. A Framework for Multiclass Contour Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:353-362. [PMID: 36194705 DOI: 10.1109/tvcg.2022.3209482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Multiclass contour visualization is often used to interpret complex data attributes in such fields as weather forecasting, computational fluid dynamics, and artificial intelligence. However, effective and accurate representations of underlying data patterns and correlations can be challenging in multiclass contour visualization, primarily due to the inevitable visual cluttering and occlusions when the number of classes is significant. To address this issue, visualization design must carefully choose design parameters to make visualization more comprehensible. With this goal in mind, we proposed a framework for multiclass contour visualization. The framework has two components: a set of four visualization design parameters, which are developed based on an extensive review of literature on contour visualization, and a declarative domain-specific language (DSL) for creating multiclass contour rendering, which enables a fast exploration of those design parameters. A task-oriented user study was conducted to assess how those design parameters affect users' interpretations of real-world data. The study results offered some suggestions on the value choices of design parameters in multiclass contour visualization.
Collapse
|
9
|
McNutt AM. No Grammar to Rule Them All: A Survey of JSON-style DSLs for Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:160-170. [PMID: 36166549 DOI: 10.1109/tvcg.2022.3209460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
There has been substantial growth in the use of JSON-based grammars, as well as other standard data serialization languages, to create visualizations. Each of these grammars serves a purpose: some focus on particular computational tasks (such as animation), some are concerned with certain chart types (such as maps), and some target specific data domains (such as ML). Despite the prominence of this interface form, there has been little detailed analysis of the characteristics of these languages. In this study, we survey and analyze the design and implementation of 57 JSON-style DSLs for visualization. We analyze these languages supported by a collected corpus of examples for each DSL (consisting of 4395 instances) across a variety of axes organized into concerns related to domain, conceptual model, language relationships, affordances, and general practicalities. We identify tensions throughout these areas, such as between formal and colloquial specifications, among types of users, and within the composition of languages. Through this work, we seek to support language implementers by elucidating the choices, opportunities, and tradeoffs in visualization DSL design.
Collapse
|
10
|
Bertucci D, Hamid MM, Anand Y, Ruangrotsakun A, Tabatabai D, Perez M, Kahng M. DendroMap: Visual Exploration of Large-Scale Image Datasets for Machine Learning with Treemaps. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:320-330. [PMID: 36166545 DOI: 10.1109/tvcg.2022.3209425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this paper, we present DendroMap, a novel approach to interactively exploring large-scale image datasets for machine learning (ML). ML practitioners often explore image datasets by generating a grid of images or projecting high-dimensional representations of images into 2-D using dimensionality reduction techniques (e.g., t-SNE). However, neither approach effectively scales to large datasets because images are ineffectively organized and interactions are insufficiently supported. To address these challenges, we develop DendroMap by adapting Treemaps, a well-known visualization technique. DendroMap effectively organizes images by extracting hierarchical cluster structures from high-dimensional representations of images. It enables users to make sense of the overall distributions of datasets and interactively zoom into specific areas of interests at multiple levels of abstraction. Our case studies with widely-used image datasets for deep learning demonstrate that users can discover insights about datasets and trained models by examining the diversity of images, identifying underperforming subgroups, and analyzing classification errors. We conducted a user study that evaluates the effectiveness of DendroMap in grouping and searching tasks by comparing it with a gridified version of t-SNE and found that participants preferred DendroMap. DendroMap is available at https://div-lab.github.io/dendromap/.
Collapse
|
11
|
Crisan A, Fisher SE, Gardy JL, Munzner T. GEViTRec: Data Reconnaissance Through Recommendation Using a Domain-Specific Visualization Prevalence Design Space. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:4855-4872. [PMID: 34449391 DOI: 10.1109/tvcg.2021.3107749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Genomic Epidemiology (genEpi) is a branch of public health that uses many different data types including tabular, network, genomic, and geographic, to identify and contain outbreaks of deadly diseases. Due to the volume and variety of data, it is challenging for genEpi domain experts to conduct data reconnaissance; that is, have an overview of the data they have and make assessments toward its quality, completeness, and suitability. We present an algorithm for data reconnaissance through automatic visualization recommendation, GEViTRec. Our approach handles a broad variety of dataset types and automatically generates visually coherent combinations of charts, in contrast to existing systems that primarily focus on singleton visual encodings of tabular datasets. We automatically detect linkages across multiple input datasets by analyzing non-numeric attribute fields, creating a data source graph within which we analyze and rank paths. For each high-ranking path, we specify chart combinations with positional and color alignments between shared fields, using a gradual binding approach to transform initial partial specifications of singleton charts to complete specifications that are aligned and oriented consistently. A novel aspect of our approach is its combination of domain-agnostic elements with domain-specific information that is captured through a domain-specific visualization prevalence design space. Our implementation is applied to both synthetic data and real Ebola outbreak data. We compare GEViTRec's output to what previous visualization recommendation systems would generate, and to manually crafted visualizations used by practitioners. We conducted formative evaluations with ten genEpi experts to assess the relevance and interpretability of our results. Code, Data, and Study Materials Availability: https://github.com/amcrisan/GEVitRec.
Collapse
|
12
|
Sun M, Namburi A, Koop D, Zhao J, Li T, Chung H. Towards Systematic Design Considerations for Visualizing Cross-View Data Relationships. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:4741-4756. [PMID: 34357866 DOI: 10.1109/tvcg.2021.3102966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Due to the scale of data and the complexity of analysis tasks, insight discovery often requires coordinating multiple visualizations (views), with each view displaying different parts of data or the same data from different perspectives. For example, to analyze car sales records, a marketing analyst uses a line chart to visualize the trend of car sales, a scatterplot to inspect the price and horsepower of different cars, and a matrix to compare the transaction amounts in types of deals. To explore related information across multiple views, current visual analysis tools heavily rely on brushing and linking techniques, which may require a significant amount of user effort (e.g., many trial-and-error attempts). There may be other efficient and effective ways of displaying cross-view data relationships to support data analysis with multiple views, but currently there are no guidelines to address this design challenge. In this article, we present systematic design considerations for visualizing cross-view data relationships, which leverages descriptive aspects of relationships and usable visual context of multi-view visualizations. We discuss pros and cons of different designs for showing cross-view data relationships, and provide a set of recommendations for helping practitioners make design decisions.
Collapse
|
13
|
Chung H, Nandhakumar S, Yang S. GridSet: Visualizing Individual Elements and Attributes for Analysis of Set-Typed Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:2983-2998. [PMID: 33360996 DOI: 10.1109/tvcg.2020.3047111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present GridSet, a novel set visualization for exploring elements, their attributes, intersections, as well as entire sets. In this set visualization, each set representation is composed of glyphs, which represent individual elements and their attributes utilizing different visual encodings. In each set, elements are organized within a grid treemap layout that can provide space-efficient overviews of the elements structured by set intersections across multiple sets. These intersecting elements can be connected among sets through visual links. These visual representations for the individual set, elements, and intersection in GridSet facilitate novel interaction approaches for undertaking analysis tasks by utilizing both macroscopic views of sets, as well as microscopic views of elements and attribute details. In order to perform multiple set operations, GridSet supports a simple and straightforward process for set operations through dragging and dropping set objects. Our use cases involving two large set-typed datasets demonstrate that GridSet facilitates the exploration and identification of meaningful patterns and distributions of elements with respect to attributes and set intersections for solving complex analysis problems in set-typed data.
Collapse
|
14
|
L'Yi S, Wang Q, Lekschas F, Gehlenborg N. Gosling: A Grammar-based Toolkit for Scalable and Interactive Genomics Data Visualization. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:140-150. [PMID: 34596551 PMCID: PMC8826597 DOI: 10.1109/tvcg.2021.3114876] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The combination of diverse data types and analysis tasks in genomics has resulted in the development of a wide range of visualization techniques and tools. However, most existing tools are tailored to a specific problem or data type and offer limited customization, making it challenging to optimize visualizations for new analysis tasks or datasets. To address this challenge, we designed Gosling-a grammar for interactive and scalable genomics data visualization. Gosling balances expressiveness for comprehensive multi-scale genomics data visualizations with accessibility for domain scientists. Our accompanying JavaScript toolkit called Gosling.js provides scalable and interactive rendering. Gosling.js is built on top of an existing platform for web-based genomics data visualization to further simplify the visualization of common genomics data formats. We demonstrate the expressiveness of the grammar through a variety of real-world examples. Furthermore, we show how Gosling supports the design of novel genomics visualizations. An online editor and examples of Gosling.js, its source code, and documentation are available at https://gosling.js.org.
Collapse
|
15
|
Srinivasan A, Lee B, Stasko J. Interweaving Multimodal Interaction With Flexible Unit Visualizations for Data Exploration. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:3519-3533. [PMID: 32149639 DOI: 10.1109/tvcg.2020.2978050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Multimodal interfaces that combine direct manipulation and natural language have shown great promise for data visualization. Such multimodal interfaces allow people to stay in the flow of their visual exploration by leveraging the strengths of one modality to complement the weaknesses of others. In this article, we introduce an approach that interweaves multimodal interaction combining direct manipulation and natural language with flexible unit visualizations. We employ the proposed approach in a proof-of-concept system, DataBreeze. Coupling pen, touch, and speech-based multimodal interaction with flexible unit visualizations, DataBreeze allows people to create and interact with both systematically bound (e.g., scatterplots, unit column charts) and manually customized views, enabling a novel visual data exploration experience. We describe our design process along with DataBreeze's interface and interactions, delineating specific aspects of the design that empower the synergistic use of multiple modalities. We also present a preliminary user study with DataBreeze, highlighting the data exploration patterns that participants employed. Finally, reflecting on our design process and preliminary user study, we discuss future research directions.
Collapse
|
16
|
Tao W, Hou X, Sah A, Battle L, Chang R, Stonebraker M. Kyrix-S: Authoring Scalable Scatterplot Visualizations of Big Data. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:401-411. [PMID: 33048700 DOI: 10.1109/tvcg.2020.3030372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Static scatterplots often suffer from the overdraw problem on big datasets where object overlap causes undesirable visual clutter. The use of zooming in scatterplots can help alleviate this problem. With multiple zoom levels, more screen real estate is available, allowing objects to be placed in a less crowded way. We call this type of visualization scalable scatterplot visualizations, or SSV for short. Despite the potential of SSVs, existing systems and toolkits fall short in supporting the authoring of SSVs due to three limitations. First, many systems have limited scalability, assuming that data fits in the memory of one computer. Second, too much developer work, e.g., using custom code to generate mark layouts or render objects, is required. Third, many systems focus on only a small subset of the SSV design space (e.g. supporting a specific type of visual marks). To address these limitations, we have developed Kyrix-S, a system for easy authoring of SSVs at scale. Kyrix-S derives a declarative grammar that enables specification of a variety of SSVs in a few tens of lines of code, based on an existing survey of scatterplot tasks and designs. The declarative grammar is supported by a distributed layout algorithm which automatically places visual marks onto zoom levels. We store data in a multi-node database and use multi-node spatial indexes to achieve interactive browsing of large SSVs. Extensive experiments show that 1) Kyrix-S enables interactive browsing of SSVs of billions of objects, with response times under 500ms and 2) Kyrix-S achieves 4X-9X reduction in specification compared to a state-of-the-art authoring system.
Collapse
|
17
|
Kammer D, Keck M, Grunder T, Maasch A, Thom T, Kleinsteuber M, Groh R. Glyphboard: Visual Exploration of High-Dimensional Data Combining Glyphs with Dimensionality Reduction. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:1661-1671. [PMID: 31985425 DOI: 10.1109/tvcg.2020.2969060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rigorous data science is interdisciplinary at its core. In order to make sense of high-dimensional data, data scientists need to enter into a dialogue with domain experts. We present Glyphboard, a visualization tool that aims to support this dialogue. Glyphboard is a zoomable user interface that combines well-known methods such as dimensionality reduction and glyph-based visualizations in a novel, seamless, and integrated tool. While the dimensionality reduction affords a quick overview over the data, glyph-based visualizations are able to show the most relevant dimensions in the data set at one glance. We contribute an open-source prototype of Glyphboard, a general exchange format for high-dimensional data, and a case study with nine data scientists and domain experts from four exemplary domains in order to evaluate how the different visualization and interaction features of Glyphboard are used.
Collapse
|
18
|
Ivanov A, Danyluk K, Jacob C, Willett W. A Walk Among the Data. IEEE COMPUTER GRAPHICS AND APPLICATIONS 2019; 39:19-28. [PMID: 30762534 DOI: 10.1109/mcg.2019.2898941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We examine the potential for immersive unit visualizations-interactive virtual environments populated with objects representing individual items in a dataset. Our virtual reality prototype highlights how immersive unit visualizations can allow viewers to examine data at multiple scales, support immersive exploration, and create affective personal experiences with data.
Collapse
|
19
|
Badam SK, Mathisen A, Radle R, Klokmose CN, Elmqvist N. Vistrates: A Component Model for Ubiquitous Analytics. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:586-596. [PMID: 30136988 DOI: 10.1109/tvcg.2018.2865144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Visualization tools are often specialized for specific tasks, which turns the user's analytical workflow into a fragmented process performed across many tools. In this paper, we present a component model design for data visualization to promote modular designs of visualization tools that enhance their analytical scope. Rather than fragmenting tasks across tools, the component model supports unification, where components-the building blocks of this model-can be assembled to support a wide range of tasks. Furthermore, the model also provides additional key properties, such as support for collaboration, sharing across multiple devices, and adaptive usage depending on expertise, from creating visualizations using dropdown menus, through instantiating components, to actually modifying components or creating entirely new ones from scratch using JavaScript or Python source code. To realize our model, we introduce VISTRATES, a literate computing platform for developing, assembling, and sharing visualization components. From a visualization perspective, Vistrates features cross-cutting components for visual representations, interaction, collaboration, and device responsiveness maintained in a component repository. From a development perspective, Vistrates offers a collaborative programming environment where novices and experts alike can compose component pipelines for specific analytical activities. Finally, we present several Vistrates use cases that span the full range of the classic "anytime" and "anywhere" motto for ubiquitous analysis: from mobile and on-the-go usage, through office settings, to collaborative smart environments covering a variety of tasks and devices.
Collapse
|